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Abstract

A new material MIT-1 comprised of delaminated MWW zeolite nanosheets is synthesized in one-

pot using a rationally designed organic structure-directing agent (OSDA). The OSDA is comprised 

of a hydrophilic head segment that resembles the OSDA used to synthesize the zeolite precursor 

MCM22(P), a hydrophobic tail segment that resembles the swelling agent used to swell 

MCM22(P), and a di-quaternary ammonium linker that connects both segments. MIT-1 features 

high crystallinity and surface areas exceeding 500 m2g−1, and can be synthesized over a wide 

synthesis window that includes Si/Al ratios ranging from 13 to 67. Characterization data reveal 

high mesoporosity and acid strength with no detectable amorphous silica phases. Compared to 

MCM-22 and MCM-56, MIT-1 shows a three-fold increase in catalytic activity for the Friedel-

Crafts alkylation of benzene with benzyl alcohol.

In recent years, layered zeolite precursors have garnered increased attention as a platform 

for developing new materials.1–3 Through post-synthetic modifications, these layered zeolite 

precursors can be transformed into 2-dimensional (2D), zeolites with open architectures. 

These novel hierarchical microporous/mesoporous materials with exposed active sites can 

facilitate the conversion of bulky substrates while maintaining higher stability than 

amorphous mesoporous materials.4–7 An important aluminosilicate layered zeolite precursor 

is MCM-22(P)8, 9 (isostructural to SSZ-25,10, 11 ERB-1,12, 13 and PSH-314, 15), which forms 

in single unit-cell thick (ca. 2.5 nm) layers with the MWW topology. These layers are 

arranged perpendicular to the c-axis such that half of the 12-ring cage is exposed to the 

crystal exterior, effectively forming “cups” of fully connected tetrahedral atoms on each side 

of the layer (see Scheme 1).16 In contrast to typical surface acid sites, the Brønsted acid sites 

located in the cups are as strong as those located inside micropores.17, 18 Unfortunately, 

upon calcination, the layers of MCMC-22(P) condense topotactically to form the 
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microporous three-dimensional (3D) zeolite MCM-22 (12-ring cages connected by 10-ring 

channels).

As such, post-synthetic methods have been developed to prevent layer condensation and 

generate exfoliated MWW nanosheets with a large fraction of exposed cups. Corma et al. 

developed ITQ-2 by swelling the layers of MCM-22(P) with a quaternary ammonium 

surfactant and then delaminating the swollen sheets by ultrasonication.19 The calcined 

material, comprised of disordered sheets, featured very high external surface areas of ca. 

700 m2g−1 and was shown to be active for the cracking of vacuum gas oil,19 decalin and 

tetralin,20 as well as the isomerization of m-xylene.21 Exfoliation was shown to be most 

effective over a specific set of conditions that include using highly alkaline conditions (pH > 

12.5 at 353 K)21 and precursor materials with Si/Al ratios >20.22 In search of less damaging 

post-synthetic treatments, Maheshwari et al. demonstrated that the swelling step could be 

done at room temperature,23 and Maluangnont et al. produced a stable colloidal suspension 

of MWW monolayers without ultrasonication.24 Varoon et al. synthesized highly crystalline 

MWW nanosheets by melt blending layered precursors to produce polystyrene 

nanocomposites,25 while Ogino et al. exfoliated MCM-22(P) layers using surfactants at a 

pH=9 without ultrasonication, albeit producing sheets with lower mesoporosity than 

ITQ-2.26 For borosilicates, Ouyang et al. achieved a single-step delamination and 

isomorphous substitution of B with Al by treating ERB-1 with an aqueous aluminum nitrate 

solution at 408 K.27 The resulting material required a final dealumination step by acid 

treatment to remove extra-framework species.

Although one-pot synthesis methods are preferable for process intensification, they have 

been largely unsuccessful in creating materials with comparable properties to those obtained 

with multi-step, post-synthetic methods. For example, zeolites MCM-56,28–30 ITQ-30,31 and 

EMM-1032 exhibit a degree of disorder in the stacking of layers perpendicular to the c-axis, 

but their low mesoporosity indicates their structure more closely resembles their 3D 

counterparts. Although very careful control of the MCM-56 synthesis has yielded a possible 

unilamellar structure, the material must be delaminated or pillared to maintain high external 

surface areas after calcination.33, 34 Consequently, the development of an effective and 

robust method to create high-quality MWW nanosheets without additional post-synthetic 

treatments continues to be challenging.

Here, we demonstrate an effective one-pot synthesis method to generate exfoliated single-

unit-cell thick MWW nanosheets. The new material, named MIT-1, is synthesized using a 

rationally-designed OSDA and results in a material with high crystallinity, surface area, and 

acidity that does not require post-synthetic treatments other than calcination. The OSDA is 

comprised of a diquaternary ammonium surfactant with tailored structure-directing head, 

alkyl linker, and hydrophobic tail groups that direct the formation of the MWW framework 

topology (see Scheme 1). A parametric study of Al, Na, and water content reveals that 

MIT-1 crystallizes over a wide synthetic window. Characterization data show that MIT-1 

has high mesoporosity with an external surface area exceeding 500 m2g−1 and a high 

external acid site density of 21 × 10−5 mol g−1. Catalytic tests demonstrate that MIT-1 has 

three-fold higher catalytic activity for the Friedel-Crafts alkylation of benzene with benzyl 

alcohol as compared to that of MCM-22 and MCM-56.
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The strategy to design an OSDA that could produce MWW nanosheets in one-pot is 

depicted in Scheme 1. Inspired by the recent work by Ryoo et al.,35 we surmised that a 

suitable OSDA should combine the elements of the traditional OSDA used for the synthesis 

of layered zeolite precursor and the quaternary ammonium surfactant typically used for the 

swelling step during post-synthetic delamination. MCM-22(P) can be synthesized using 

hexamethyleneimine (HMI) or trimethyladamantylammonium hydroxide (Ada-OH), while 

swelling is typically performed with hexadecyltrimethylammonium bromide (CTAB). As 

shown in Scheme 1, the novel OSDA, named Ada-i-16 (where i = 4, 5, or 6 –CH2– linker 

groups), has a hydrophobic tail segment that resembles CTAB, a hydrophilic head segment 

that resembles Ada-OH, and a di-quaternary ammonium linker that connects both segments. 

The linker ammonium composition and chain length was tuned to achieve an effective C/N+ 

ratio ranging from 17–18, which is close to the optimal (10–15) identified for high silica 

hydroxide syntheses,36, 37 and which decreases the risk of solubility problems for the OSDA 

in water. We note that previous attempts to use surfactants with single ammonium moieties 

to crystallize zeolites have only resulted in ordered amorphous materials.38, 39 We varied the 

linker size between 4 and 6 –CH2– units because the linker size can affect the mobility and 

interdigitation of the C16 tails, thereby influencing the packing (i.e., unilamellar vs. 

multilamellar) of the layers.40 Molecular dynamics simulations indicate that the structure-

directing head sits inside of the cups with the diquaternary ammonium moieties stabilizing 

the pore mouth (Supporting Information, Fig. S1). Details of the procedure to synthesize 

Ada-i-16 can be found in the Supporting Information.

An initial screening to understand the effect of Ada-i-16 composition on MIT-1 

crystallization was investigated using a synthesis gel of 1 SiO2/0.1 Ada-i-16/0.05 

Al(OH)3/0.2 NaOH/45 H2O at 433 K with rotation at 60 rpm. This gel composition 

resembles the one typically used to make MCM-22(P); while the Ada-i-16/Si ratio of 0.1 is 

similar to that used for the synthesis of MFI nanosheets with similar diquaternary 

surfactants.40 Varying the linker size drastically affected the crystallization time (Table S1, 

Supporting Information). Specifically, fully crystalline MIT-1 was obtained in 14 and 22 

days when using Ada-4-16 and Ada-6-16, respectively. Interestingly, the C5 linker did not 

yield a crystalline product even after 30 days. 13C magic-angle spinning nuclear magnetic 

resonance (MAS NMR) on the as synthesized material confirms that the OSDA remains 

intact in the pores (see Fig. S2–6, Supporting Information). Increasing the Ada-4-16/Si ratio 

up to 0.3 did not affect the synthesis time or phase purity. Decreasing the temperature from 

433 K to 423 K doubled the synthesis time, but did not alter the product phase. Adding Ada-

OH as a co-template at Ada-OH/Ada-4-16 ratios ranging from 0.025 to 1 promoted the 

crystallization of 3D SSZ-13 (CHA topology) after short times. Indeed, Ada-OH is a well-

known OSDA for the synthesis of SSZ-13 at these temperatures and gel compositions.41 At 

even lower Ada-OH contents, the co-template did not have a noticeable effect, and the 

MIT-1 phase was observed exclusively.

The powder X-ray diffraction patterns (PXRD) acquired after calcination of MIT-1 

(synthesized with Ada-4-16) at 813 K for 10 h confirm that the sample has the MWW 

topology (Fig. 1A). The diffraction pattern features broader peaks than those observed for 

MCM-22. More specifically, the pattern shows reflections belonging to the (hk0) directions, 
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indicating the absence of long-range order in the c-direction, as expected for exfoliated 

MWW layers.42 Simulated diffraction patterns (obtained using powder pattern theorem for 

ultrasmall zeolite crystals implemented with UDSKIP)43, 44 for MWW crystalline constructs 

that are 15 unit cells wide along the a- and b-axes and one unit-cell thick along the c-axis are 

in good agreement with the experimental PXRD patterns for MIT-1. Extending the 

crystallization time by 7 additional days yields a material with additional diffraction peaks, 

consistent with the mordenite (MOR) topology as well as increased condensation of the 

nanosheets into the 3D MWW structure as confirmed by transmission electron microscopy 

(TEM) (Fig. S7–8, Supporting Information). MOR impurities have been previously 

observed in MCM-22(P) syntheses45 and condensation of disordered sheets into a 

multilamellar structure has been observed for MFI nanosheets crystallized for longer periods 

of time.46

Scanning electron microscopy of MIT-1 reveal particles composed of disordered platelets 

agglomerated into >10 μm clusters (Fig. 2). No other morphologies were detected during 

low magnification inspections. TEM confirmed the presence of disordered nanosheets ca. 

2.5 nm thick along the (001) direction and ca. 150 nm (spanning 50–200 nm) long along the 

(100) and (010) directions. Selected area electron diffraction perpendicular to the plane of 

the sheets (inset, Fig. 2) reveals the expected hexagonal symmetry of MWW topology 

crystals. Nitrogen adsorption studies demonstrate that MIT-1 has much higher mesoporosity 

than MCM-22 or MCM-56 with a very broad mesopore size distribution (see Fig. 1C, S9 

Supporting Information). The total pore volume and external surface area of MIT-1 after 

calcination are 1.014 cm3g−1 and 513 m2g−1, respectively (see Table S2 and Fig. S10, 

Supporting Information). This surface area is very close to the theoretical value of 517 

m2g−1 calculated for 150×150 nm long and 2.5 nm thick MWW sheets using geometric 

arguments (see Table S3, Supporting Information). In contrast, the total pore volume and 

external surface area of MCM-22 are three times lower at 0.289 cm3g−1 and 121 m2g−1, 

respectively. For MCM-56, the total pore volume and external surface area are two times 

lower at 0.601 cm3g−1 and 219 m2g−1, respectively. A log-plot of the adsorption isotherms 

(Fig. 1C, inset) shows that, in the pressure range of 10−7 to 10−3 P/P0, MIT-1 has a lower N2 

uptake than MCM-22, which is consistent with the loss of the 10-ring channels associated 

with the 12-ring supercages along the c-axis.26 Taken together, the characterization data 

confirm that MIT-1 is a highly crystalline delaminated MWW material with high surface 

area and mesoporosity.

The coordination environment of Al atoms was analyzed by 27Al MAS NMR (see Fig. 1B). 

MIT-1 with a Si/Altotal = 16.2 (as quantified from elemental analysis) features mainly 

tetrahedrally-coordinated framework Al species at 55 ppm with only a small fraction (<8%) 

of octahedrally coordinated extra-framework Al species present at 0 ppm. Note that the 

amount of extra-framework Al increases to ca. 30% after calcination (see Fig. S11, 

Supporting Information), in agreement with previous reports by Corma et al. for 

MCM-22.18 Calcination conditions require further optimization to minimize dealumination.

The number of internal and external acid sites were investigated with 31P MAS NMR using 

trimethylphosphine oxide (TMPO) and tributylphosphine oxide (TBPO), respectively, as 

probe molecules. MCM-22, MCM-56, and MIT-1 have comparable peak signals at 85, 72, 
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68, and 63 ppm (Table S4, Fig. S12, Supporting Information), which correspond to acid sites 

present in the 12-ring cages and 10-ring channels of MCM-22.47 These chemical shifts are 

associated with strong Brønsted acid sites as determined by theoretical calculations between 

proton affinities and 31P chemical shifts.47 Additional peaks at 53, 42, and 31 ppm 

correspond to TMPO adsorbed onto Lewis acidic extra-framework Al, physisorbed TMPO, 

and crystalline TMPO, respectively. The total number of acid sites were quantified using 

spectra integration coupled with elemental analysis, showing 46, 32, and 33 × 10−5 mol g−1 

for MCM-22, MCM-56, and MIT-1, respectively (see Table S2, Supporting Information). 

Following the same procedure, the external acid sites were probed with TBPO (ca. 0.8 nm), 

which cannot fit inside 10-ring channels.48 MIT-1 had 21 × 10−5 mol g−1 of external acid 

sites, which is approximately three times more surface sites than those of MCM-22 (6 × 

10−5 mol g−1) and two time more surface sites than those of MCM-56 (13 × 10−5 mol g−1). 

These values correspond well with the three and two-fold increases in external surface area 

for MIT-1 compared to MCM-22 and MCM-56.

A parametric study of Al, Na, and water content was conducted to determine the synthesis 

window for MIT-1. Table S5 and Fig. S13 (Supporting Information) show the resulting 

phases formed at different gel compositions. The synthesis space closely mirrors the space 

for phase-pure MCM-22(P). At Si/Al ratios below 12, only amorphous product is observed, 

while at Si/Al ratios above 70, competing MFI phases are observed. Materials synthesized in 

the absence of Al consistently resulted in a disordered MRE topology (ZSM-48).49–51 

Increasing the NaOH/Si from 0.2 to 0.3 decreased the crystallization time from 14 to 7 days. 

Decreasing the NaOH/Si to 0.1 increased the crystallization time to 30 days. This 

modulation of crystallization time likely arises from the increase in OH− content, since 

substituting NaCl as a sodium source resulted in an amorphous product. Increasing the 

H2O/Si ratio above 30 did not influence crystallization, but lower water contents generated 

only amorphous phases.

The Friedel-Crafts alkylation of benzyl alcohol (BA) with benzene was used as a model 

reaction to assess the catalytic activity of MIT-1. Both the C-alkylation (diphenylmethane 

(DP)) and O- alkylation (dibenzyl ether (DE)) products are unable to fit inside 10-ring pores, 

thus limiting catalytic activity to the external surface for regular 3D zeolites. As shown in 

Table 1, MIT-1 converts 49% of BA after 1.5 h at 358 K with a DP yield of 23%. Nearly full 

conversion is observed after 3 h reaction time with a 65% yield of DP. After 5 h, the yield of 

DP increases to 99% as DE is reversibly converted back to BA, which is C-alkylated into 

DP. In contrast, MCM-22 and MCM-56 only reach 40% and 44% conversion after 3 h, 

respectively, at comparable Al loadings. Thus, Al-normalized rates at similar conversion 

levels show that MIT-1 has a three-fold increase in activity. This reactivity profile is 

proportional to the increase in external surface area and external acid site concentration of 

MIT-1 compared to MCM-22. Bulk Al-MFI zeolites showed negligible activity due to their 

low external surface areas. Al-MCM-41 also showed low activity for this reaction in 

agreement with Na et al. who showed that strong Brønsted acid sites are required to catalyze 

this reaction.4
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Conclusions

We present the first one-pot synthesis of high-surface area, MWW zeolite nanosheets with 

high crystallinity. Rational design of OSDAs can be generalized for the synthesis of other 

zeolite topologies with open architectures, which in turn, are needed to address new 

challenges arising from our increasing need to convert bulky substrates. Current efforts in 

our group are focused on investigating other OSDA designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Powder XRD patterns (A) for calcined MCM-22 (a), MCM-56 (b), MIT-1 (c), simulated 

MWW nanosheets (d). 27Al MAS NMR spectra of as-synthesized MIT-1 (B). N2 adsorption 

and desorption isotherms (C) for calcined MCM-22 (a), MCM-56 (b), MIT-1 (c). Inset 

shows data on a semi-log plot.
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Fig. 2. 
Transmission electron microscopy images of MIT-1 (a,b), with selected-area diffraction 

patterns perpendicular to the plane of sheets (inset). Scanning electron microscopy images of 

MIT-1 (c,d).
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Scheme 1. 
Schematic representation of the one-pot synthesis strategy to create MIT-1.
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Table 1

Reactivity and selectivity data for the Friedel-Crafts alkyation of benzene with benzyl alcohol.

Catalyst Conversion (%) Yield DP (%) Yield DE (%)

MCM-22 40 19 18

MCM-56 44 19 20

MIT-1 98 65 26

MIT-1a 49 23 21

MIT-1b 100 99 <1

Al-MCM-41 2 <1 <1

Al-MFI 3 <1 2

Reaction conditions: BA/Al = 200 mol/mol, 6.5 wt% BA in benzene, 3 h, 358 K.

a
1.5 h

b
BA/Al = 100, 5 h, all other conditions the same.
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