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Abstract

Manipulation of proteins is key in assessing their in vivo function. While genetic ablation is 

straightforward, reversible and specific perturbation of protein function remains a challenge. 

Single domain antibody fragments, such as camelid-derived VHHs, can serve as inhibitors or 

activators of intracellular protein function, but functional testing of identified VHHs is laborious. 

To address this challenge, we developed a lentiviral screening approach to identify VHHs that 

elicit a phenotype when expressed intracellularly. We identified 19 antiviral VHHs that protect 

human A549 cells from lethal infection with influenza A virus (IAV) or vesicular stomatitis virus 

(VSV), respectively. Both negative-sense RNA viruses are vulnerable to VHHs uniquely specific 

for their respective nucleoproteins. Antiviral VHHs prevented nuclear import of viral 

ribonucleoproteins or mRNA transcription, respectively, and may provide clues for novel antiviral 

reagents. In principle, the screening approach described here should be applicable to identify 

inhibitors of any pathogen or biological pathway.

To identify proteins essential to a biological pathway, small molecule inhibitors or activators 

may be used to manipulate protein function transiently. Alternatively, screens involving 

mutagenesis, a reduction in levels or complete elimination of gene products are common1, 2. 

As applied to mammalian cells, these methods usually seek to achieve the removal of a 

protein from its normal biological context. Many proteins are multi-functional, or are 

components of multi-subunit complexes. Depletion of any single component may cause 

unexpected phenotypes due to the collapse of entire protein complexes. Small molecule 

inhibitors often lack specificity3 and at best can target a fraction of all proteins of interest. 

The screening of chemically diverse libraries must be paired with sophisticated methods to 

identify the molecular targets of any hit identified. Antibodies have been used as 
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intracellular perturbants of protein function after microinjection4 or cytosolic expression of 

single chain variable antibody fragments5, but technical challenges have limited their 

application to few selected cases.

In addition to conventional antibodies, the immune system of camelids generates heavy 

chain-only antibodies6. Their antigen binding site only consists of the variable domain of the 

heavy chain. This domain can be expressed on its own and is referred to as a VHH or 

nanobody, an entity that can retain its function in the reducing environment of the cytosol 

and independent of glycosylation7. Many VHHs bind to their targets with affinities 

comparable to conventional antibodies. VHHs expressed in the cytosol can therefore act as 

molecular perturbants by occluding interfaces involved in protein-protein interactions, by 

binding in the active sites of enzymes, or through recognition or stabilization of distinct 

conformations of their targets8, 9. Both phage and yeast display, as well as mass 

spectrometry in combination with high throughput sequencing, allow the identification of 

VHHs based on their binding properties10–12. Still, the identification of inhibitory VHHs 

remains a time-consuming process. VHHs obtained through biochemical screening methods 

must be expressed individually in the relevant cell type to test for the functional 

consequences of VHH expression. To address this challenge, we developed a phenotypic 

VHH screening method in living cells.

Results

A functional VHH screen identifies VHHs that block IAV or VSV infection

To identify VHHs that perturb or modulate protein function in living cells, we established a 

lentiviral screening strategy in which cells are selected based on the phenotype elicited by 

the VHHs expressed intracellularly. In two independent screens, we have identified VHHs 

that protect human A549 cells from lethal infection with influenza A virus (IAV) and 

vesicular stomatitis virus (VSV), negative-sense RNA viruses that replicate in the nucleus 

and cytosol, respectively.

We immunized two alpacas with inactivated IAV and VSV, isolated peripheral blood 

lymphocytes, extracted RNA, and amplified VHH coding sequences by PCR using VHH-

specific primers (Fig. 1). VHH coding sequences were cloned into a lentiviral vector that 

allows their expression under a doxycycline (Dox)-inducible promoter in transduced cells. 

VSV G-pseudotyped lentivirus was produced in 293T cells and used to transduce A549 cells 

with a multiplicity of infection (MOI) of 0.25 to ensure that cells were not infected by 

multiple lentivirus particles. Based on the expression of the selection marker neomycin 

phosphotransferase II, we determined the transduction rate to be 33% in the IAV screen and 

55% in the VSV screen (Supplementary Fig. 1), indicating that 81 and 65% of the 

transduced cells were expected to be infected with a single lentivirus (assuming a Poisson 

distribution). Following the induction of VHH expression by Dox treatment, the pool of cells 

was challenged with a lethal dose of IAV (MOI 13) or VSV (MOI 4.5). To increase the 

stringency of the selection procedure, cells were trypsinized two days post infection because 

infected cells can stay adherent to tissue culture dishes but do not usually reattach once 

removed by trypsin treatment. To prevent continuous superinfection with VSV produced by 

non-VHH protected cells, ammonium chloride was added to the media for the first three 
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days to prevent the endosomal acidification required for VSV G-mediated virus fusion. 

Survivors that adhered after trypsinization were grown under carboxymethyl cellulose 

overlays to prevent diffusion and further spread of VSV. Such precautions were not 

necessary for the IAV screen, since progeny IAV produced by A549 cells is not infectious 

unless HA is cleaved by trypsin or other proteases. Cells that survived the virus challenge 

were cultured for 3–4 weeks and cells were collected as individual colonies, expanded and 

analyzed.

Each clone of surviving cells was tested individually in a single-round, flow cytometry-

based, infection assay in the absence or presence of Dox to see whether infection was 

blocked by VHH expression. Of 257 of the cell clones obtained from the IAV screen, 166 

showed a Dox-dependent reduction of infection by at least 40% (Fig. 2a). In the majority of 

clones (132), VHH expression reduced infection by more than 80%. 143 of the 282 cell 

clones obtained from the VSV screen exhibited a Dox-dependent reduction of infection by 

more than 40%, most of them (127) by more than 80%. A substantial fraction of cell clones 

that did not meet the hit criteria could no longer be infected even in the absence of Dox, 

which we attribute to leaky expression of the VHH in the absence of induction, or due to the 

selection of cell clones that were resistant to infection by genetic abnormalities. We did not 

pursue these clones further.

VHH coding sequences from clones considered true hits were amplified from purified 

genomic DNA by PCR, followed by direct sequencing of the PCR product. 68 of the 166 

IAV hits contained a single VHH insertion that could unambiguously be sequenced, while 46 

of the 143 clones obtained in the VSV screen were the result of a single insertion. For 

simplicity, cells with multiple lentivirus insertions were omitted from further analysis. The 

amino acid sequence of the encoded VHHs were compared and clustered by similarity, 

yielding 15 clusters of VHHs preventing IAV infection (each found between 1 and 12 times), 

as well as 4 clusters of VHHs preventing VSV infection (Fig. 2b). Strikingly, the cluster 

including the anti-VSV VHH 1001 was identified in 34 of the 41 independent clones with 

only slight sequence variations. One of the anti-IAV VHHs, VHH 103 was nearly identical 

to VHH NP1 that had been identified from a phage display library constructed from the 

same immunized animal13. Of note, 8 of the anti-IAV VHHs contained signatures of V 

regions of heavy chains of conventional antibodies (V37, G44, L45, E46, and W47 in Fig. 

2b), which can be used promiscuously for heavy chain-only antibodies6, 7, 10. This 

phenotypic VHH screen in mammalian cells identified 19 unique VHHs that block infection 

with IAV or VSV.

Anti-viral activity of identified VHHs

For each of the hits, representative monoclonal cell lines obtained in the screen were further 

characterized. Cells were infected with IAV and VSV in the absence and presence of Dox 

(Fig. 3). As controls, we used cell lines that inducibly express VHH NP113, a VHH against 

IAV NP that blocks IAV infection, or VHH HA6814, a VHH specific for the extracellular 

portion of IAV HA that does not impair infection with either virus when expressed in the 

cytosol. To assess IAV infection by flow cytometry, we stained for NP with fluorescently 

labeled VHH NP213, another VHH specific for IAV NP (Fig. 3a). The VSV strain used 
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expresses EGFP in addition to VSV structural proteins, and infection was therefore 

quantified by measuring EGFP-positive cells (Fig. 3b). VHH expression was quantified by 

staining the HA-tagged VHHs (Supplementary Fig. 2). With the exception of VHHs 135, 

170, and 355, which reduced IAV infection by 42, 83, and 78%, all IAV hits blocked IAV 

infection by more than 90%, but did not impair infection with VSV. Vice versa, all VSV hits 

blocked VSV infection by at least 90%, but allowed IAV infection to proceed to normal 

levels. Remarkably, almost complete abrogation of infection was in some cases achieved 

with VHHs expressed at barely detectable levels. To verify that the Dox-dependent 

resistance to infection indeed depended on the expressed VHH, we transduced A549 cells 

with lentiviruses that allow inducible expression of the respective VHHs and confirmed their 

antiviral activity (Supplementary Fig. 3). Specificity of inhibition was thus confirmed 

unambiguously for the respective virus-specific VHHs

Identification of the targets recognized by antiviral VHHs

The VHH library used for both screens was constructed based on RNA obtained from 

animals immunized with inactivated virions. The identified antiviral VHHs therefore most 

likely targeted structural virus proteins. We applied LUMIER assays15 to test the recognition 

of viral proteins fused to Renilla luciferase by transiently expressed HA-tagged VHHs. We 

limited this analysis to virus proteins exposed to the cytosol or nucleus: the polymerase 

subunits PB2, PB1 and PA, as well as nucleoprotein NP, matrix protein M1, and the ion 

channel M2 in the case of IAV; the polymerase L, nucleoprotein N, phosphoprotein P, and 

matrix protein M in the case of VSV. We found that all newly identified anti-IAV VHHs 

recognized the viral nucleoprotein NP (Fig. 4a), and that anti-VSV VHHs targeted the viral 

nucleocapsid N (Fig 4c). These findings suggest that viral RNA binding proteins represent 

an underappreciated vulnerability of negative-stranded RNA viruses. To efficiently block 

infection, antiviral VHHs may have to target incoming viruses at an early step of the life 

cycle, which may have biased the screening results towards VHHs that target components of 

incoming vRNPs. The exclusive identification of antiviral NP- and N-binders likely also 

reflects the abundance of the respective proteins in the virions used for immunization.

We expressed the virus-specific VHHs in bacteria and tested the extent to which the purified 

VHHs compete for epitopes on IAV NP and VSV N. For competition assays, purified NP or 

N was pre-incubated with an excess of His6-tagged VHHs. VHHs site-specifically 

biotinylated by means of a sortase reaction16 were then used for co-precipitation 

experiments with streptavidin-coupled beads. NP or N was recovered by the biotinylated 

VHH, unless pre-incubation with an unlabeled VHH masked the epitope recognized by the 

biotinylated VHHs.

We could thus categorize the IAV NP-binding VHHs into three groups (Fig. 4b): Group I 

included VHH 103, Group II included VHHs 22 and 495, and Group III was comprised of 

VHHs 28, 52, 77, 108, 135, 151, 170, 191, 296, 341, 355, and 508. VHH NP2, a VHH 

specific for IAV NP identified previously13 and used to quantify IAV infection, did not 

compete with any of the VHHs identified in this screen (Supplementary Fig. 4).

Binding of the VSV N-specific VHHs 1001, 1004, and 1014 was not affected by any of the 

other VSV N VHHs, including VHH 1307 (Fig. 4d). Immunoprecipitation of N by VHH 
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1307, however, was impaired by preincubation with VHH 1014, although the reverse setup 

allowed successful co-immunoprecipitation of N and the His-tagged VHH. This suggests 

that 1001, 1004, and 1014 bind to separate epitopes of VSV N, while 1307 may bind to an 

epitope that is partially overlapping with VHH 1014 or altered by binding of VHH 1014.

Anti-IAV VHHs block nuclear import of vRNPs and viral mRNA transcription

We next sought to define the step of the viral replication cycle at which the anti-IAV VHHs 

block infection. After fusion of the viral membrane with that of late endosomes, viral 

ribonucleoproteins (vRNPs) are released into the cytosol, followed by import into the 

nucleus to allow replication and transcription of viral RNAs. To quantify nuclear import of 

vRNPs, we infected VHH-expressing cell lines with a high MOI of IAV in the presence of 

cycloheximide to block translation of new viral proteins. We then determined the 

localization of incoming vRNPs by confocal fluorescence microscopy (Fig. 5). NP 

predominantly localized to the nucleus in untreated A549 cells and in cells expressing the 

control VHH HA68. Treatment of A549 cells with bafilomycin A1, an inhibitor of the 

endosomal vATPase, blocks endosomal acidification and virus fusion, and thus nuclear 

import of vRNPs – causing an absence of nuclear NP staining. To quantify nuclear import in 

VHH-expressing cells, we calculated the ratio of NP signal strength in the nucleus and in the 

cytoplasm, and determined relative nuclear import by comparison with untreated cells 

(relative nuclear import = 1) and cells treated with bafilomycin A1 (relative nuclear import = 

0). With the exception of VHH 170, all VHHs blocked nuclear import substantially, with 

relative nuclear import values ranging from 0 to 0.5. Binding of VHHs to NP must impair 

binding of importins to vRNPs, inhibit translocation of vRNPs through the nuclear pore 

complex, or interfere with an unknown step that precedes nuclear import per se. The VHH 

expressors were challenged with a very high dose of virus: the respective VHHs must 

therefore be capable of potently blocking nuclear import, for some VHHs even when 

expressed at a relatively low level (Supplementary Fig. 2). It is possible that the effects of 

VHH 170 on nuclear import were overcome in the experimental setup used.

Inhibition of vRNP nuclear import likely explains the antiviral properties of the identified 

anti-IAV VHHs, but it is possible that NP-specific VHHs perturb other functions of the viral 

nucleoprotein. Following nuclear import of vRNPs, the viral RNA polymerase transcribes 

the viral genomic segments and replicates the viral RNA genomes (vRNA). NP associates 

with vRNA and complementary RNA (cRNA), and is essential for complete replication and 

transcription of viral RNA by IAV polymerase17. We therefore used a minigenome 

replication assay, in which polymerase activity is assessed in the absence of a natural 

infection: The viral RNA polymerase subunits PB2, PB1, and PA as well as NP and the 

respective VHHs were transiently expressed in the presence of a model IAV genome 

segment encoding EGFP (Fig. 5c and 5d). Viral mRNAs encoding EGFP were transcribed 

from the model genome and translated. EGFP expression required the presence of NP as 

well as each RNA polymerase subunit (Supplementary Fig. 6), but is not expected to rely on 

the nuclear import of vRNPs, which we have shown to be sensitive to antiviral VHHs. Most 

of the antiviral VHHs and the control VHH HA68 did not perturb viral gene expression. 

This suggests that the binding of a VHH to vRNP templates is in principle compatible with 

transcription, at least at the ratio of NP and VHHs achieved in the experimental setup. 
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However, VHHs 22, 151, and 495 substantially reduced RNA polymerase activity. We thus 

identified three VHHs that bind to NP epitopes crucial for NP-dependent RNA polymerase 

activity. VHHs 22 and 495, while distinct in sequence, exhibit similar CDRs and bind to 

overlapping epitopes on NP, confirming the functional importance of this binding site. None 

of the expressed VHHs prevented nuclear import of free NP (Supplementary Fig. 5).

In summary, we found that 14 of the 15 newly identified IAV NP-specific VHHs block 

nuclear import of incoming vRNPs, and that at least three of these also block NP-dependent 

viral RNA polymerase activity. Our functional VHH screen therefore discloses 

vulnerabilities of IAV NP that may represent druggable targets.

Anti-VSV VHHs block viral mRNA transcription

In the course of VSV entry, viral membranes fuse with limiting membranes of early 

endosomes to release the viral genomes with associated proteins into the host cell cytosol. 

The genomes are coated by the nucleocapsid protein N (N-RNA) and are associated with the 

polymerase L, bound through its co-factor P. N-RNA serves as a template for polymerase-

catalyzed mRNA transcription, which involves transcription of an uncapped leader 

sequence, followed by transcription of five capped and polyadenylated mRNA species, all 

catalyzed by the multifunctional RNA polymerase18–20.

To quantify mRNA transcription directly, we infected the VHH-expressing cell lines with 

VSV and metabolically labelled the produced RNA species with [3H]-uridine (Fig. 6a,b). 

While all five mRNA species could be detected in the absence of VHH expression, mRNA 

was undetectable in VSV-infected cells expressing VHH 1001, 1004, and 1307, and 

substantially reduced in cells expressing VHH 1014. This confirms that anti-VSV VHHs 

prevent viral gene expression by directly or indirectly blocking mRNA transcription.

The viral mRNAs detected in infected cells are the products of both primary transcription 

from incoming viral genomes and transcription from replicated genomes. To specifically 

analyze primary transcription, we performed in vitro polymerase assays in the absence and 

presence of VHHs using purified components, including N-RNA templates obtained from 

virions21, 22 (Fig. 6c). At a ratio of 10 molecules of VHH per 63 molecules of N, the 

maximum concentration at which all VHHs remained soluble, VHH 1001 and 1307 

abrogated RNA transcription almost completely, while VHH 1004 and 1014 did not 

substantially block RNA transcription. The lack of inhibition by VHH 1004 and 1014 could 

be attributed to 1) a binding site on N that allows transcription in the presence of 

substoichiometric levels of VHH, 2) lower affinity of the VHHs to N, or 3) the fact that the 

respective VHHs target a step that is not recapitulated in the in vitro assay, for example 

genome replication. Exclusive binding of VHHs to newly generated N during infection in 

cells could directly perturb genome replication and therefore reduce mRNA transcription by 

decreasing the amount of template.

In sum, all anti-VSV VHHs block viral mRNA transcription by binding to the nucleoprotein 

N. At substoichiometric levels, VHH-binding to different epitopes of N impaired polymerase 

activity to variable degrees, suggesting that different mechanisms of action apply. The exact 

binding sites may hold clues to potential antiviral drugs targeting RNA transcription.
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Discussion

The perturbation of molecular processes in the cell has mostly relied on methods that involve 

genetic intervention (gene knockout, mutagenesis, or knock-down) or the application of 

small molecule compounds as inhibitors or activators. The available arsenal of well-defined 

pharmacological inhibitors to reversibly interfere with protein function level is small and 

mostly limited to ‘druggable’ proteins. Many such compounds were discovered 

serendipitously and their specificity is not always easy to establish. The approach described 

here allows the functional screening of camelid single domain antibodies to identify highly 

specific gain and loss of function molecular perturbants. Provided a suitable assay is at hand, 

VHHs can be identified as inhibitors or modulators of any biological process by such 

phenotypic screens. VHHs can then be inducibly expressed to perturb protein function in a 

highly specific and reversible manner and thus present a valuable research tool orthogonal to 

genetic ablation.

The use of VHH libraries from animals immunized with a distinct set of desired protein 

targets substantially increases the likelihood of obtaining the desired antibody fragments. 

Large numbers of candidates can be tested in lentiviral screens, an approach that could 

perhaps be applied to synthetic libraries as well. To identify VHHs, the cytosolic expression 

of which blocks pathogen infection, it may even be sufficient to harvest the VHH repertoire 

from a naturally infected animal. Selection of VHHs is not limited to lethal screens, but can 

be extended to fluorescence-activated cell sorting (FACS) and other enrichment strategies 

following reporter gene expression or turnover of fluorogenic substrates. There is no reason 

why the selected phenotypes should be limited to functional perturbation in the cytosol, and 

similar screens may exploit expression of VHHs targeted to other organelles or rely on 

display of VHHs at the cell surface. Although we selected and amplified clonal cell lines 

from cells that survived the screens, high throughput sequencing methods could be used 

instead to identify enriched VHHs. This approach would be compatible with selection of 

VHHs in terminally differentiated cells or in cells that have to be fixed prior to cell sorting.

In the screen described here, we identified 19 VHHs that specifically block infection of cells 

with IAV or VSV. Previous attempts to identify virus specific VHHs using phage display 

with VHH libraries from the same animals yielded fewer hits that inhibited infection less 

potently13. The screening approach described here thus complements other VHH screening 

techniques based on affinity, and is likely to be better at identifying VHH-based intracellular 

inhibitors or activators. The identification of epitopes, the occlusion of which blocks the 

infectious cycle, may inform the development of small molecule inhibitors, in particular if 

they are well conserved among different serotypes of a virus. In theory, antiviral application 

of VHHs fused to cell-penetrating peptides is conceivable as well23. These anti-viral VHHs 

should further help elucidate the vulnerable steps of the viral life cycle. Ongoing structural 

analysis of the anti-IAV VHHs bound to NP may shed light on how incoming vRNPs are 

imported into the nucleus and how NP interacts with the necessary cellular factors. 

Structures of VHHs capable of inhibiting IAV RNA polymerase activity will help unravel 

how NP contributes to the formation of full length viral mRNA, vRNA, and cRNA 

transcripts. Similarly, VHHs that target VSV N will be helpful in the molecular analysis of 

VSV RNA polymerase activity. The finding here that VHHs have different inhibition 
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properties on in vitro transcription and the synthesis of RNA in cells indicates that such tools 

may well aid in the discrimination of N-related functions in transcription vs replication. Of 

note, homologues of the VSV polymerase and nucleocapsid are found in many human 

pathogens of the order mononegavirales, including rabies virus, Ebola virus, mumps virus, 

measles virus, and respiratory syncytial virus (RSV)24.

Methods

Cell lines

Human epithelial A549 and HEK 293T cells, canine MDCK cells, and hamster BHK-21 

cells were obtained from ATCC and grown in DMEM supplemented with 10% FBS. A549 

cell lines inducibly expressing HA-tagged VHHs were cultivated in the presence of 500 

μg/mL geneticin. All cell lines used for experiments were negative for Mycoplasma as 

judged by the absence of of cytosolic Hoechst 33342-positive foci in immunofluorescence 

microscopy samples.

Virus

A/WSN/33 strain of influenza virus was propagated in MDCK cells in the presence of 

trypsin and concentrated by sedimentation (75,000 g, 4° C, 2h) through a 20% sucrose 

cushion (in 20 mM Tris pH 7.6, 150 mM NaCl), followed by resuspension in desorption 

buffer (0.245% BSA in 20 mM Tris pH 7.6, 150 mM NaCl). VSV Indiana and VSV Indiana 

GFP were propagated in BHK-1 cells. Clarified supernatants were used for flow cytometry-

based infection assays.

Reagents

Doxycycline hyclate (Dox) was purchased from Sigma Aldrich. Hybridoma cells secreting 

mouse monoclonal anti-IAV NP (clone H16-L10-4R5, ATCC HB-65)25 were obtained from 

ATCC and antibodies in the supernatant purified using a protein G column. Polyclonal rabbit 

anti-neomycin phosphotransferase II (NPTII) was purchased from Fitzgerald Industries 

International. Mouse anti-HA.11 (clone 16B12) was acquired from BioLegend, polyclonal 

rabbit anti-HA (Y-11) from Santa Cruz. Mouse anti-HA.11 (clone 16B12) coupled to Alexa 

Fluor (AF) 488 or AF594, as well as fluorescently-labeled secondary antibodies and AF647 

Phalloidin were obtained from Life Technologies.

Generation of lentiviral plasmid VHH library

In order to raise heavy chain-only antibodies against structural components of IAV and VSV, 

two male alpacas were immunized five times with a mixture of ethanol-inactivated IAV PR8 

and VSV Indiana (ca. 1012 plaque forming units of each virus per injection) according to a 

protocol authorized by the Tufts University Cummings Veterinary School Institutional 

Animal Care and Use Committee. RNA from peripheral blood lymphocytes was extracted 

and used as a template to generate cDNA using three sets of primers (random hexamers, 

oligo(dT), and primers specific for the constant region of the alpaca heavy chain gene)10, 26. 

VHH coding sequences were amplified by PCR using VHH-specific primers, cut with NotI 

and AscI, and ligated into the M13 phagemid vector pJSC to yield the VHH phagemid 

plasmid library described in our previous study13. A derivative of pInducer2027, pInducer20-
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NA, was generated by removing all NotI restriction sites and by replacing the gateway 

cassette with a DNA fragment containing NotI and AscI restriction sites. VHHs were 

subcloned into pInducer20-NA and the library amplified in electroporation competent 

Escherichia coli (E. coli) ElectroTen-Blue while maintaining the diversity of the phagemid 

library (2.4·107 ampicillin-resistant colonies obtained).

Generation of lentivirus library

Lentiviral particles were generated by transfecting HEK 293T cells in 15 cm dishes with 

psPax2, pMD2.G (both kind gifts from Didier Trono, École polytechnique fédérale de 

Lausanne, Switzerland), and the pInducer20-NA VHH library using Lipofectamine 2000 

(Life Technologies). Supernatants were harvested 48 h post transfection and filtered through 

0.4 μm filters. Virus stocks were titered on A549 cells by flow cytometry using anti-NPII, 

goat anti-rabbit AF647 and a BD Biosciences LSRFortessa flow cytometer.

Lentivirus VHH screen

A549 cells in 15 cm dishes were transduced with the lentivirus library at a multiplicity of 

infection (MOI) of 0.25 in the presence of 10 μg/mL polybrene. VHH expression was 

induced 8 h post transduction by the addition of Dox to a final concentration of 1 μg/mL. 48 

h post transduction, cells were infected with IAV/WSN/33 in DMEM (0.2% BSA) at an 

MOI of 13 or VSV EGFP Indiana in DMEM at an MOI of 4.5. The inoculum was removed 

1 h post infection and cells were covered with fresh DMEM containing 10% FBS, 1 μg/mL 

Dox, Penicillin/Streptomycin, and Fungizone Antimycotic (Life Technologies); medium of 

VSV-infected cells was supplemented with 100 mM NH4Cl and 20 mM Hepes. 48 h post 

infection with IAV or VSV, cells were washed with PBS, trypsinized, split 1:2, and seeded in 

DMEM with 20% FBS, 1 μg/mL Dox, Penicillin/Streptomycin, and Fungizone Antimycotic 

(as well as 100 mM NH4Cl and 20 mM Hepes in case of VSV-infected cells). The medium 

of the IAV plates was replaced every 2–3 days until most cells had detached. Adherent cells 

of the VSV plates were covered with DMEM containing 1.5% carboxymethyl cellulose, 

20% FBS, 500 μg/mL G418, 1 μg/mL Dox, Penicillin/Streptomycin, and Fungizone 

Antimycotic and left unperturbed. 3–4 weeks later, cell colonies were harvested from the 

plates, individually amplified, tested in infection assays, and frozen. To prevent infection of 

cell clones with residual VSV, freshly picked clones of the VSV screen were grown in 1.5 

μg/mL VSV-neutralizing antibody IE228 and controlled for EGFP expression. To retrieve the 

VHH sequences encoded by surviving cell clones, we lysed cells in 1% SDS, 50 mM Tris,

100 mM NaCl, 1 mM EDTA, 100 μg/mL proteinase K at 55°C for 2h. Genomic DNA was 

subsequently precipitated by addition of one volume of isopropanol, dried in a fume hood, 

and resuspended in ddH2O. VHH sequences were amplified with lentivirus-specific primers 

using the Platinum PCR Super Mix (Life Technologies) and directly sequenced from PCR 

products. VHH sequences were analyzed by ClustalW alignment, and neighbor-joining trees 

were constructed to group identical or highly similar sequences (<3 aa differences in CDRs). 

One representative sequence of each group was chosen for further analysis. The antiviral 

VHH sequences were deposited in the NCBI GenBank sequence data base with the 

accession numbers KX022606-KX022624.
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Flow cytometry-based infection assays

To quantify infection by flow cytometry, A549 cell lines were seeded in 24-well plates 40 h 

before infection (2·104 cells/well). Cells were treated with 1 μg/mL Dox 24 h before 

infection to induce VHH expression. Cells were infected with appropriate amounts of IAV 

WSN/33 (in 0.2% BSA/DMEM) or VSV Indiana GFP (in DMEM) to infect 50% of wild-

type cells. 30 minutes post infection, inocula were removed and cells cultivated for 5:30 h 

(IAV) or 3:30 h (VSV) in full medium. Cells were trypsinized, fixed in 4% formaldehyde/

PBS, and stained with 100 ng/mL AF647-coupled VHH NP2 and mouse anti-HA AF488 

(IAV-infected cells), or mouse anti-HA AF594 (VSV-infected cells), all under 

permeabilizing conditions. Fluorescence was quantified using a BD Biosciences 

LSRFortessa flow cytometer and the FlowJo software package.

LUMIER Assay

Protein interactions in transfected HEK 293T cells were quantified using the LUMIER assay 

according to a protocol modified from Taipale et al.29. HEK 293T cells in 24-wells were 

transfected with 0.25 μg bait expression vectors (pCAGGS VHH-HA) and 0.25 μg prey 

expression vectors (IAV: empty vector, pEXPR PB2-Renilla, pEXPR PB1-Renilla, pEXPR 

PA-Renilla, pEXPR Renilla-NP, pEXPR Renilla-M1, or pEXPR M2-Renilla; VSV: empty 

vecor, pEXPR N-Renilla, pEXPR Renilla-P, pEXPR Renilla-M, pEXPR Renilla-L, pEXPR 

Renilla-LN, or pEXPR Renilla-LC; all expression vectors are derived from pcDNA3-ccdB-

Renilla, a kind gift of Mikko Taipale, Susan Lindquist laboratory, Whitehead Institute, 

Cambridge, MA, USA) using Lipofectamine 2000. 24 h post transfection, cells were lysed in 

120 μL LUMIER IP buffer (50 mM Hepes pH 7.9, 150 mM NaCl, 2 mM EDTA pH 8.0, 

0.5% Triton X-100, 5% glycerol, protease inhibitor cocktail (Roche)). 90 μL of the lysates 

were transferred to blocked LUMITRAC™ 600 plates (Greiner) coated with mouse anti-HA.

11 and incubated at 4°C for 3 h. After extensive washing steps with IP buffer, incubated 

wells (or 10 μL lysate) were incubated with Coelenterazine-containing Renilla luciferase 

substrate mix (BioLux Gaussia Luciferase Assay Kit, New England BioLabs) and light 

emission quantified using a SpectraMax M3 microplate reader (Molecular Devices). Renilla 

luciferase activity in the immunoprecipitation samples was normalized by Renilla luciferase 

activity in the lysates.

Protein Expression and Purification

For periplasmic bacterial expression, VHH coding sequences were cloned into a derivative 

of pHEN630 encoding a C-terminal sortase recognition site (LPETG) followed by a His6-tag. 

VHH-LPETG-His6 fusion proteins were expressed in E. coli WK6 cells and purified from 

periplasmic extracts using Ni-NTA affinity purification and size exclusion chromatography 

with a HiLoad 16/600 Superdex 75 pg column. To fluorescently label or biotinylate VHHs 

using sortase, proteins were incubated with sortase and GGG-Alexa Fluor 647 or GGG-

biotin as described before (Guimaraes et al., 2013), followed by removal of His-tagged 

sortase with Ni-NTA beads and desalting.

The IAV/WSN/33 NP cds was cloned into pET30b+. NP-His6 was expressed in E. coli 
LOBSTR31 and purified by Ni-NTA purification, Mono S cation exchange chromatography, 

and size exclusion chromatography with a HiLoad 16/60 Superdex 200 column. VSV 
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Indiana N was purified as described before32. In brief, E. coli BL21(DE3) was transformed 

with pET N/P to co-express VSV N and P protein. The N/P complex associated with RNA 

was purified by Ni-NTA purification, P precipitated during dialysis against an acidic buffer 

(100 mM citrate, pH 4.0, 250 mM NaCl), and N-RNA further purified by gel filtration with a 

HiLoad 16/60 Superdex 200 column.

Competition assays

Immunoprecipitations for competition assays were performed with 2 μg C-terminally 

biotinylated VHH16 bound to streptavidin magnetic beads (MyOne Dynabeads; Life 

Technologies) and 7.5 μg of recombinant IAV WSN NP. Before addition to the beads, NP 

was blocked with 50 μg of the individual His-tagged VHHs. Bound NP was eluted in 0.2 M 

glycine, pH 2.2, and analyzed by SDS-PAGE and colloidal Coomassie staining. The 

complete gels corresponding to Fig. 4 and Supplementary Fig. 4 are displayed in 

Supplementary Fig. 7.

IAV vRNP nuclear import assay

To quantify nuclear import of vRNPs, A549 cell lines were seeded in 24-well plates 40 h 

before infection (104 cells/well). Cells were treated with 1 μg/mL Dox 24 h before infection 

to induce VHH expression. IAV WSN/33 (in 0.2% BSA/DMEM) at an MOI of 230 was 

bound to the cells on ice for 1h in the presence of 1 mM cycloheximide (CHX). Cells were 

subsequently covered with fresh BSA/DMEM with CHX and incubated at 37° C for 4 h. 

Cells were fixed with 4% formaldehyde and permeabilized in permeabilisation buffer (PS) 

(0.05% saponin, 1% BSA, 0.05% NaN3 in PBS) for 20 min. Samples were incubated with 

mouse anti-NP (clone HB-65, 1 μg/mL in PS) and rabbit anti-HA (1:200 in PS) for 2 h, 

washed with PBS, and subsequently incubated with AF488-coupled goat anti-mouse IgG 

and AF594-coupled goat anti-rabbit IgG (both 1:1,000 in PS), Hoechst 33342 (1:5,000), and 

AF647 Palloidin (1:100) for 1 h. Samples were washed with PBS and H2O, and mounted 

with Fluoromount-G (Southern Biotech). Z stacks were acquired using a PerkinElmer 

Ultraview Spinning Disk Confocal microscope and Z projections from 3 fields of view with 

a 40x objective (typically containing ca. 50 cells) were analyzed using CellProfiler33. 

Gaussian filters were applied to the DNA and actin channels, which were subsequently used 

to segment nuclei and cells, respectively. For each cell, the mean intensity of the NP signal 

in the nucleus was divided by the mean intensity of the NP signal in the cytoplasm. Average 

values for all cells in one experimental condition were calculated and normalized to the 

values for untreated A549 cells (nuclear import = 1.0) and BafA-treated cells (nuclear 

import = 0).

IAV minigenome replication assay

To quantify polymerase activity of transiently expressed IAV polymerase, 293T cells were 

transfected with 150 ng of each pCAGGS PB2, pCAGGS PB1, pCAGGS PA, pCAGGS 

NP34, pPolI-EGFP-RT (a derivative of pPolI-NS-RT35 in which the NS coding sequence was 

replaced with EGFP, and which allowed transcription of the model IAV genome segment by 

host cell RNA polymerase I), and the respective pCAGGS VHH-HA vector (or empty 

vector) using Lipofectamine 2000. 24 h post transfection, cells were fixed and stained with 

AF594 mouse anti-HA. VHH-HA expression was measured and EGFP fluorescence in HA-
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positive cells quantified using a BD Biosciences LSRFortessa flow cytometer and the 

FlowJo software package.

VSV mRNA transcription assay in infected cells

To analyze viral RNA species in infected cells, A549 cell lines were seeded in 60 mm dishes 

and, where indicated, VHH expression induced with 1 μg/mL Dox for 24 h hours. 85% 

confluent cells were infected with VSV at an MOI of 100 in 1 ml of DMEM with 1 μg/ml of 

Dox (where indicated). After 45 min at 34° C, 2 ml of DMEM complemented with 60 μl 

actinomycin D (0.5 mg/ml), 50 μl of [5,6-3H]-Uridine (38 Ci/mmol, Moravek Biochemicals) 

and 1 μg/ml of Dox (where indicated) were added to the cells. After 5 h of incubation at 34° 

C, cytoplasmic extracts were prepared and RNA was purified by phenol/chloroform 

extraction as described previously36. Purified RNA extracts were analyzed by acid/agarose 

gel electrophoresis and autoradiography37. The complete autoradiograph corresponding to 

Fig. 6a is displayed in Supplementary Fig. 7.

VSV in vitro transcription assay

Genomic N-RNA templates were prepared from VSV virions as previously described21. 

Polymerase assays were carried out as described38 using 0.25 μg of N-RNA with 0.2 μM of 

VSV L and 0.3 μM of VSV P in a reaction mixture containing 20 mM Tris, pH 8.0, 50 mM 

NaCl, 6 mM MgCl2, 500 μM UTP, 250 μM GTP, 1 mM ATP, 1 mM CTP, 165 nM of [α32P]-

GTP (3000 Ci/mmol) (Perkin-Elmer) and, where indicated, 80 μM of the respective VHHs. 

Reactions were incubated at 30° C for 2.5 h and stopped by addition of EDTA/formamide. 

Reactions products were resolved using acid/agarose gel electrophoresis and 

autoradiography37. The complete autoradiograph corresponding to Fig. 6c is displayed in 

Supplementary Fig. 7.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Lentiviral screening approach. Alpacas are immunized with the desired antigen mix (here: 

inactivated influenza A virus, IAV, and vesicular stomatitis virus, VSV). After repeated 

immunizations, we draw a blood sample, purify lymphocytes, extract mRNA, reversely 

transcribe RNA to cDNA, amplify VHH coding sequences and clone them into a lentiviral 

vector. Alternatively, VHH coding sequences can be subcloned from an existing VHH 

library. 293T cells are transfected with the lentiviral library as well as packaging vectors, 

and lentivirus is harvested from the supernatant 2 days later. We transduce the cell line of 

interest (here: A549 cells) and induce VHH expression with doxycycline. Cells are then 

subjected to a selection assay that allows identification of cells expressing the desired VHHs 

(here: survival of a lethal infection with IAV or VSV). Finally, we prepared genomic DNA 

from selected (surviving) cells, amplified the VHH sequences by PCR and determined the 

VHH sequence encoded.
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Figure 2. 
Overview of the antiviral VHH screen hits. (a) Summary of the number of transduced cells, 

amplified cell clones, number of confirmed hits reducing infection by more than 40% (80%), 

number of hits containing a single insertion, and number of different VHH clusters in the 

IAV and VSV screens. Amino acid sequences of the obtained anti-IAV (b) and anti-VSV (c) 
VHHs are presented (number independent identifications in parentheses).
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Figure 3. 
Validation of antiviral VHHs. A549 cells or clones inducibly expressing the indicated VHHs 

were treated without or with 1 μg/mL doxycycline (Dox) for 24 h and subsequently infected 

with IAV WSN (a, c, d) or VSV Indiana EGFP39 (b, e, f) for 6 or 4 h, respectively. IAV-

infected cells were stained for NP and VHH-HA expression; VSV-infected cells were 

stained for VHH-HA expression. Cells were analyzed by flow cytometry (sample histograms 

in (a) and (b)); the fraction of infected cells in the presence of Dox was quantified and 

normalized to infection in the absence of Dox. Hits from IAV screen are displayed in (c) and 

(d), hits from VSV screen in (e) and (f). All data is from three independent experiments ± 

s.e.m.
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Figure 4. 
Identification of VHH targets. (a, c) 293T cells were transfected with expression vectors for 

the indicated HA-tagged VHHs and structural proteins of IAV (a) or VSV (c) fused to 

Renilla luciferase. Lysates of the respective cells were incubated with immobilized anti-HA 

antibodies in 96-well plates. Wells were washed and incubated with Renilla luciferase 

substrates to measure co-purified luciferase activity. Emitted light was normalized to 

luciferase activity in the lysate. Data from three independent experiments ± s.e.m. is 

displayed. (b,d) Purified IAV NP (b) or VSV N-RNA (d) was pre-incubated with the His6-

tagged VHHs indicated at the top and subsequently subjected to immunoprecipitation with 
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the specified biotinylated VHH. Precipitation of NP/N and the respective VHH was analyzed 

by SDS-PAGE and colloidal Coomassie staining. Competition due to overlapping binding 

epitopes of the VHHs is indicated with red squares, successful co-purification with green 

squares. Representative data from at least three experiments is displayed.
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Figure 5. 
Anti-IAV VHHs block nuclear import of vRNPs and mRNA transcription. (a, b) A549 cells 

or clones expressing the indicated VHHs were treated with 1 μg/mL Dox for 24 h and 

infected with IAV WSN (MOI 230) in the presence of 1 mM cycloheximide for 4 h. Controls 

were treated with 50 nM bafilomycin A1 (BafA). Cells were stained for NP, HA, DNA, and 

actin; Z-stacks were recorded by confocal microscopy and Z projections of representative 

examples are displayed in (a). Scale bars represent 20 μm. NP staining in the nucleus and 

cytoplasm was quantified with CellProfiler and ratios of nuclear/cytoplasmic signal 

intensities were quantified and normalized to untreated cells (nuclear import = 1.0) and 

BafA-treated cells (nuclear import = 0). Values from three independent experiments ± s.e.m. 

are shown. (c, d) 293T cells were transfected with expression vectors for IAV WSN PA, 

PB1, PB2, NP, pPolI-EGFP, and the indicated HA-tagged VHHs. 24 h post transfection, 

cells were stained for HA and analyzed by flow cytometry. The fraction of VHH-HA-

positive cells that expressed high levels of EGFP was quantified. Exemplary histograms are 

shown in (c), and average data from three independent experiments ± s.e.m. are displayed in 

(d).
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Figure 6. 
Anti-VSV VHHs impair mRNA transcription. (a,b) A549 cells or clones expressing the 

indicated VHHs were treated with 1 μg/mL Dox for 24 h, infected with VSV Indiana, and 

viral RNAs metabolically labeled with [3H]-uridine. We purified the RNA from cell lysates 

and separated RNA species by acid agarose-urea gel electrophoresis. An autoradiogram 

representative of three independent experiments is shown; the positions of the mRNAs of the 

respective viral genes are indicated. Band intensities of G, N, and P/M mRNAs were 

quantified and normalized to band intensities in the absence of Dox. Average values from 

three independent experiments ± s.e.m. are shown. (c) To test the effects of anti-VSV VHHs 

on polymerase activity in vitro, we incubated recombinantly expressed L and P with N-RNA 

templates purified form VSV virions. Reactions were performed in the absence or presence 

of the indicated VHHs as well as NTPs, including [α-32P]-GTP. RNA species were 

separated by acid agarose-urea gel electrophoresis. An autoradiogram representative of three 

independent experiments is shown; the positions of the mRNAs of the respective viral genes 

are indicated.
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