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We develop a model that establishes a quantitative link between the physical properties of molecular
aggregates and their constituent building blocks. The relation is built on the coherent potential
approximation, calibrated against exact results, and proven reliable for a wide range of parameters. It
provides a practical method to compute spectra and transfer rates in multichromophoric systems from
experimentally accessible monomer data. Applications to Förster energy transfer reveal optimal transfer
rates as functions of both the system-bath coupling and intra-aggregate coherence.
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Molecular self-assembly is used in nature to build
complex structures and regulate material properties [1],
and can also be exploited for the fabrication of versatile
nanostructures [2]. The spatial arrangement of chromo-
phoric building blocks strongly influences the electronic
distribution [3], enabling a broad range of optical and
transport properties [4]. Nature has mastered this art,
evolving from a very limited number of monomers an
impressive diversity of photosynthetic light-harvesting
complexes [5], which are known to be highly versatile
[6] and efficient in absorbing sunlight and transferring the
subsequent excitation [4,7]. Understanding the sensitive
interplay between monomer and superstructure (composed
of monomers), and its influence on the optical, electronic,
and transport properties is highly desirable for the synthesis
of new materials [3], the design and operation of organic-
based devices [8], including solar cells [9], transistors,
light-emitting diodes [10], and flexible electronics [11]. Yet
despite its fundamental role, the relationship between
molecular superstructure and physical properties lacks
systematic quantitative understanding. In this Letter, we
derive such a quantitative method, by establishing the
relation between the aggregate spectra and its constituent
monomer building blocks; we further calibrate it against
exact results, and apply the theory to the important
dynamical process of resonant energy transfer.
Optical excitations of organic compounds involve

both electronic and vibrational degrees of freedom [12].
While the exciton-phonon interaction is well understood
for monomers [13–15], the electronic coupling in super-
structures such as multichromophoric (MC) complexes
delocalizes the excitation [16] and therefore requires the
treatment of electron-vibrational coupling, excitonic cou-
pling, and disorder on an equal footing [17]. The available
techniques, either exact such as stochastic path integral
(SPI) [18] and hierarchical equation of motions (HEOM)
[19–21], or approximate such as full-cumulant expansion
(FCE) [22], 2nd-order time convolution [23], time

convolutionless [24,25], and other recent developments
[26,27], are computationally expensive and not universally
applicable to relate the structure to optical properties. These
treatments require microscopic Hamiltonians and thus
are not explicit about the structure-spectra relation. Our
approach establishes such a relation: it allows us to predict
the physical properties of complex structures or, con-
versely, infer the structure from its measured properties.
While construction of the optical properties is important

in its own right, the spectra also provide additional
transport information. The transfer rates between weakly
coupled excitonic systems can be obtained from the overlap
of the donor emission and acceptor absorption spectra
using Förster resonant energy transfer (FRET) [28]. The
original FRET theory describes the environment through its
effect on the monomer spectra. Extensions to MC systems
[29–32], where the donor or acceptor are composed of
coupled chromophores, demonstrated that the far-field
linear spectroscopic line shapes are insufficient; rather,
the near-field, polarization-resolved aggregate spectra are
needed to obtain the MCFT (MC fluorescent transfer) rate
in general. Though nonlinear spectroscopic experiments
[33] could, in principle, be used, the required information is
not accessible with current experimental techniques [32].
The theory developed here solves this problem, allowing
for the construction of the aggregate spectra from the
experimentally accessible monomer spectra.
Our model is based on the coherent potential approxi-

mation (CPA) [34]: it treats the vibrational coupling exactly
at the monomer level and includes all orders of electronic
coupling, treated exactly up to the second order and
approximately for higher orders. Benchmarks against exact
SPI [18] and FCE [22] calculations show that our model
is reliable over a wide range of parameters. Our theory
applies to MCFT and recovers some aspects of the classical
treatments [35–38] as a limiting case. It completes the
series of papers quantifying the reliability of different
quantum models in MC systems [18,22,39].
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Monomer spectra.—We introduce the notation and exact
formulation of monomer spectra using the independent
boson model [14]. Consider a single monomer coupled to a
thermal phonon bath, both labeled by n, and characterized
by the spin-boson Hamiltonian

HðnÞ
0 ¼ HðnÞ

0S þHðnÞ
B þHðnÞ

SB ; ð1Þ

where HðnÞ
0S ¼ EnB

†
nBn denotes the Hamiltonian of the

electronic system,HðnÞ
B ¼ P

kℏωn;kb
†
n;kbn;k that of the bath,

andHðnÞ
SB ¼ B†

nBn
P

kgn;kðb†n;k þ bn;kÞ their coupling, which
is taken linear in the bath coordinate. The operator B†

n

creates an excitation on monomer n, forming the state
B†
njvaci ¼ jni; b†n;k creates a phononic excitation in mode

k. The excited state energy En ¼ ℏω0
n þ λn includes the

reorganization energy λn ¼
P

kgn;k=ωn;k. Interaction with
the electric field is treated semiclassically through the

system-radiation interaction Hamiltonian HðnÞ
SR ¼ μ̂n · Eê,

where μ̂n ¼ ~μngB
†
n þ H:c: denotes the transition dipole

moment operator and ê is a unit vector.
Following Sumi [34], we use the retarded Green’s

function [14] associated with the monomer Hamiltonian (1),

G0
nnðtÞ ¼ −

i
ℏ
ΘðtÞeði=ℏÞHðnÞ

0
tBne

−ði=ℏÞHðnÞ
0

tB†
n; ð2Þ

to define the optical spectra—all given in units of
energy here. The absorption spectrum is obtained from
the imaginary part of the Green’s function averaged
over the phonon bath, hG0

nnðωÞig, where h•ig ≡ TrB½•ρ0g�
denotes the trace over the bath using the density matrix of
the system bath in its ground state, ρ0g. The experimentally
accessible spectrum includes the dipole transition,

IðnÞexpðωÞ ¼ ðê · ~μgnÞIðnÞ0 ðωÞð~μng · êÞ, where

IðnÞ0 ðωÞ ¼ −2Im
Z

∞

−∞
dteiωtTrB½G0

nnðtÞρ0g�: ð3Þ

This monomer spectrum can be evaluated exactly as
follows. Assuming a Franck-Condon transition from the
ground state, the initial state can be taken as the factorized

state ρ0g ¼ 1S ⊗ ρB, where ρB ¼ e−βH
ðnÞ
B =Tr½e−βHðnÞ

B � is the
bath density matrix at equilibrium, with β−1 ¼ kBT. For a
harmonic bath at thermal equilibrium, the absorption line
shape (3) is exactly

IðnÞ0 ðωÞ ¼ 2

ℏ
Re

Z
∞

0

dteiωte−iωngte−gnðtÞ; ð4Þ

where ωng ≡ ðEn − EgÞ=ℏ and Eg denotes the electronic
ground state energy. The line shape function gnðtÞ ¼R
t
0 dτ1

R τ2
0 dτ2Cnðτ2Þ is obtained from the bath auto-

correlation function CnðτÞ ¼ ð1=ℏ2ÞhHðnÞ
SB ðτÞHðnÞ

SB ð0Þi,

and can be evaluated exactly assuming a Drude spectral
density, C00

nðωÞ≡ 2λnΛω=ðω2 þ Λ2Þ, with Λ the cutoff
frequency [13].
Steady-state emission occurs after the entire system bath

has equilibrated within the single-exciton manifold and is
obtained from hG0

nnðωÞie, with h•ie ≡ TrB½•ρ0e�. The initial
state ρ0e entering the averaged Green’s function is not
factorized anymore, and the system-bath entanglement
needs to be considered [22]. Instead of a direct calculation,
we follow Refs. [18,25,29] and use the detailed balance
condition [40] to obtain the emission spectrum from the
absorption,

EðnÞ
0 ðωÞ ¼ eβℏω

ZðnÞ I
ðnÞ
0 ðωÞ; ð5Þ

where ZðnÞ ¼ Tr½e−βHðnÞ
0S e−βH

ðnÞ
B � is the monomer partition

function.
Multichromophoric spectra.—Consider now a system of

N coupled chromophores described by

H ¼ H0 þ V; ð6Þ
where H0 ¼

P
N
n¼1H

ðnÞ
0 is the sum over N independent

monomers (1), which includes exciton-phonon interaction,
and V ¼ P

n≠mVnmB
†
nBm characterizes the intermonomer

coupling, typically of dipole-dipole nature. The operator B†
n

now denotes excitation of the nth monomer exclusively.
Interaction with light is now characterized by HSR ¼P

nH
ðnÞ
SR . We denote G and G0 the N × N matrices formed

by the Green’s functions associated, respectively, with the
total Hamiltonian H and the unperturbed Hamiltonian H0,
which matrix elements are

Gnn0 ðtÞ ¼ −
i
ℏ
ΘðtÞeði=ℏÞHtBne−ði=ℏÞHtB†

n0 ; ð7aÞ

G0
nn0 ðtÞ ¼ −

i
ℏ
ΘðtÞeði=ℏÞH0tBne−ði=ℏÞH0tB†

n0 : ð7bÞ

Note that the diagonal elements of G0 are equal to the
monomerGreen’s functions (2). In principle, theMCGreen’s
function G can be exactly expressed using the unperturbed
Green’s function G0 and the self-energy according to
Dysons’equation [14]. Tracing over the phonon bath would
then provide the MC absorption and emission tensors,
IðωÞ ¼ −2ImhGðωÞig and EðωÞ ¼ −2ImhGðωÞie, respec-
tively. However, while an exact solution exists for single
monomers (1), the intermonomer couplingV inMC systems
(6) tends to delocalize the electronic excitation and mix
the vibrational and electronic degrees of freedom. Evaluating
the trace then requires methods numerically expensive [18],
and often approximate [22,39].
The approximate theory derived here provides an ana-

lytical expression in terms of the constituent spectra
and structural properties, allowing for an explicit relation
between the optical properties and the structure. Using the
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integral representation of the exponential, the bath-
averaged total Green’s function can be expanded, in the
time or frequency domain, as [41]

hGi ¼ hG0i þ hG0VG0i þ hG0VG0VG0i þ � � � ; ð8Þ
where the h•i denote the trace over the bath and the
subscript (g or e) characterizing the initial state will be
specified as needed. The 0th order term is simply the
diagonal matrix of the monomeric Green’s function (2)
with the proper initial state, i.e., hG0ig=e ¼ ðhG0

nnig=eÞ. The
first-order term can be evaluated exactly for the factorized
initial state, h•ig, because (i) the trace then commutes with
the bath density operator, (ii) there is one and only one
electronic transition involved, and (iii) the individual baths
are uncorrelated. The trace can thus be split exactly,

hG0VG0ig ¼ hG0igVhG0ig; ð9Þ
where V ¼ ðVnmÞ is a tensor. For the second-order term in
Eq. (8), we neglect the phonon correlations and take

hG0
nnðωÞG0

nnðωÞig ≈ hG0
nnðωÞighG0

nnðωÞig: ð10Þ
This approximation is analogous to the decoupling scheme
used in the single-site dynamical coherent potential
approximation (CPA) [15] and will be referred as such.
It is the main approximation here, yielding to our key result.
It allows simplifying all higher orders such that the full
Green’s function (8) with the initial ground-state density
matrix reduces to

hGðωÞig ≈
hG0ðωÞig

1N − VhG0ðωÞig
: ð11Þ

The CPA approach treats the bath coupling exactly at
the monomer level. It is exact up to the second order of
intra-aggregate coupling V and includes all higher orders
approximately. As such, our approach is more robust
than other methods derived for weak coupling [42,43],
especially in highly delocalized cases.
The MC absorption tensor is then simply

ICPAðωÞ ¼ −2Im
hG0ðωÞig

1N − VhG0ðωÞig
: ð12Þ

The far-field, measurable absorption spectrum, is given by
IexpðωÞ ¼

P
nn0 ðê · ~μnÞInn0 ðωÞð~μn0 · êÞ. Note that in calcu-

lating the full MC tensor, the CPA requires knowledge of
both the real and imaginary parts of the monomeric Green’s
function hG0ðωÞig. The latter is accessible experimentally
through the absorption spectra of the constituent monomers
and their transition dipole moments; the real part is related
through the Kramer-Kronig relation [13]. The CPA
approach therefore allows constructing the MC absorption
tensor (12) from its monomer features, either experimen-
tally or theoretically accessible. Also, we show in Ref. [41]
that Eq. (12) reduces to the tensor derived from a classical

picture of oscillating dipoles [37,38], when the coupling is
restricted to dipole-dipole interaction. This suggests that
the CPA approximation (10) is implicit in the classical
electrostatic treatment of absorption [44].
Direct application of the CPA (10) with (g → e) yields

the emission tensor

ECPAðωÞ ¼ −2Im
hG0ðωÞie

1N þ VhG0ðωÞie
; ð13Þ

where the initial density matrix is the equilibrium state in the
first-excited manifold ρ0e. Because of the initial system-bath
entanglement, the separation of averaging (9)with ðg → eÞ is
no longer exact, and the CPA is approximate already in
the first order of V for the emission tensor. Numerical
simulations show that the prediction is similar to the sum
of the monomer emission spectra (5), and therefore deviates
from the exact solution for strong coupling [Fig. 1(b)].
Instead of Eq. (13) and similarly to the monomer treatment
(5), we calculate the emission tensor from the detailed
balance (DB), which applies to the total system as

EðωÞ ¼ eβℏω

Tr½e−βH� IðωÞ: ð14Þ

We label this emission tensor by “CPADB” when using
Eq. (12) for the absorption tensor IðωÞ. The normalization

 0

0.05

 0.1

0.15

I(ω)

E(ω)

(a)

Iexp(ω) & Eexp(ω) (cm-1)

sPI
FCE
CPA

CPADB

 0

0.05

 0.1

0.15

-800 -600 -400 -200 0 200 400 600

I(ω)

E(ω)

(b)

ω  (cm-1)

FIG. 1. Comparison of models for MC absorption IexpðωÞ and
emission EexpðωÞ spectra, for (a) localized and (b) delocalized
dimers. Absorption (12) obtained from the CPA treatment devel-
oped here well matches SPI exact [18] and FCE approximate [22]
results; emission spectra (13) resemble the sum of the individual
spectra (not shown here), and are not accurate for large interchro-
mophore couplings (b). Adding detailed balance, the CPADB (14)
provides accurate results over a wide range of couplings. The
difference between CPA and CPADB displays the influence of the
system-bath entanglement, which is important for emission.
Parameters correspond to (a) case I (V ¼ 20, ΔE21 ≡ E2 − E1 ¼
100 cm−1) and (b) case II (V ¼ 100,ΔE21 ¼ 20 cm−1) inRef. [22]
with λ ¼ 100 cm−1, Λ ¼ 53 cm−1, T ¼ 300 K, and ê along ~μ.
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factor can be obtained either from direct SPI calculation [45]
or from the absorption spectrum using the mirror property
of the spectra, i.e., Eðω0 − λ − ωÞ ¼ Iðω0 þ λþ ωÞ=Z0S,

whereZ0S ≡ Trðe−β
P

n
HðnÞ

0S Þ is given by themonomer system
Hamiltonian [13,18]. The emission spectrum is then
EexpðωÞ ¼ ê · ½~μT:EðωÞ:~μ� · ê.
Figure 1 presents the absorption and emission spectra for

the two dimers detailed in Ref. [22], i.e., for weak and
strong interchromophore coupling V. It is shown that the
proposed treatment [Eqs. (12)–(14)] provides accurate
predictions for both spectra, even for relatively strong
coupling—V=λ ¼ 1 in Fig. 1(b). The CPA with detailed
balance (14) greatly enhances the results over the CPA only
(13), thereby showing the importance of the bath’s first-
order correlation function when the initial state is the
system-bath entangled density matrix. Comparisons with
the FCE over a wider range of parameters are presented
in Ref. [41].
Application to energy transfer rate.—Knowledge of the

spectral tensors allows for the determination of the transfer
rate between a donor (D) and an acceptor (A) aggregate
using Fermi’s golden rule. We consider a system of
M-coupled donor and N-coupled acceptor chromophores
described by the total Hamiltonian

HAD ¼ HA þHD þ JAD; ð15Þ

where the MC Hamiltonian of the donor HD ¼ HD
0 þ VD

and that of the acceptor HA ¼ HA
0 þ VA is described

by Eq. (6), changing Bn → DnðAnÞ, respectively,
and where the interchromophore coupling is VD¼P

M
m≠m0VD

mm0D†
mDm0 and VA¼P

N
n≠n0V

A
nn0A

†
nAn0 . JAD denotes

the coupling between the donor-acceptor chromophores,
i.e., JAD ¼ P

N
n

P
M
m JADnmA

†
nDm þ H:c: The operators D†

m

and A†
n, respectively, denote excitation of the donor

monomer m and the acceptor monomer n.
The rate of multichromophoric Förster resonant energy

transfer is given by the overlap of the emission and
absorption tensors [22,25,32],

k ¼
Z

∞

−∞

dω
2π

Tr½JTEDðωÞJIAðωÞ�; ð16Þ

where the matrix J ¼ ðJADnmÞ denotes the donor-acceptor
coupling strength. The emission and absorption tensors,
respectively, EDðωÞ ¼ ½ED

mm0 ðωÞ� and IAðωÞ ¼ ½IAnn0 ðωÞ�,
are the polarization-resolved near-field spectral compo-
nents, which are known to be necessary in MC systems
for significant intradonor (VD) or intra-acceptor (VA)
couplings [32].
Using the derived treatment, specifically the CPA

absorption tensor (12) for the acceptor along with the
CPADB emission tensor (14) for the donor, the MCFT rate
becomes

k ≈
Z

∞

−∞

dω
2π

Tr

�
JT

eβℏω

Tr½e−βHD � 2Im
� hG0

DðωÞig
1M − VDhG0

DðωÞig

�

× J 2Im

� hG0
AðωÞig

1N − VAhG0
AðωÞig

��
; ð17Þ

where G0
D (G0

A) is a M ×M (N × N) matrix formed by the
Green’s functions of the uncoupled monomers constituting
the donor (acceptor) aggregate, i.e., defined by Eq. (7b)
changing Bn → DnðAnÞ. This rate expression only requires
the monomer bath-averaged Green’s functions hG0ig,
which includes the system-bath coupling exactly at the
monomer level and can be evaluated exactly for a thermal
bath (4) or determined experimentally. All influence from
electronic coupling is contained in the matrices describing
intradonor VD, intra-acceptor VA, and interdonor–acceptor
JAD couplings, and not restricted to dipole-dipole coupling.
The rate (17) is exact up to second order in the intra-
aggregate couplings V and includes all higher orders
approximately.
Figure 2 presents the transfer rate for localized and

delocalized donor or acceptor (cases I&II in Ref. [22],
respectively) for different reorganization energies λ.
Comparison with the exact path-integral calculations shows
perfect agreement for the localized case Fig. 2(a), and a slight
overprediction for highly delocalized MC systems Fig. 2(b).
The simplicity of our approach [Eq. (17)] allows

predicting the transfer rates over a wide range of structural
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FIG. 2. Energy transfer rate (17) for different bath reorganiza-
tion energies λ using the developed CPA and CPADB models to
calculate absorption (12) and emission (13), (14) tensors for
localized (a) and delocalized (b) systems. Comparison with exact
SPI results [18] show perfect matching of the CPADB for small
electronic coupling (a), and a slight overprediction of the rate
for large coupling (b). The error using only CPA comes from
overpredicting the emission tensor (cf. Fig. 1). We used
JADnm¼10cm−1; λD ¼ λA and VA

nn0 ¼VD
mm0 ¼V. ΔEA

21 ¼ ΔED
21 ¼

ΔE21 are as in Fig. 1.
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parameters. Figure 3 shows the rate as a function of the
reorganization energy and intra-aggregate coupling V for
systems with different electronic splittings ΔE21. We
clearly see an optimal bath-coupling strength, confirming
environment-assisted quantum transport [46]. Interestingly,
Fig. 3(a) also exhibits an optimal intra-aggregate coherence
(V ∼ 50 cm−1), which was not previously reported. The
existence of such optimum depends on the system con-
figuration, as seen from the comparison with rates in a
system with smaller energy gap, Fig. 3(b). While this
dependance requires further investigation, our results con-
firm that intra-aggregate couplings can enhance transfer,
which is in line with Refs. [32,37,47–49].
In summary, we extended the applicability of the CPA to

absorption and emission tensors of multichromophoric
systems, and showed accurate results over a surprisingly
wide range of structure parameters. This approach now
allows for a reliable prediction of the MCFT rate, which
reveals that, additionally to optimal environment couplings,
the intra-aggregate coupling can be optimized to enhance
transport. Our treatment identifies the correction terms, and
recovers the classical absorption tensor as a limiting case,
suggesting that first-order bath correlations are neglected
classically. Our model could be further extended to include
the off-diagonal bath coupling, introduced through electronic
coupling, using, e.g., the two-particle dynamical CPA [50].
Beyond fast and reliable characterization of multichro-

mophic complexes, a quantitative relation between physical
properties and aggregate structure is established. This
straightforward approach is based on spectroscopic mea-
surements and does not require a microscopic Hamiltonian.

It allows us to explore a large space of structure parameters
and optimize the aggregate structure based on its optical
and transport properties. As such, we anticipate that it
will be a relevant tool to experimentally and theoretically
describe electronic excitation and excitonic energy transfer.
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