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Photon-efficient imaging with a single-photon
camera
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Reconstructing a scene’s 3D structure and reflectivity accurately with an active imaging

system operating in low-light-level conditions has wide-ranging applications, spanning bio-

logical imaging to remote sensing. Here we propose and experimentally demonstrate a depth

and reflectivity imaging system with a single-photon camera that generates

high-quality images from B1 detected signal photon per pixel. Previous achievements of

similar photon efficiency have been with conventional raster-scanning data collection using

single-pixel photon counters capable of B10-ps time tagging. In contrast, our camera’s

detector array requires highly parallelized time-to-digital conversions with photon time-

tagging accuracy limited to Bns. Thus, we develop an array-specific algorithm that converts

coarsely time-binned photon detections to highly accurate scene depth and reflectivity by

exploiting both the transverse smoothness and longitudinal sparsity of natural scenes.

By overcoming the coarse time resolution of the array, our framework uniquely achieves high

photon efficiency in a relatively short acquisition time.
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A
ctive optical imaging systems use their own light sources
to recover scene information. To suppress photon noise
inherent in the optical detection process, they typically

require a large number of photon detections. For example, a
commercially available flash camera typically collects 4109

photons (103 photons per pixel in a 1 megapixel image) to
provide the user with a single photograph1. However, in
remote sensing of a dynamic scene at a long standoff distance,
as well as in microscope imaging of delicate biological samples,
limitations on the optical flux and integration time preclude the
collection of such a large number of photons2,3. A key challenge
in such scenarios is to make use of a small number of photon
detections to accurately recover the desired scene information.
Exacerbating the difficulty is that, for any fixed total acquisition
time, serial acquisition through raster scanning reduces the
number of photon detections per pixel. Accurate recovery
from a small number of photon detections has not previously
been achieved in conjunction with parallel acquisition at a large
number of pixels, as in a conventional digital camera.

Our interest is in the simultaneous reconstruction of scene
three-dimensional (3D) structure and reflectivity using a small
number of photons, something that is important in many
real-world imaging scenarios4–6. Accurately measuring distance
and estimating a scene’s 3D structure can be done from time-of-
flight data collected with a pulsed-source light detection and
ranging system7–9. For applications specific to low-light-level
3D imaging, detectors that can resolve individual photon
detections—from either photomultiplication10 or Geiger-mode
avalanche operation11—must be used in conjunction with a time
correlator. These time-correlated single-photon detectors provide
extraordinary sensitivity in time-tagging photon detections, as
shown by the authors of ref. 12, who used a time-correlated
single-photon avalanche diode (SPAD) array to track periodic
light pulses in flight.

The state-of-the-art in high photon-efficiency depth and
reflectivity imaging was established by the authors of first-photon
imaging (FPI)13, who demonstrated accurate 3D and reflectivity
recovery from the first detected photon at each pixel. Their
set-up, which used raster scanning and a time-correlated
single SPAD detector, required exactly one photon detection at
each pixel, making each pixel’s acquisition time a random
variable. Consequently, FPI is not applicable to operation using a
SPAD camera14–21—all of whose pixels must have the same
acquisition time—thus precluding FPI’s reaping the marked
image-acquisition speedup that the camera’s detector array
affords12,22,23. Although there have been extensions of FPI to
the fixed acquisition-time operation needed for array
detection24,25, both their theoretical modeling and experimental
validations were still limited to raster scanning, with a single
SPAD detector. As a result, they ignored the limitations of
currently available SPAD cameras—much poorer time-tagging
performance and pixel-to-pixel variations of SPAD properties—
implying that these initial fixed acquisition-time (pseudo-array)
frameworks will yield sub-optimal depth and reflectivity
reconstructions when used with low-light experimental data
from an actual SPAD camera.

Here we propose and demonstrate a photon-efficient 3D
structure and reflectivity imaging technique that can deal with the
aforementioned constraints that SPAD cameras impose. We give
the first experimental demonstration of accurate time-correlated
SPAD-camera imaging of natural scenes obtained from B1
detected signal photon per pixel on average. Unlike prior work,
our framework achieves high photon efficiency by exploiting the
scene’s structural information in both the transverse and the
longitudinal domains to censor extraneous (background light and
dark count) detections from the SPAD array. Earlier works that

exploit longitudinal sparsity only in a pixel-by-pixel manner
require more detected signal photons to produce accurate
estimates26,27. Because our new imager achieves highly photon-
efficient imaging in a short data-acquisition time, it paves the way
for dynamic and noise-tolerant active optical imaging
applications in science and technology.

Results
Imaging set-up. Our experimental set-up is illustrated in Fig. 1.
The illumination source was a pulsed laser diode (PicoQuant
LDH series with a 640-nm center wavelength), whose original
output-pulse duration was increased to a full-width at
half-maximum of B2.5 ns (that is, a root mean square (r.m.s.)
value of TpE1 ns). The laser diode was pulsed at a TrE50 ns
repetition period set by the SPAD array’s trigger output. A dif-
fuser plate spatially spread the laser pulses to flood illuminate the
scene of interest. An incandescent lamp injected unwanted
background light into the camera. The lamp’s power was adjusted
so that (averaged over the region that was imaged) each detected
photon was equally likely to be due to signal (backreflected laser)
light or background light. A standard Canon FL series
photographic lens focused the signal plus background light on the
SPAD array. Each photon detection from the array was time
tagged relative to the time of the most recently transmitted laser
pulse and recorded (Supplementary Methods).

The SPAD array18,20, covering a 4.8� 4.8-mm footprint,
consists of 32� 32 pixels of fully independent Si SPADs and
complementary metal-oxide-semiconductor (CMOS)-based
electronic circuitry that includes a time-to-digital converter for
each SPAD detector. The SPAD within each 150� 150-mm pixel
has a 30-mm-diameter circular active region, giving the array a
3.14% fill factor. At the 640-nm operating wavelength, each array
element’s photon-detection efficiency is B20% and its dark count
rate is B100 Hz at room temperature. To extend the region that
could be imaged and increase the number of pixels, we used
multiple image scans to form a larger-size composite image. In
particular, we mounted the SPAD array on a feedback-controlled,
two-axis motorized translation stage to produce images with
Nx�Ny¼ 384� 384 pixels (Supplementary Figs 1a,b and 2a–c).

The SPAD array has a D¼ 390 ps time resolution set by its
internal clock rate. We set each acquisition frame length to 65 ms,
with a gate-on time of 16 ms and a gate-off time of 49 ms for
limiting power dissipation of the chip and for data transfer. At the
start of each frame, the SPAD array was set to trigger the laser to
generate pulses at a B20 MHz repetition rate. Hence, in the 16 ms
gate-on time of each frame, B320 pulses illuminated the scene
Supplementary Fig. 3).

Observation model. We define Z;A 2 RNx�Ny to be the scene’s
3D structure and reflectivity that we aim to recover, and we let
B 2 RNx�Ny be the average rates of background-light plus
dark-count detections. Flood illumination of the scene at time
t¼ 0 with a photon-flux pulse s(t) then results in the following
Poisson-process rate function for (i,j)-th pixel of the composite
image:

ri;jðtÞ ¼ Zi;jAi;j sðt� 2Zi;j=cÞþBi;j; t 2 ½0;TrÞ;

where Zi,jA(0,1] is the (i,j)th detector’s photon-detection
efficiency and c is the speed of light. Fabrication imperfections of
the SPAD array cause some pixels to have inordinately high
dark-count rates ðBi;j � Zi;jAi;j

R Tr

0 sðtÞdtÞ, making their detec-
tion times uninformative in our imaging experiments because
they are predominantly from dark counts. Thus we performed
camera calibration to determine the setH of these ‘hot pixels’ (2%
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of all pixels in our case) so that their outputs could be ignored in
the processing of the imaging data.

We define Nz ¼ dTr=De to be the total number of time bins in
which the photon detections can be found, and let Ci,j,k be the
observed number of photon counts in the kth time bin for pixel
(i,j) after ns pulsed-illumination trials. By the theory of photon
counting28, we have that Ci,j,k’s statistical distribution is

Ci;j;k � Poisson ns

ZkD

ðk� 1ÞD

ri;jðtÞ dt

0
B@

1
CA;

for k¼ 1,2,y,Nz, where we have assumed that the pulse
repetition period is long enough to preclude pulse aliasing
artifacts. Also, we operate in a low-flux condition such thatPNz

k¼1Ci,j,k, the total number of detections at a pixel, is much less
than ns, the total number of illumination pulses to avoid
pulse-pileup distortions. Our imaging problem is then to
construct accurate estimates, Â and Ẑ, of the scene’s reflectivity
A and 3D structure Z, using the sparse photon-detection data
C 2 RNx�Ny�Nz .

3D structure and reflectivity reconstruction. In the low-flux
regime, wherein there are very few detections and many of them are
extraneous, an algorithm that relies solely on the aforementioned
pixelwise photodetection statistics has very limited robustness. We
aim to achieve high photon efficiency by combining those photo-
detection statistics with prior information about natural scenes.

Most natural and man-made scenes have strong spatial
correlations among neighbouring pixels in both transverse and
longitudinal measurements, punctuated by sharp boundaries29.

While conventional works normally treat each pixel independently,
our imaging framework exploits these correlations to censor/
remove extraneous (and randomly distributed) photon-detection
events due to background light and detector dark counts. It should
be noted that unlike noise mitigation via spatial filtering and
averaging, in which fine spatial features are washed out due to
oversmoothing, our technique retains the spatial resolution set by
the SPAD array. Our reconstruction algorithm optimizes between
two constraints for a given set of censored measurements: that the
3D and reflectivity image estimates come from a scene that is
correlated in both the transverse and longitudinal domains,
and that the estimates employ the Poisson statistics of the raw
single-photon measurements.

The implementation of our reconstruction algorithm can be
divided into the following three steps (Fig. 2; Supplementary Note 1).

Step 1: natural scenes have reflectivities that are spatially
correlated—the reflectivity at a given pixel tends to be similar to
the values at its nearest neighbours—with abrupt transitions at
the boundaries between objects. We exploit these correlations
by imposing a transverse-smoothness constraint using the
total-variation (TV) norm30 on our reflectivity image. In this
process, we ignore data from the hot-pixel set H. The final
reflectivity image Â is thus obtained by solving a regularized
optimization problem.

Step 2: natural scenes have a finite number of reflectors that are
clustered in depth. It follows that in an acquisition without
background-light or dark-count detections, the set of detection
times collected over the entire scene would have a histogram
with Nz bins that possesses non-zero entries in only a small
number of small subintervals. This longitudinal sparsity
constraint is enforced in our algorithm by solving a
sparse deconvolution problem from the coarsely time-binned

Pixelwise 3D and reflectivity reconstruction Our 3D and reflectivity reconstruction
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Figure 1 | Single-photon array imaging framework. (a) SPAD-array imaging set-up. A repetitively pulsed laser flood illuminates the scene of interest. Laser

light reflected from the scene plus background light is detected by a SPAD camera. Photon detections at each pixel are time tagged relative to the most

recently transmitted pulse and recorded. The raw photon-detection data is processed on a standard laptop computer to recover the scene’s 3D structure

and reflectivity. (b) Example of 3D structure and reflectivity reconstruction using the baseline single-photon imager from ref. 22. (c) Example of 3D

structure and reflectivity reconstruction from our processing. Large portions of the mannequin’s shirt and facial features that were not visible in the baseline

image are revealed using our method. Both images were generated using an average of B1 detected signal photon per pixel.
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photon-detection data, which is specific to the array imaging
set-up, to obtain a small number of representative scene depths.
Raw photon-detection events at times corresponding to
depths differing by more than cTp/2 from the representative
scene depths are censored. As step 2 has identified coarse depth
clusters of the scene objects, the next step of the algorithm
uses the filtered set of photon detections to determine a
high-resolution depth image within all identified clusters.

Step 3: similar to what was done in step 1 for reflectivity
estimation, we impose a TV-norm spatial smoothness constraint
on our depth image, where data from the hot-pixel set H and
censored detections at the remaining pixels are ignored. Thus, we
obtain Ẑ by solving a regularized optimization problem.

Reconstruction results. Figure 3 shows experimental results of
3D structure and reflectivity reconstructions for a scene
comprised of a mannequin and sunflower when, averaged over
the scene, there was B1 signal photon detected per pixel and B1
extraneous (background light plus dark count) detection per
pixel. In our experiments, the per-pixel average photon-count
rates of backreflected waveform and background-light plus
dark-count response were 1,089 counts/s and 995 counts/s,
respectively. The image resolution was 384� 384 for this
experiment. We compare our proposed method with the baseline
pixelwise imaging method that uses filtered histograms22 and the
state-of-the-art pseudo-array imaging method25.

From the visualization of reflectivity overlaid on depth, we
observe that the baseline pixelwise imaging method (Fig. 3a,e)

generates noisy depth and reflectivity images without useful scene
features, owing to the combination of low-flux operation and
high-background detections plus detector dark counts. In
contrast, the existing pseudo-array method—which exploits
transverse spatial correlations, but presumes constant Bi,j—gives
a reflectivity image that captures overall object features, but is
oversmoothed to mitigate hot-pixel contributions (Fig. 3b).
Furthermore, because the pseudo-array method presumes the
10-ps-class time tagging of a single-element SPAD that is used in
raster-scanning set-ups, its depth image fails to reproduce the 3D
structure of the mannequin’s face from the ns-class time tagging
afforded by our SPAD camera’s detector array. In particular, it
overestimates the head’s dimensions and oversmooths the facial
features (Fig. 3f), whereas our array-specific method accurately
captures the scene’s 3D structure and reflectivity (Fig. 3c,g).
This accuracy can be seen by comparing our framework’s result
with the high-flux pixelwise depth and reflectivity images
(Fig. 3d,h)—obtained by detecting 550 signal photons per pixel
and performing time-gated pixelwise processing—that serve as
ground-truth proxies for the scene’s actual depth and reflectivity.
For the fairest comparisons in Fig. 3, each algorithm—baseline
pixelwise processing, pseudo-array processing and our new
framework—had its parameters tuned to minimize the mean-
squared degradation from the ground-truth proxies.

The depth error maps in Fig. 3i–k quantify the resolution
improvements from our imager over the existing ones for this
low-flux imaging experiment. Although the mean number of
signal photon detections is B1 per pixel, in the high-reflectivity
facial regions of the mannequin the average is B8 signal photon

x

y

t

0 ns 50 ns

Raw photon arrival data
from SPAD camera

Photon data overlaid with
our estimated reflectivity

Final 3D and reflectivity reconstructionRobust filtering of photon data

a b

c d

Figure 2 | Stages of 3D structure and reflectivity reconstruction algorithm. (a) Raw time-tagged photon-detection data are captured using the SPAD

camera set-up. Averaged over the scene, the number of detected signal photons per pixel was B1, as was the average number of background-light

detections plus dark counts. (b) Step 1: raw time-tagged photon detections are used to accurately estimate the scene’s reflectivity by solving a regularized

optimization problem. (c) Step 2: to estimate 3D structure, extraneous (background light plus dark count) photon detections are first censored, based on

the longitudinal sparsity constraint of natural scenes, by solving a sparse deconvolution problem. (d) Step 3: the uncensored (presumed to be signal)

photon detections are used for 3D structure reconstruction by solving a regularized optimization problem.
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detections per pixel, while the number of signal photons detected
at almost every pixel in the background portion of the scene is 0.
Despite this fact, the pseudo-array imaging technique leads to a
face estimate with high depth error due to oversmoothing
incurred in its effort to mitigate background noise. It particularly
suffers at reconstructing the depth boundaries with low-photon
counts as well. Compared with conventional methods, our
framework gives a much better estimate of the full 3D structure.
We also study how the depth error of our framework depends on
the number of photon counts at a given pixel. For example, our
framework gives errors of 4.4 and 0.9 cm at pixels (260, 121) and
(107, 187), which correspond to 1-photon-count depth boundary
region and 8-photon-count mannequin face, respectively. Overall,
we observe a negative correlation between the depth error and the
number of photons detected at a pixel for our method
(Supplementary Fig. 4). Recall that the time bin duration of
each pixel of the SPAD camera is D¼ 390 ps, corresponding to
cD/2E6-cm depth resolution. Overall, our imager successfully

recovers depth with mean absolute error of 2 cm and thus with
sub-bin-duration resolution, while existing methods fail to do so.

In terms of measuring the improvements in gray-scale imaging,
we can compute the peak signal-to-noise ratio (PSNR) between
the reference ground-truth reflectivity and the estimated
reflectivity. While the PSNR values of the conventional pixelwise
estimation and pseudo-array imaging are 19.3 and 24.9 dB,
respectively, that of our method is 29.1 dB; it improves over both
existing methods by at least 4 dB. We emphasize the difficulty of
single-photon imaging in our set-up by computing that the SNR
of the time-of-flight of a single photon ranges from � 2.2 to
7.8 dB (Supplementary Note 2). We also note that varying
the regularization parameters also affects the imaging
performance (Supplementary Fig. 5). Lastly, the robustness of
our reconstruction algorithm is evaluated by imaging an entirely
different scene consisting of watering can and basketball, using
regularization parameters pre-trained on the mannequin scene
(Supplementary Fig. 6).
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Figure 3 | 3D structure and reflectivity reconstructions. (a–d) Results of imaging 3D structure and reflectivity using the filtered histogram method, the

state-of-the-art pseudo-array imaging method, our proposed framework and the ground-truth proxy obtained from detecting 550 signal photons per pixel.

For visualization, the reflectivity estimates are overlaid on the reconstructed depth maps for each method. The frontal views, shown here, provide the best

visualizations of the reflectivity estimates. (e–h) Results of imaging 3D structure and reflectivity from a–d rotated to reveal the side view, which makes the

reconstructed depth clearly visible. The filtered histogram image is too noisy to show any useful depth features. The pseudo-array imaging method

successfully recovers gross depth features, but in comparison with the ground-truth estimate in h, it overestimates the dimensions of the mannequin’s face

by several cm and oversmooths the facial features. Our SPAD-array-specific method in g, however, gives high-resolution depth and reflectivity

reconstruction at low flux. (i–k) The depth error maps obtained by taking the absolute difference between estimated depth and ground-truth depth show

that our method successfully recovers the scene structure with mean absolute error of 2 cm, which is sub-bin-duration resolution as cD/2E6 cm, while

existing methods fail to do so. (l) Vertical cross section plot of the middle of 3D reconstructions from pseudo-array imaging (red line), pixelwise ground

truth (black line) and our proposed method (blue line). Note that our framework recovers fine facial features, such as the nose, while the pseudo-array

imaging method oversmoothes them.
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Choice of laser pulse root mean square time duration. For a
transform-limited laser pulse, such as the Gaussian s(t) that our
imaging framework presumes, the r.m.s. time duration Tp is a
direct measure of system bandwidth. As such, it has an impact on
the depth-imaging accuracy in low-flux operation. This impact is
borne out by the simulation results in Fig. 4, where we see that the
pulse waveform with the shortest r.m.s. duration does not provide
the best depth recovery. Thus, in our experiments, we broadened
the laser’s output pulse to TpE1 ns. The full-width at half-max-
imum is then 2.4 ns. This pulse duration allowed our framework
to have a mean absolute depth error of 2 cm and resolve depth
features well below the cD/2E6 cm value set by the SPAD
array’s 390-ps-duration time bins (see Fig. 4 for details on
depth-recovery accuracy versus r.m.s. pulse duration).

For application of our framework to different array technology,
the optimal pulsewidth should scale with the SPAD camera’s
time-bin duration. For example, if our SPAD hardware were
replaced to improve the timing resolution to the 50-ps range17,
we would want to make sure the r.m.s. pulsewidth remains
approximately three times longer than the time bin (or the
full-width at half-maximum is approximately six times longer)
based on our method for choosing optimal pulsewidth from
Fig. 4. Thus, for accurate single-photon imaging with a 50-ps
time-binning SPAD array, we would shorten our pulse from
1.1 ns to 140 ps.

Discussion
We have proposed and demonstrated a SPAD-camera imaging
framework that generates highly accurate images of a scene’s 3D
structure and reflectivity from B1 detected signal photon per
pixel, despite the presence of extraneous detections at roughly the
same rate from background light and dark counts. By explicitly
modeling the limited single-photon time-tagging resolution of
SPAD-array imagers, our framework markedly improves
reconstruction accuracy in this low-flux regime as compared
with what is achieved with existing methods. The photon
efficiency of our proposed framework is quantified in Fig. 5,
where we have plotted the sub-bin-duration depth error it incurs
in imaging the mannequin and sunflower scene versus the
average number of detected signal photons per pixel. For this
task, our algorithm realizes centimetre-class depth resolution
down to o1 detected signal photon per pixel, while the baseline

pixelwise imager’s depth resolution is more than an order of
magnitude worse because of its inability to cope with extraneous
detections.

Because our framework employs a SPAD camera for highly
photon-efficient imaging, it opens up new ways to image 3D
structure and reflectivity on very short time scales, while requiring
very few photon detections. Hence, it could find widespread use in
applications that require fast and accurate imaging using extremely
small amounts of light, such as remote terrestrial mapping31,
seismic imaging32, fluorescence profiling2 and astronomy33.
We emphasize, in this regard, that our framework affords
automatic rejection of ambient-light and dark-count noise effects
without requiring sophisticated time-gating hardware. It follows
that our imager could also enable rapid and noise-tolerant 3D
vision for self-navigating advanced robotic systems, such as
unmanned aerial vehicles and exploration rovers34.

Methods
Reconstruction algorithm. Before initiating our three-step imaging algorithm, we
first performed calibration measurements to: identify H, the SPAD array’s set of hot
pixels; obtain the average background-light plus dark-count rates for the remaining
pixels; and determine the laser pulse’s r.m.s. time duration (Supplementary
Fig. 7a–c). For hot-pixel identification, we placed the SPAD camera in a dark room,
and identified pixels with dark-count rate 4150 counts/s, since the standard pixel of
our camera should have a dark-count rate of 100 counts/s. The background-light
plus dark-count rate at each pixel was identified by simply measuring the count rate,
when the background-light source was on but the laser was off. Finally, the
laser-pulse shape was calibrated by measuring the time histogram of 3,344 photon
detections from a white calibration surface target that was placed B1 m away from
the imaging set-up. It turned out that: B2% of our camera’s 1,024 pixels were placed
in H; the background-light plus dark-count rates were indeed spatially varying
across the remaining pixels; and the laser pulse’s time duration was TpE1 ns and
reasonably approximated as a Gaussian.

We then proceed to step 1 of the reconstruction algorithm: we estimate
reflectivity Â by combining the Poisson statistics of photon counts (Supplementary
Fig. 8a) with a TV-norm smoothness constraint on the estimated reflectivity—while
censoring the set of hot pixels—to write the optimization as a TV-regularized,
Poisson image inpainting problem. This optimization problem is convex in the
reflectivity image variable A, which allows us to solve it in a computationally efficient
manner with simple projected gradient methods35. This step of the algorithm inputs
a parameter tA that controls the degree of spatial smoothness of the final reflectivity
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image estimate. For a 384� 384 image, the processing time of step 1 was B6 s on a
standard laptop computer (Supplementary Note 1).

For step 2 of the reconstruction algorithm, we filtered the photon-detection data
set to impose the longitudinal constraint that the scene has a sparse set of reflectors.
This is because the scaled detection-time histogram hist(cT/2) that has been
corrected for the average background-light plus dark-count detections per bin is a
proxy solution for hist(ZD), where hist(ZD) is a size–Nz histogram that bins the
scene’s 3D structure at the camera’s cD/2 native range resolution. We used
orthogonal matching pursuit36 on hist(cT/2), the coarsely binned histogram of
photon detections, to find the non-zero spikes representing the object depth
clusters. This step of the algorithm requires an integer parameter m that controls
the number of depth clusters to be estimated; here we used m¼ 2, but our
simulations show insensitivity to overestimation of the best choice of m
(Supplementary Fig. 8b). We then discarded photon detections that implied
depth values more than cTp/2 away from the estimated depth values, because
they were presumably extraneous detections that are uniformly spread out
during the acquisition time (Supplementary Fig. 8c). For a 384� 384 image, the
processing time of step 2 was B17 s on a standard laptop computer
(Supplementary Note 1).

Having censored detections from all hot pixels and, through the longitudinal
constraint, censored almost all extraneous detections on the remaining pixels, we
treated all the uncensored photon detections as being from backreflected laser light,
that is, that they were all signal photon detections. For step 3 of our reconstruction
algorithm, we estimated the scene’s 3D structure using these uncensored photon
detections. Because we operated in the low-flux regime, many of the pixels had no
photon detections and thus are non-informative for 3D structure estimation. A
robust 3D estimation algorithm must inpaint these missing pixels, using
information derived from nearby pixels’ photon-detection times. Approximating
the laser’s pulse waveform s(t) by a Gaussian with r.m.s. duration Tp, we solved a
TV-regularized, Gaussian image inpainting problem to obtain our depth estimate
Ẑ. This is a convex optimization problem in the depth image variable Z, and
projected gradient methods were used to generate Ẑ in a computationally efficient
manner. This step of the algorithm inputs a parameter tZ that controls the degree
of spatial smoothness of the final depth image estimate. For a 384� 384 image, the
processing time of step 3 was B20 s on a standard laptop computer
(Supplementary Note 1).

Code availability. The code used to generate the findings of this study is stored in
the GitHub repository, github.com/photon-efficient-imaging/single-photon-
camera.

Data availability. The data and the code used to generate the findings of this study
is stored in the GitHub repository, github.com/photon-efficient-imaging/single-
photon-camera. All other Supplementary Data are available from the authors upon
request.

References
1. Holst, G. C. CCD Arrays, Cameras, and Displays (JCD Publishing, 1998).
2. Chen, Y., Müller, J. D., So, P. T. & Gratton, E. The photon counting

histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567
(1999).

3. McCarthy, A. et al. Long-range time-of-flight scanning sensor based on
high-speed time-correlated single-photon counting. Appl. Optics 48, 6241–6251
(2009).

4. Stettner, R. in SPIE Laser Radar Technology and Applications XV, 768405
(Bellingham, WA, USA, 2010).

5. May, S., Werner, B., Surmann, H. & Pervolz, K. in 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 790–795 (Beijing, China,
2006).

6. Morris, P. A., Aspden, R. S., Bell, J. E., Boyd, R. W. & Padgett, M. J. Imaging
with a small number of photons. Nat. Commun. 6, 5913 (2015).

7. Lee, J., Kim, Y., Lee, K., Lee, S. & Kim, S.-W. Time-of-flight measurement with
femtosecond light pulses. Nat. Photon. 4, 716–720 (2010).

8. Schwarz, B. Lidar: Mapping the world in 3D. Nat. Photon. 4, 429–430 (2010).
9. Katz, O., Small, E. & Silberberg, Y. Looking around corners and through

thin turbid layers in real time with scattered incoherent light. Nat. Photon. 6,
549–553 (2012).

10. Buzhan, P. et al. Silicon photomultiplier and its possible applications. Nucl.
Instr. Meth. Phys. Res. Sect. A 504, 48–52 (2003).

11. Aull, B. F. et al. Geiger-mode avalanche photodiodes for three-dimensional
imaging. Lincoln Lab. J. 13, 335–349 (2002).

12. Gariepy, G. et al. Single-photon sensitive light-in-flight imaging. Nat. Commun.
6, 6021 (2015).

13. Kirmani, A. et al. First-photon imaging. Science 343, 58–61 (2014).
14. Becker, W. Advanced Time-Correlated Single Photon Counting Techniques

(Springer, 2005).
15. Richardson, J. et al. in 2009 IEEE Custom Integrated Circuits Conference, 77–80

(San Jose, California, USA, 2009).

16. Richardson, J., Grant, L. & Henderson, R. K. Low dark count single-photon
avalanche diode structure compatible with standard nanometer scale CMOS
technology. IEEE Photonics Tech. Lett. 21, 1020–1022 (2009).

17. Veerappan, C. et al.in 2011 IEEE International Solid-State Circuits Conference
(ISSCC), 312–314 (San Jose, California, USA, 2011).

18. Villa, F. et al. CMOS imager with 1024 SPADs and TDCs for single-photon
timing and 3-D time-of-flight. IEEE J. Sel. Top. Quantum Electron. 20, 3804810
(2014).

19. Bronzi, D. et al. 100,000 frames/s 64� 32 single-photon detector array for 2D
imaging and 3D ranging. IEEE J. Sel. Top. Quantum Electron. 20, 3804310
(2014).

20. Lussana, R. et al. Enhanced single-photon time-of-flight 3D ranging. Opt.
Express 23, 24962–24973 (2015).

21. Bronzi, D. et al. Automotive three-dimensional vision through a single-
photon counting SPAD camera. IEEE Trans. Intell. Transp. Syst. 17, 782–795
(2016).

22. Buller, G. S. & Wallace, A. M. Ranging and three-dimensional imaging using
time-correlated single-photon counting and point-by-point acquisition. IEEE J.
Sel. Top. Quantum Electron. 13, 1006–1015 (2007).

23. Li, D.-U. et al. Real-time fluorescence lifetime imaging system with a 32� 32
0.13 mm CMOS low dark-count single-photon avalanche diode array. Opt.
Express 18, 10257–10269 (2010).

24. Altmann, Y., Ren, X., McCarthy, A., Buller, G. S. & McLaughlin, S. Lidar
waveform based analysis of depth images constructed using sparse single-
photon data. IEEE Trans. Image Process. 25, 1935–1946 (2016).

25. Shin, D., Kirmani, A., Goyal, V. K. & Shapiro, J. H. Photon-efficient
computational 3D and reflectivity imaging with single-photon detectors. IEEE
Trans. Comput. Imaging 1, 112–125 (2015).

26. Shin, D., Shapiro, J. H. & Goyal, V. K. Single-photon depth imaging using a
union-of-subspaces model. IEEE Signal Process. Lett. 22, 2254–2258 (2015).

27. Shin, D., Xu, F., Wong, F. N. C., Shapiro, J. H. & Goyal, V. K. Computational
multi-depth single-photon imaging. Opt. Express 24, 1873–1888 (2016).

28. Snyder, D. L. Random Point Processes (Wiley, 1975).
29. Besag, J. On the statistical analysis of dirty pictures. J. Roy. Statist. Soc. Ser. B 48,

259–302 (1986).
30. Chambolle, A., Caselles, V., Cremers, D., Novaga, M. & Pock, T. in Theoretical

Foundations and Numerical Methods for Sparse Recovery (ed. Fornasier, M.)
Ch. 9, 263–340 (Walter de Gruyter, 2010).
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