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Longitudinal assessment of neuronal 3D genomes

in mouse prefrontal cortex
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Neuronal epigenomes, including chromosomal loopings moving distal cis-regulatory elements
into proximity of target genes, could serve as molecular proxy linking present-day-behaviour
to past exposures. However, longitudinal assessment of chromatin state is challenging,
because conventional chromosome conformation capture assays essentially provide single
snapshots at a given time point, thus reflecting genome organization at the time of brain
harvest and therefore are non-informative about the past. Here we introduce ‘NeuroDam' to
assess epigenome status retrospectively. Short-term expression of the bacterial DNA adenine
methyltransferase Dam, tethered to the Gadl gene promoter in mouse prefrontal cortex
neurons, results in stable GMethYIATC tags at Gadl-bound chromosomal contacts. We show
by NeuroDam that mice with defective cognition 4 months after pharmacological NMDA
receptor blockade already were affected by disrupted chromosomal conformations shortly
after drug exposure. Retrospective profiling of neuronal epigenomes is likely to illuminate
epigenetic determinants of normal and diseased brain development in longitudinal context.
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large number of genetic and environmental factors
impacting within the extended (prenatal to young
adult) period of brain development result in cognitive
and behavioural deficits only at much later periods. Unsurpris-
ingly, therefore, considerable time and effort has been invested
exploring long-term adaptations of neuronal and glial
transcri1pt0mes and epigenomes in a wide range of disease
models'™. However, functional neurogenomics faces a key
limitation, owing to the fact that, to date, even the most
powerful genome-scale assays for chromatin modifications
(chromatin immunoprecipitation (ChIP) sequencing),
transcription (RNA sequencing) or chromosomal conformations
(Hi-C) essentially provide only a single snapshot of genome
organization and function at the time of tissue harvest. This often
necessitates multiple subgroups of animals, to monitor, at
different time points, long-term genomic adaptations in
response to past exposure. What is missing from the field,
therefore, is a molecular toolbox that would directly link past
genome status to current brain function. Here we artificially tag
neuronal genomes in mouse prefrontal cortex (PFC) with
bacterial DNA adenine methyltransferase (Dam), then measure
the animal’s behaviour at different points in time, followed by
brain harvest and retrospective assessment of prefrontal genomes
representing the exposure period months past. Specifically, we
show that chronic deficits in cognition and working memory, and
excessive anxiety after 21 days of disrupted NMDA (N-methyl-p-
aspartate) receptor signalling in the juvenile and young adult
period are associated with early emergence of long-lasting
disruptions of intra-chromosomal conformations at the
NMDA-sensitive Gadl GABA synthesis gene locus (chr.2qC2).
We predict that in vivo Dam-based retrospective tagging
of neuronal genomes (hereafter referred to as ‘NeuroDam’)
will provide an important longitudinal complement to
conventional  cross-sectional neuroepigenomic approaches
currently available.

Results

NMDA antagonist-induced long term behavioural defects.
Transient disruption of NMDA receptor signalling induces last-
ing impairments in neuronal signalling, cognition, social beha-
viours and emotion, and provides a frequently implied
pharmacological model for schizophrenia and other psychosis
spectrum disorder™®. Specifically, acute or subchronic (<21
days) exposure to MK-801 and other NMDA receptor antagonist
drugs in the juvenile or young adult period is associated with
disruptions of cortical function and cognition including associate
and working memory, and increased anxiety’ ~1°. To recapitulate
these findings and to explore potential long-term changes in
behaviour, we exposed two age groups of C57Bl6/] mice
(postnatal day P28 and P90) to daily treatments with the
NMDA antagonist drug MK-801 (0.2mgkg~!) or saline as
control for a period of 3 weeks, followed by behavioural testing
for spatial working memory (8-arm radial maze) and anxiety
(open-field test) within 2 weeks (‘TIME A’ in Supplementary
Fig. 1) or after 4 months (‘TIME B’ in Supplementary Fig. 1) after
the last drug treatment. Indeed, MK-801-exposed mice showed
significant deficits in working memory and increased anxiety
when tested within 2 weeks post treatment (‘TIME A’)
(Supplementary Fig. 1). These alterations continued to exist, in
milder form, at the second, much later test period (‘TIME B’)
(Supplementary Fig. 1). Although our findings are in broad
agreement with studies using shorter time intervals between
NMDA antagonist treatment and behavioural assessment’ "7, the
results from our animals tested 4 months after MK-801 exposure
indicate that such types of behavioural alterations do not remain
static in the long term.

2

Dam-tagging of chromosomal contacts in longitudinal context.
NMDA receptor blockade induces promoter-specific DNA
methylation remodelling in corticolimbic circuitry'!, but little is
known about potential effects on higher-order chromatin,
including chromosomal conformations bypassing linear genome
to mobilize enhancers and other cis-regulatory elements into
physical proximity to (NMDA sensitive) gene transcription start
sites (TSSs). We wanted to chart, in the longitudinal context of
the aforementioned drug-induced changes in behaviour,
chromosomal loop-bound DNA sequences encompassing Gadl/
Gad67, an activity-regulated gene highly sensitive to disruptions
in NMDA receptor signalling'®!®. Given the protracted course of
behavioural deficits after NMDA blockade, potentially emerging
and extending over the course of multiple weeks, we reasoned
that cross-sectional chromosome conformation capture (3C)
approaches are less ideal to fully capture the dynamics of spatial
genome architectures in susceptible neurons. We noted a report
of bacterial adenine DNA methyltransferase (Dam)-based tagging
of long-range chromosomal loopings at the Drosophila bithorax
homeotic gene complex with chimeric Dam-GAL4 DNA binding
domain constructs'?. Therefore, we asked whether it would be
possible to artificially tag Gadl-bound chromosomal contacts in
mouse brain expressing chimeric protein comprising Dam fused
to designer DNA-binding proteins targeting Gadl promoter
sequences. We hypothesized that such type of approach in vivo is
well suited for long-term tagging of neuronal DNA because of
postmitotic status, with the potential for a stable artificial DNA
mark in the absence of the ‘diluting effect’ by cell division.
Furthermore, vertebrate genomes essentially lack endogenous
adenine methylation at G®ATC tetramers as the highly specific
Dam target sequencels.

To test this ‘NeuroDam’ approach, we first designed a herpes
simplex vector (HSV) amplicon for simultaneous expression of
two transcription cassettes, arranged in tandem nose-to-tail
orientation, including cytomegalovirus promoter driven mCherry
(or green fluorescent protein (GFP)) and HSV IE4/5 promoter-
driven expression of Dam fused to a transcription activator-like
effector (TALE) complementary DNA previously shown to
specifically bind to the predicted 14bp target sequence at the
Glutamic acid decarboxylase (Gadl, chromosome 2qC2) promo-
ter'6. We reasoned that HSV amplicons are ideal vectors for the
purposes of NeuroDam retrospective genomics, because
expression is rapid starting 2-3h after transfection, but
confined to a short period of several days before shutting down
permanently!”!8, Indeed, immunohistochemical staining with
NeuN neuronal antibody confirmed expression of our HSV
TALES*¥Dam/mCherry amplicon in neuronal layers of the
cerebral cortex at day 2 (Fig. 1a,c) but not day 10 post injection
(Fig. 1b). Furthermore, when tested by quantitative reverse
transcriptase-PCR with two independent primer pairs (‘Dam.1’
and ‘Dam.2’ in Fig. 1d), prefrontal Dam RNA was readily
detectable in brains harvested 2 and 7, but not 10 days post
injection. Furthermore, RNA levels of Gadl and its paralogue,
Gad2, remained unaltered when tested 2, 7 and 10 days post
injection (Fig. 1d and Supplementary Fig. 2). We conclude that
HSV-mediated TALEG*#'Dam expression is transient and does
not alter RNA levels of the target gene.

Mice, treated for 3 weeks with daily doses of saline or MK-801
as described above, received—after an additional 2-week
interval—bilateral PFC injections of HSV TALE%®!Dam/
mCherry (‘week 5 on Fig. 2 timeline). Brains were harvested
after another 2 weeks post injection, on completion of ‘TIME A’
behaviour testing (‘week 7’ in Fig. 2), or after 4 months post
injection, on completion of ‘TIME B’ behavioural assays
(Supplementary Fig. 1) (‘week 22’ on Fig. 2 timeline). We first
explored whether artificial, Dam-mediated adenine methylation
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Figure 1 | Transient Dam expression in PFC neurons. (a,b) Tissue sections from PFC harvested (a) 2 and (b) 10 days after HSV-TALE®®’Dam/mCherry
injection. Notice robust mCherry (red) expression in neuronal layers at day 2 but not day 10 post injection. Section were immunolabelled for NeuN neuronal
marker (green) and counterstained with 4,6-diamidino-2-phenylindole (blue). (a,b) Scale bars, 100 um (left); 50 um (upper right); 25 um (lower right).
(¢) Representative example of bilateral HSV-TALES%'Dam,/GFP injection, showing robust transgene expression within ~1mm rostrocaudal strip of rostro-
medial cortex. Microscopical image from Bregma + 1.42 mm injection site, showing bilateral needle tracks and robust GFP expression in surrounding tissue.
Scale bar, Tmm. CC, corpus callosum; Cg, cingulate cortex; CPu, caudate putamen; Cx, cortex; M1, M2, motor cortex; PL (IL), pre-(infra-)limbic cortex.
(d) Quantitative reverse transcriptase-PCR to quantify Dam and, for comparison, Gadl and Gad2 RNA expression 2, 7 and 10 days after injection of HSV
amplicon encoding TALES'Dam. Dam RNA, assayed with two independent primer pairs Dam.1 and Dam.2, expressed as fold change after normalization
to 18S rRNA. N = 4 per time point; data shown as mean £ s.e.m. Notice highest Dam expression on day 2. *P = 0.029, Mann-Whitney test (both Dam.1 and

Dam.2).
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Figure 2 | Experimental timeline. Juvenile (P28) and young adult (P90) animals receive from week 0-3 daily injections of MK-801 or saline, followed by
radial arm maze and open-field behavioural assays. At the beginning of week 5, HSV TALEGd'Dam vector was injected bilaterally into PFC. Brains from
"TIME A" mice were harvested at the end of week 6/beginning of week 7. Brains from ‘TIME B’ mice were harvested in week 22 and after another round of

behavioural testing had been completed within week 19-21.

at GATC tetramers (G™ATC) could identify some of the previous
reported higher-order chromatin structures, based on conven-
tional chromosome conformation capture assays (3C)Y. These
included loop contacts between the Gadl promoter and
regulatory sequences positioned 55kb further upstream!®. We
extracted, then Dpnll digested the prefrontal DNA, followed by
PCR-based quantification of restriction-insensitive G™ATC
sequences indicative of Dam methylation activity?® (Fig. 3a,b).

Indeed, quantification of DpnlI-resistant sequences within 100 kb
from the Gadl TALE target site identified in multiple
experiments a sharp ;1>eak corresponding to the previously
reported conformation 9 (Fig. 3c). To further assess the
sequence specificity of our TALES*Dam DNA-binding
protein (which included a V5 epitope tag), we conducted
chromatin immunoprecipitation with an anti-V5 antibody in
additional PFC samples, harvested 2 days after HSV
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Figure 3 | Chromosomal conformations tagged by TALES99'Dam. (a) 150

kb of linear genome surrounding chromosome 2 TALE target sequence

5-TATTGCCAAGAGAG-3' at — kb position from Gadl TSS. Dotted arc marks loop formation mapped by ‘3C’ chromosome conformation capture'®.
Position of Amplicon/primer pairs 1-8 (Supplementary Table 2) for DamID quantitative PCR assays from Dpnll-resistant prefrontal DNA as indicated within
chr.2 position 70,304,636-70,455,066. (b) Dam-based 3D genome mapping. TALEGDam methylates GMATC tetramers around Gadl TALE target
sequence and at chromosomal contacts and loop formations within physical proximity to target. Methylated GMATC tetramers are selectively resistant to
Dpnll digest (in contrast to Dpnll-sensitive non-methylated GATC). Methylated GMATC tetramers are selectively cut by Dpnl (in contrast to Dpnl-resistant
non-methylated GATC). DamID-PCR amplifies across Dpnll-resistant GTATC sequences and DamID-seq is based on adaptor-mediated ligation selectively
at Dpnl-sensitive GMATC. DamID-PCR products are detectable for 55 kb loop (primer pair 4), corresponding to previously reported loop formation by 3C'
and for sequences at TALE target sequence (primer pair 7) in HSV TALEG"‘ﬂDam—injected PFC samples PFC1, PFC2 and PFC3. The absence of DamID-PCR
product in HSVMef2c-Dam_iniacted PFC4, PFC5 and PFC6 is noteworthy (see also Supplementary Fig. 6). (€) DamID quantitative PCR for GMATC
quantification from prefrontal DNA, with primers within 100 kb from TALEG" target sequence (see a), after normalization to control sequence on
chromosome 18. The sharp peak at position 4, corresponding to — 55 kb promoter-enhancer loop'® and peak at position 7 at TALE target sequence
are noteworthy. N =3 per group. (d) ChIP with anti-V5 antibody to measure sequence-specific binding of TALES®d'Dam-V5 at Gad1 locus. Notice
robust binding at TALE target sequence (position 7, see a) but not at neighbouring positions 5, 6. N=3 per group. (e) Quantitative comparison of
Gad1-TSS¢ —55kb) Loop by, o] densitometry from DamID-PCR products for TIME A and TIME B. N = 4-5 mice per group. Data in c-e shown as mean + s.e.m.

TALEG*¥Dam injection. Indeed, ChIP-to-Input ratios were
above background at the TALE target sequence and very low or
not detectable in the surrounding sequences (Fig. 3d).
Importantly, DamID-PCR yields from sequences comprising
the Gad1-TSS(~3%kP) Loob were readily detectable at comparable
levels in PFC harvested 2 weeks (‘TIME A’) and 4 months
(‘TIME B’) after injection of HSV TALEG*!Dam (Fig. 3e).
Furthermore, these sequences were specifically G™ATC-methy-
lated in HSV-TALE®*¥'Dam-injected PFC, whereas no DamID-
PCR products were produced in 3/3 PFC specimens injected with
an HSV vector expressing Dam-Mef2c transcription factor fusion
protein as negative control (Fig. 3b). We conclude that G®ATC
tetramer methylation, as an artificial epigenetic mark reflecting
bacterial Dam methyltransferase activity, is suitable for
chromosomal loop mappings in mouse brain in vivo and,
moreover, the mark is maintained in cortical neurons for at
least 4 months after transient (< 10day) expression.

4

Dam-tagged Gadl long range chromosomal contacts. Next, we
wanted to chart Dam G™ATC-tagged sequences on a chromo-
some-wide scale in “TIME A’ and ‘TIME B’ PFC (Fig. 2). To this
end, we prepared Dam-seq libraries from Dpnl digested DNA to
selectively ligate the adaptors at the methyl-GMATC?® cut sites
(Fig. 3b). We generated N=4 TIME A PFC (pooled from four
mice per library), N=4 TIME B PFC (1 mouse per library) Dam-
seq libraries, with 20M minimum reads/library. Reads were
filtered for the correct Dpn I signature (adaptor sequence
followed by 5TC...), typically comprising <5-15% of all
reads. As spatial genome architectures are primarily defined by
intrachromosomal contacts®’?> and to minimize potential
readings from spurious TALE binding sites elsewhere in the
genome, we therefore focused our analyses on chromosome 2,
which contributed 18.4% of all filtered reads (N =8 PFCs Dam-
seq libraries; Supplementary Table 1). This represents a several-
fold genomic enrichment of chromosome 2 sequences when
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corrected for chromosomal length. We also included N=4
primary neuronal cultures from embryonic day E15 cortex and
hippocampus transfected 72 h before harvest with TALES*¢/Dam
plasmid. Two of four primary neuronal cultures were treated with
KCL for 6 h before harvest, to upregulate neuronal depolarization
and signalling and thereby provide a better model for active
circuitry in adult cortex. Finally, untransfected naive EI5
hippocampal culture served as a negative control.

Using a 50 kb sliding window, read counts were modelled using
a negative binomial distribution (see Methods). We identified 276
chromosome 2 sliding windows that were Dam-tagged in
TALEG*¥Dam-exposed PFC samples, including 57 sliding
windows tagged in at least 1/4 neuronal cultures transiently
transfected with TALEG*¥/Dam (Supplementary Data 1). Filter
criteria included zero background in the control (non-Dam
exposed) culture and exclusion of ‘blacklisted’ sequences in
modENCODE (model Encylcopedia of DNA Elements), owing
non-informative enrichment in deep-sequencing data sets?>. The
filtered 276 Dam-tagged sliding windows, in toto, represent
~7.5% of 182 megabase (Mb) mappable chromosome 2
sequence. Of note, most genomic loci exhibit a non-zero
probability to interact with almost any other locus in the
genome??, Therefore, many of the 276 Dam-tagged ‘positions’ on
chromosome 2 could reflect ‘random collisions®* of the
chromosomal material with the TALEG%?! target sequence,
resulting in G™ATC methylation, while in physical proximity
to Gadl promoter-bound Dam enzyme. This scenario is plausible,
given the longitudinal design of our in vivo experiment with the
G™ATC adenine methylation activity of TALE®**'Dam chimeric
protein extending over the course of 3 days (cell culture) and 1
week (in vivo PFC). To reduce the pool of potential (Dam-tagged)
intrachromosomal Gadl contacts, we filtered for Dam-tagged
sliding windows with robust (>25) normalized read counts, to be
present in at least 3/4 TIME A plus 3/4 TIME B samples. We
obtained 29/276 Dam-tagged positions that matched these
criteria (Fig. 4a,b and Supplementary Data 2). Loop formations
were tested by 3C for multiple candidate sequences, including
formations bypassing 58 Mb, to connect Gadl with Myo3a
intronic DNA positioned next to the Gadl orthologue Gad2
(Fig. 4c), and a long-range contact, to connect Gadl with
neurodevelopmental risk genes including Phf21a*>2% and Kcna4
(ref. 27; Fig. 4d) and the chromatin regulator Bhc80 (refs 28,29).
Additional 3C assays were conducted on an independent cohort
of mice (Supplementary Fig. 3). As we verified with conventional
3C, altogether 3/4 or 75% of chromosome 2 G™ATC-tagged
sequences as long-range Gadl-bound intrachromosomal
loopings, we conclude that the TALEG%Dam fusion protein
indeed left G™ATC markings at regulated GadI-bound loop
formations in prefrontal neurons (as opposed to ‘random
collisions®* of the chromosomal material or spurious
methylation activity of Dam not bound to the Gadl target).

Gadl loop alterations mapped retrospectively. Importantly,
although the N=4 TIME A and N=4 TIME B Dam-seq
experiments, including DNA library and sequencing, were
conducted in separate batches, G™ATC profiles for the 29
Dam-tagged loci nonetheless showed a moderately strong corre-
lation between TIME A and TIME B data sets (R = 0.64, > = 0.4,
P <0.0005). However, GenePattern-based cluster analysis using a
larger set of Dam-tagged loci (Supplementary Data 1) showed
that two of the altogether four TIME B Dam-seq libraries overall
were poorly correlated with any other sample and therefore were
not further considered (Supplementary Fig. 4A,B). Of note, the
two remaining TIME B Dam-seq libraries showed robust corre-
lations with each of the four Time A libraries (average R = 0.815),

which is only minimally different from the R between the two
Time B libraries (R =0.824) (Supplementary Fig. 4A,B).

The aforementioned findings, including the comparisons
between ‘TIME A’ and ‘TIME B’ samples by DamID-PCR
quantification of ‘local’ methyl-adenine tags upstream of the
Gadl target site (Fig. 3e) and Dam-seq for intrachromosomal
long-range contacts (Supplementary Fig. 4A,B) indicate that
Dam-mediated G™ATC profiles are maintained for at least
4 months in PFC neurons after transient Dam expression had
ceased. Having shown that retrospective three-dimensional (3D)
genome mapping in mouse PFC is feasible, we then wanted to
explore whether our NeuroDam approach could link behavioural
alterations (assessed in the ‘present’) to neuronal epigenome
status dating back to an earlier time period in the past. To address
this question, we studied our mice that were affected by changes
in cognition and behaviour when tested up to 4 months after the
last dose of subchronic NMDA antagonist regimen
(Supplementary Fig. 1). We were particularly interested in the
58 Mb longe-range loop interconnecting the Gadl locus with
Mpyo3a intronic sequences positioned 30kb upstream of Gad2
(Fig. 4a,b). Interestingly, the Gadl and Gad2 genes encode
glutamic acid decarboxylase orthologues common to all verte-
brate genomes after an ancient gene duplication event >400M
years ago>’. Remarkably, despite many megabases of linear
genome interspersed between the Gadl and Gad2 loci, the two
genes show similar types of long-lasting adaptations in the adult
mouse cortex after early life stress such as maternal immune
activation. These include downregulated expression and
promoter cytosine h?rg)ermethylation in context of cognitive and
social impairments®"32. Therefore, Gadl and Gad2 expression
could show similar types of changes in our MK-801 model, in
conjunction with alterations in the 58 Mb Gadl-Gad2 loop. To
explore this, we quantified in the “TIME B’ PFC specimens Gadl
and Gad2 RNA (quantitative reverse transcriptase-PCR, a cross-
sectional assay to quantify transcript at the time of tissue harvest)
and Gadl loopings by DamID (reflecting chromatin status at
week 7, which is 15 weeks before brain harvest. Indeed, both
Gadl and Gad?2 transcripts were modestly decreased (25-30%) in
PFC of MK-801-exposed “TIME B’ animals Fig. 4c). This was
associated together with a significant increase in Dam-tagged
sequences of the Gadl-Myo3a/Gad2 loop and weakening of the
local, 55kb GadI looping (Fig. 4c). Therefore, long-lasting defects
in cognition after MK-801 exposure are associated with early
emergence of abnormal Gadl long-range chromosomal
conformations. The MK-801-induced increase in Gadl-Myo3a/
Gad2 contacts was specific, because DamlID for a second type of
Gadl loop structure (Gad1-TSS( —55kb) Loop) showed a subtle
decrease in drug-exposed animals (Fig. 4c). To explore whether
Gadl higher-order chromatin alterations persist, we conducted
3C in an additional set of “TIMEB’ PFC specimens (N=3 per
treatment). These 3C assays are cross-sectional, informing about
the 3D genome at the time of tissue harvest or 4 months after
MK-801 exposure. Indeed, 3C changes in the MK-801 group were
similar to the DamID-PCR assays, which inform about 3D
genome status 2-3 weeks after MK-801 exposure. Thus, our
3C-PCR studies showed a nonsignificant trend towards increased
interaction frequencies for Gadl-Myo3a/Gad2 and a significant
decrease in Gadl-TSS(~ %K) LooP"in PEC of “TIME B’ mice
previously exposed to MK-801 (Fig. 4c). Next, we directly
compared in PFC from additional ‘TIME A’ and ‘TIME B’
MK-801, and saline-treated mice, the levels of G®ATC adenine
methylation at two disease-relevant genes, including the afore-
mentioned Phf2la encoding a chromatin regulator associated
with mental retardation and neurodevelopmental defects®>, and
Kcna4 encoding a voltage-gated potassium channel broadly
relevant for the regulation of neuronal excitability in the
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Figure 4 | Dam-tagged long-range chromosomal loop formations in PFC neurons. (a) Chromosome 2 linear map marking the positions of the 29 sliding
windows consistently GMATC-tagged in TIME A and Time B HSV TALEG“‘“Dam—injected PFC (Supplementary Data 1 and 2). (b) Browser view at Cacnb2,

Myo3a/Gad2, Phf21a and Kcna4 chromosome 2 loci (positions marked in a),

showing normalized Dam-seq profiles (top to bottom) for N=4 TIME A and

N=4 TIME B HSV TALEG"‘ﬂDam—injected PFC, N=2 KCL-treated TALEG'Dam primary neuronal culture. NeuH, untransfected/untreated neuronal
culture. Cerebral cortex CTCF tracks built from published data set'®. (¢) Retrospective/longitudinal DamID and cross-sectional 3C loop assays, and
quantitative reverse transcriptase—PCR (qRT-PCR) from HSV TALES%'Dam-injected TIME B PFC from MK-801 and saline-treated mice for Myo3a/Gad2-

GadT long-range loop and shorter range — 55 kb Gadl promoter loop. N=3

per group for DamID-PCR and 3C-PCR, N =6 per group for RNA. *Two-tailed

t-test: P=0.015 Myo3a/Gad2 and P = 0.049 Gad1-TSS¢ ~25kb) LooP pam|D-PCR; P=0.058 Gad2 and P = 0.034 Gadl RNA. (d) DamID-PCR and RNA from
HSV TALEGG‘”Dam—injected TIME A and TIME B PFC, for Phf2Ta and Kcna4 sequences. DamID-PCR, N =3 mice per group. gRT-PCR N =6 per group
*Two-tailed t-test:P=0.050 Kcna4 DamID-PCR, P=0.016 Kcna4 and P=0.027 Phf21a RNA.

context of epilepsy?’. Of note, PFC from MK-801-treated
TIME A and TIME B animals showed a similar, two- to
threefold increase in TALE“*!Dam-methylated ~Kcna4,
compared with saline-treated TIME A and TIME B animals
(Fig. 4d). These changes were specific, because G"ATC levels at
Phf21 showed only subtle and nonsignificant differences between
treatment groups both in TIME A and TIME B animals (Fig. 4d).
Unsurprisingly, expression both of Phf21 and Kcna4 was
decreased in MK-801-exposed PFC (Fig. 4d), given the robust
intra-chromosomal interactions of these gene sequences with the
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Gadl and Gad2 loci, which, as mentioned above, undergo a
coordinated transcriptional and epigenomic response after
stress3132,

Dam-tagged loopings verified in additional models. Having
shown that neuronal 3D genomes in mouse PFC show long-
lasting adaptations in response to NMDA antagonist drug
treatment, we then tested whether chromosomal contacts dis-
covered by Dam-seq in TALE?*¥Dam PFC could play a role in
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disease models other than MK-801. For example, prolonged
social isolation (SI) in juvenile or young adult mice is associated
with long-lasting changes in cognition, in conjunction with
altered cortical and hippocampal glutamatergic and GABAergic
circuitry>>3*,  To explore isolation-induced 3D genome
adaptations, we applied 3C to hippocampi of adult mice kept
either single- or group-housed from mid-adolescence (P38)
onwards. Indeed, socially deprived mice showed significantly
alterations in long range (Gadl-Phf21) and short range ( — 55kb)
GadI-TSS loopings (Supplementary Fig. 3).

Activity-dependent regulation of Gadl-bound loopings. The
experiments described above were primarily focused on
Dam-based mapping of 3D genome structures in mouse brain
in vivo, in the context of long-lasting alterations in cognition and
behaviour after drug exposure earlier in life. However, previous
work, using conventional 3C assays, has shown that chromosomal
contacts and loopings, including GadI-bound higher-order
chromatin, could also undergo conformation changes on the scale
of several hours, in the context of sudden shifts in synaptic
activity'>*>. To explore whether Dam-based chromosomal loop
mapping is sensitive to such type of short-term changes in
chromosomal conformations in response to neuronal
depolarization, we transiently transfected primary neuronal
cultures with TALEG®¥Dam plasmid. Indeed, GT®ATC levels
were significantly increased in sequences 55 kb upstream of Gadl
in depolarized (KCL-treated) neuronal cultures transfected with
TALE®*!Dam plasmid (Supplementary Fig. 5), a finding that is
in good agreement with the previously reported activity-
dependent regulation of Gadl-bound chromosomal con-
formations that originate from sequences 55kb upstream of
Gadl (Gad1-TSS( —52kb) Loop jpy ref 19).

Discussion

Here we introduce ‘NeuroDam’, a Dam enzyme-based technique
to tag neuronal genomes in brain in longitudinal context, to link
past chromatin status and present behaviours in the same
animals. We expect that such type of approach will provide an
important complement to the cross-sectional design characteristic
of virtually all conventional neurogenomic assays available to
date. Thus, NeuroDam will be a useful tool to model epigenetic
mechanisms in brain disorders causally linked to risk factors
operating earlier in life and leading to clinical symptoms that
manifest at later points in time. For example, schizophrenia, a
major psychiatric disorder with symptom onset (including altered
cognition) typically in early adulthood, is considered of
neurodevelopmental origin with alterations in NMDA glutamate
receptor signalling ne%atively impacting cortical inhibitory and
excitatory circuitry>®~%°, Therefore, we used NeuroDam to model
schizophrenia pathophysiology in longitudinal context. We
conducted a retrospective study on neuronal 3D genomes in
mice that were affected by chronic changes in cognition and
behaviour after a brief period of disrupted NMDA receptor
signalling at juvenile or young adult age, 4 months before brain
harvest (‘TIME B’; Fig. 2). Although a comprehensive assessment
of the molecular and behavioural changes after pharmacological
NMDA receptor blockade was beyond the scope of our study, the
NeuroDam findings presented here suggest that alterations in
spatial genome architectures at the site of key genes implicated in
the cortical dysfunction of schizophrenia, including Gadl and
Gad2 GABA synthesis genes, could occur early in the disease
process (Fig. 4c,d). This ﬁndinég is consistent with indirect
evidence from clinical studies®’, emphasizing the potential
importance of the NeuroDam approach for preclinical models
of schizophrenia and related disease. Furthermore, preclinical

models of depression and posttraumatic stress disorder, in
particular those that explore the genomic basis of inter-
individual differences in resilience or vulnerability in the
context of past exposures*2, are also likely to be
fundamentally enriched by the retrospective genomics toolbox
discussed here. Based on the findings presented here, 3D genome
alterations in cortical neurons show disease-specific patterns,
with a subset of chromosomal contacts, including the 58 Mb
Gadl-Myo3a/Gad2 long range and the Gadl(—55kb) shorter
range loop showing similar changes in two very different
exposures (subchronic MK-801 versus SI). However, other types
of interactions, including the 13Mb Gadl-Phf21a loop, were
sensitive to SI but not NMDA antagonist treatment. Therefore, it
is likely that multiple, only partially interdependent regulatory
networks regulate the neuronal 3D genome in locus- or sequence-
specific manner.

The Dam-based tagging of chromosomal contacts in vivo, as
shown here, will be a valuable complement to conventional
restriction-ligation-based assays and microscopy-based appro-
aches*® to study the regulation of the 3D genome in the
brain>#*, Furthermore, as the overwhelming majority of 3D
genome contacts are intra-chromosomal, particularly in the
larger chromosomes (incl. chr. 2 harbouring the Gad1 locus)??, it
remains to be determined whether NeuroDam will compre-
hensively inform about the 3D organization of smaller
chromosomes, which tend to have a larger proportion of
trans-chromosomal contacts. Moreover, Dam-based epigeno-
mics in the living brain will not be confined to the study of
chromosomal loopings and contacts. In non-neuronal cell
cultures, Dam-based epigenomics was used to study the
interactions of nuclear lamina proteins*, distribution of linker
histone  subtypes®, ~chromatin-remodelling complex and
transcription factor occupancies?’. As an additional benefit,
transgenes encoding Dam fusion proteins can easily be
engineered to limit expression to a specific cell type and/or
specific period in development, in context of Cre drivers and viral
vectors. This is important given that many areas of the genome
are epigenetically regulated in a manner specific for cell type and
developmental stage. In this context, Dam-based neurogenomics
will provide an important alternative to fluorescence-activated
sorting of immunotagged nuclei*®*° or chromatin assays that rely
on histone-fluorescent conjugates*>*%, or chimeric nuclear
lamina proteins®’, to sort and enrich for specific cell (nuclei)
types.

Of particular interest for in vivo studies in postmitotic cells is
the apparent stability of the artificial G™ATC mark, which
according to our findings is readily detectable even at 4 months
and longer after Dam expression (Figs 3e and 4b-d). Nonetheless,
the longitudinal persistence of the Dam signal in neurons will
require additional investigations. For example, regulated DNA
strand breaks and DNA repair mechanisms, which could
potentially ‘wash out’ the G™ATC tag, affect neuronal genomes
non-uniformly and in highly sequence-specific manner>">2, The
absence of the G™ATC tag in brain DNA not exposed to Dam
(Figs 3b and 4b) could reflect the absence of adenine methylation
machineries directed towards G™ATC tetramers in vertebrate
genomes, limiting any residual levels of adenine methylation to
sequence context other than non-G™ATC!”. Furthermore, Dam-
based retrospective neurogenomics may even be applicable to the
invertebrate nervous system, given that adenine methylation
activity in invertebrates is directed almost exclusively towards
non-GATC  sequences® conveying potentially heritable
epigenetic information important for early development®3>%,

In summary, NeuroDam, as the retrospective genomics
approach presented here, has the potential to illuminate the
molecular bridges that link behavioural alterations in the present

| 7:12743 | DOI: 10.1038/ncomms12743 | www.nature.com/naturecommunications 7


http://www.nature.com/naturecommunications

ARTICLE

to neuronal epigenome status from a distant past. Such type of
approach is expected to provide a valuable alternative to
conventional, cross-sectional studies that require parallel studies
of multiple cohorts each harvested at a specific timepoint relative
to the exposure period.

Methods

Animals. All animal work was approved by the Institutional Animal Care and Use
Committee of the participating institutions (Icahn School of Medicine at Mount
Sinai and University of Haifa).

MK-801 treatment. P28 and P90 mice housed at the Icahn School of Medicine
at Mount Sinai maintained in transparent cages on a standard 12:12 h light:dark
cycle with ad libitum access to food and water were used in the study. P28 C57BL/6
mice received an initial intraperitoneal (i.p.) injection of 1.0 mg drug per kg body
weight MK-801 followed by 3 weeks of a 0.2 mg MK-801 per kg body weight.
Controls included saline-treated mice. All animals received saline or MK-801
injection 5 days per week. P90 C57BL/6 mice received i.p. injections of 0.2 mg drug
per kg body weight saline or MK-801 for 3 weeks. Both male and female mice were
used for the experiments (M:F ratio ~10:2 for P28 and 10:4 for P90). Male and
female mice were group housed with littermates (N=3-5 per group).

Adolescent SI procedure. An independent cohort of mice, not associated with the
Dam and MK-801 studies described above, was used to study the effects of SI stress.
The SI procedure was performed as previously described™. Briefly, group-housed
C57BL/6 mice were randomly assigned to group housing (GH) or SI experimental
conditions on P38. Mice in the GH condition were kept in the same cage, whereas
mice in the SI condition were moved to individual cages and kept in isolation for
21 days. Re-grouping in the GH condition was avoided, to minimize intruder stress
in GH mice™. Likewise, experimenter interaction with mice from both groups was
kept to a minimum (that is, cages were changed by the experimenter once a week
and the experimenter was the only person in contact with the mice in both groups).
All animals in the study were C57Bl/6 mice and maintained in transparent cages on
a standard 12:12 h light:dark cycle in the same room with ad libitum access to food
and water. Mice were killed on P60 and the hippocampus was dissected out
bilaterally and kept at — 80 °C until further analysis by chromosome conformation
capture and RNA work.

Viral injection. HSV TALEG®/Dam. A TALE targeted to the Gadl TSS (5'-TAT
TGCCAAGAGAG-3, chr2:7039932-70399346, mm9) was fused to Dam'®%. The
Dam cDNA included a V5 epitope sequence (5'-GKPIPNPLLGLDST-3')°, The
Gadl-TALE-Dam was packaged into a short-term herpes simplex virus 1

with an estimated 8 day expression peaking from day 3-5 post injection driven by
the IE 4/5 promoter and co-expressed with mCherry (or GFP) driven by the
cytomegalovirus promoter with 4 x 10® transducing units per ml'7. HSV Mef2c-
Dam was generated by fusing full-length mouse Mef2c cDNA to Dam, followed by
virus packaging and preparation as described above.

Animals received 2 pl of the HSV TALE®#!Dam (or HSV Mef2c-Dam) virus
over a period of 8 min using a syringe pump. Adult mice were anaesthetized using a
ketamine/xylazine (100 and 15 mgkg ~ !, i.p.; Sigma-Aldrich, St. Louis, Missouri)
mixture in PBS. A rodent stereotaxic rig mounted with a micro pump (Stoelting)
and Hamilton syringe was used to bilaterally inject viral vectors into the PFC
(1 pl per hemisphere). Coordinates for injection were as follows: + 1.5 mm
anterior/posterior, + 0.5 mm medial/lateral and 1.5mm dorsal/ventral. Virus was
injected per hemisphere at 0.25 pl min ~ ! and four additional minutes were allowed
before syringe removal. Control animals received 2 pl of HSV-Mef2c-Dam virus
using the same conditions as HSV- TALES*Dam injections.

Bilateral PFC injections (same coordinates as used for behaviour and molecular
studies) in adult C57Bl/6 wild-type mice were made with HSV-Gad1-GFP and the
mice were perfused 48 h post injection (N =4 animals). Brains were sectioned
40 pm and screened for fluorescence pattern in serial sections starting. Of note,
from four animals subjected to bilateral injections, eight of eight injections
extended along the rostro-caudal axis very similar to the example provided in the
new (Fig. 1c).

Behaviour. All behavioural experiments were carried out in the light at the onset
of the animals’ dark cycle by two experimenters not blinded to animal group
condition.

Eight-arm radial maze. The maze consisted of eight arms (7.5 x 35cm, 17.5cm
high walls) assembled radially around a circular starting platform. Mice were
placed onto the starting platform and were free to enter the arms. Mice were tested
until all eight arms were visited once. Each repeat entry in arm was counted as an
error. Mice were trained on days 1 and 2, and tested on day 3.

Open field. The open-field chamber consisted of a white Plexiglas box
(40 x 40 cm, 30 cm high), illuminated with bright white light (350 lux). Mice were
placed individually into the box for 20 min. Total activity counts, time spent in an
imaginary centre square (15 x 15cm) of the open field and stereotypic rearing
activity counts were recorded using Fusion 5.0 Superflex system.

8

Immunohistochemistry and imaging. Mice were anaesthetized with a terminal
i.p. injection of a ketamine/xylazine mixture (IP: 200 and 30 mgkg ~ 1, respectively)
48 h after HSV injection. Intracardial perfusion was performed with 100 ml of 10%
sucrose followed by 200 ml of 4% paraformaldehyde in PBS. Brains were removed
and placed in 4% paraformaldehyde overnight at 4 °C, followed by incubation

in 30% sucrose until isotonic. Brains were cut on a freezing microtome (Leica
SM2010 R) into coronal sections (60 tm) and permeabilized and blocked with 0.1%
Triton X-100 and 10% goat serum (Southern Biotech), respectively. Sections were
incubated with NeuN-488 (1:500, EMD Millipore, ABN78A4) for 2 h, followed by a
wash with PBS. Mounting was done using 4,6-diamidino-2-phenylindole Fluor-
omount-G (SouthernBiotech, 0100-20). Images were taken with a Carl Zeiss
CLSM780 microscope and processed using Image] (NIH).

DNA/RNA extraction from PFC. The PFC injection site harvested for the
following assays: DamID-PCR and RNA expression from the same tissue samples,
or DamID-seq, or conventional chromosome conformation capture (3C). DNA
was isolated for DamID-seq and DamID-PCR. Tissue was homogenized in 1 LI of
1 x lysis buffer (10 mmol 1~ ! Tris hydrogen chloride pH 8.0/10 mmoll ~ ! sodium
chloride/0.2% IPEGAL CA-630 (Sigma-Aldrich)), 5 mg proteinase K (Invitrogen)
was added for 30 min at 65 °C, an equal volume of phenol:chloroform (pH 7.5) was
added and the aqueous layer was taken, DNA was precipitated using 0.1 volume
pH 5.2 sodium acetate and 2.5 volume 100% ice-cold ethanol overnight at —20°C,
DNA was washed with 70% ethanol and RNaseA (Invitrogen) treated at 37 °C for
30 min. RNA was isolated for messenger RNA expression. Tissue was homogenized
in 1 ml TRIzol (Invitrogen), 200 pl chloroform was added and the aqueous layer
was taken, and 500 pl of isopropanol was added to precipitate RNA overnight at
—20°C.

Dam-seq and DamID-PCR. DamID-seq libraries were prepared using Dpnl. Ten
micrograms of DNA was cut at 37 °C overnight using 10 units Dpnl (New England
Biolabs, Boston, Massachusetts). AdR adapters were exposed to boiling water and
allowing the adapters to pair as the water slowly came to room temperature.
Adapters (40 nmol) were ligated to Dpnl-cut DNA at 16 °C for 2h using 5 units
T4 DNA ligase (Invitrogen). Non-Dpnl-restricted DNA was cut with DpnII
(New England Biolabs) for 1h at 37 °C. Adapter-ligated DpnlI-cut DNA was
amplified using PCR primers. DamID-PCR libraries were created using DpnlIL
Five micrograms of DNA was cut at 37 °C overnight using 5 units of DpnII
(New England Biolabs). Primers were designed across DpnlI restriction sites and
DNA amplified by PCR.

Libraries were 100 bp end sequenced on the Illumina HiSeq 2000. Quality was
assessed using FASTQ and had an average quality score of 34. Reads were sorted
based on the Gadl Dpnll sequencing primer and trimmed by the primer and
adapter length of 42 bp. Single end reads were aligned to mm9 using Burrows-
Wheeler Aligner (BWA) and duplicates removed using SAMTOOLS. Chromosome
2 data were analysed in 50 kb sliding windows using a negative binomial (gamma
Poisson) distribution. To normalize for within-group variability, samples were
modelled by a dispersion parameter. Genes of similar expression levels were
assumed to have similar dispersion and dispersion was estimated using maximum
likelihood for separate loci and smooth curve was fit. Gene-wise dispersions were
shrunk towards values predicated by the smooth curve using empirical Bayes®’. In
addition, sequences considered by the ENCODE and modENCODE consortia, via
manual curation and automated heuristics, as prone to artefact signal in next-gen
sequencing (ChIP sequencing, MNase sequencing, DNase sequencing and
formaldehyde-assisted isolation of regulatory elements (FAIRE) sequencing)
assays?> were removed from analyses.

To compare Time A and Time B Dam-seq adenine methylation profiles, data
were normalized using the negative binomial distribution. Loci with normalized
read counts >10 (Supplementary Data 1) were used in Pearson’s hierarchical
clustering by genomic loci and sample using GenePattern (www.broadinstitute.org)
pairwise average-linkage with mean-based row and column centring®®.

DamID-PCR. Samples were amplified using 1 x GoTaq Green master mix
(Promega). PCR cycling conditions were 95 °C for 5 min, 40 cycles of 95 °C for 30,
60 °C for 30 s and 72 °C for 30, one cycle of 95 °C for 30s, 60 °C for 30 s and 72 °C
for 8 min and a final hold at 4 °C. Signal intensity was measured via Image] or
SYBR green-based quantitative PCR. Control PCR reactions, to ensure complete
digestion at GATC tetramers, were designed with primers around DpnlI sites at the
transcription start site of Cxxc5, a transcription factor on chromosome 18 with no
Gadl interactions.

All relevant data are available from the authors.

Chromosome conformation capture. Rostro-medial cortex was homogenized and
cross-linked for 10 min at 25°C in 1% formaldehyde, 1 x protease inhibitor
(Sigma) and 2 ml lysis buffer (10 mmoll~! Tris hydrogen chloride pH 8.0/

10 mmoll ! sodium chloride/0.2% IPEGAL CA-630 (Sigma Aldrich)). A final
concentration of 0.125 mol1~ ! glycine was added for 10 min to stop cross-linking.
The homogenate was incubated for another 25 min at 4 °C. Cells were lysed by
pipetting> 50 times and spun at 5,000 r.p.m. Supernatant was removed and the
pellet was washed twice with 1 x New England Buffer 4 (NEB4) (New England
Biolabs). Samples were resuspended in 200 pl of 1 x NEB4 and divided into four
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50 pl aliquots. An additional 312 pl of 1 x NEB4 and 38 pl of 1% SDS were added
to each aliquot and the samples were incubated at 65 °C for 10 min. To quench the
SDS, 10% of Triton X-100 was added to each sample and the samples were digested
with HindIII-HF (NEB) at 37 °C overnight with vigorous shaking. HindIII-HF was
inactivated by the addition 86 ul of 10% SDS incubated for 30 min at 65 °C.
Ligation mixture (7.61 ml) was added to each sample. The ligation mixture
consisted of 745 pl of 10% Triton X-100, 745 ul of 10 x ligation buffer (1 M Tris
HCI pH 7.5, 1M MgCl,, 1 M dithiothreitol (Bio-Rad)), 80 ul of 10 mgml’1 BSA
(NEB), 80 pul of 100mM ATP (Sigma) and 5,960 ul of autoclaved water. Fifty
microlitres of T4 DNA ligase (1 U pl~1, Invitrogen) was added to three aliquots
and one sample was used as a no ligase control. Ligation proceeded for 5h at 16 °C
and samples were reverse cross-linked at 65 °C overnight with 50 pl of 10 mgml ~ !
of proteinase K (Sigma). For improved ligated DNA recovery, another 50 pl of
proteinase K was added and incubated at 65 °C for 2h. DNA was extracted with
phenol (pH 8.0, Fisher) and phenol-chloroform (1:1) (pH 8, Fisher). DNA was
precipitated using 1/10 the volume of 3M sodium acetate (pH 5.4) and 2.5 the
volume of ice-cold ethanol overnight. The samples were centrifuged at 8,000 r.p.m.
for 30 min and washed with 70% ethanol. The final DNA pellet was dissolved in
1 x TE buffer (pH 8.0). Phenol and phenol-chloroform extraction and ethanol
precipitation was repeated. The final 3C library was washed five times with 70%
ethanol. Ligase and no ligase reactions were dissolved in 100 and 33 pl of TE buffer
(pH 8.0) respectively>®. Ligase and no ligases libraries alone were run on a 2%
agarose gel to visualize ligation efficiency. Samples ran at a higher molecular weight
after ligation, indicated by an upward shift on the gels®®¢!.

Physical interactions between non-contiguous sequences were quantified
using PCR. Samples were PCR amplified using 1 x GoTaq Green master mix
(Promega). PCR cycling conditions were 95 °C for 5min, 40 cycles of 95 °C for
305, 60 °C for 30s and 72 °C for 30, one cycle of 95°C for 30s, 60 °C for 30s
and 72 °C for 8 min and a final hold at 4 °C. Primers were designed less than
120 bp from a HindIII restriction site. The PCR products were resolved on a 2%
agarose gel and the level of interaction between two primers was measured
semiquantitatively using band intensities normalized with the background
(raw 3C interaction) with ImageJ®2. Library input was adjusted for each library
according the interaction between two neighbouring primers (< 5,000 bp apart)
and two distant primers (<30,000 bp apart): control primer 1 (5-CCTGG
ATCATCAGACAGAACTAAAGCTCTT-3') located at chr13:99113854 and
control primer 2 (5-CTTCAACTGAAAACACACGAACAGGAAGAA-3')
located at chr13:99109553. Specificity of 3C PCR products was confirmed by
sequencing. Furthermore, 3C assays as described above, but with no ligase added,
and water served as negative controls. 3C assays were normalized to a
neighbouring primer (Gadln, Supplementary Table 2).

ChIP with anti-V5 antibody. ChIP analysis was performed using HSV-TALEG*41.
Dam(V5)-injected PFC samples from N =4 mice. Tissue was dounced in 1 ml lysis
buffer (10 mmol1~! Tris hydrogen chloride pH 8.0/10 mmol1~ ! sodium chloride/
0.2% IPEGAL CA-630 (Sigma-Aldrich)) and 1% formaldehyde for 10 min. A final
concentration of 0.125 mol1~! glycine was added for 10 min, to stop cross-linking.
Homogenate was washed in sonication buffer (50 mM Hepes pH 7.9, 140 mM
NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate and 0.1% SDS) twice.
Samples were sonicated on high 30s on and 30's off for 30 min. Pierce Protein A/G
Magnetic Beads (Thermo-Scientific Fisher, 88802) were washed in sonication
buffer. Samples were precleared in 30 pl A/G beads for 1h at 4 °C. Ten per cent of
the sample was collected after preclearing for use as input. Primary anti-V5
(Thermo-Scientific Fisher, R96025) was added overnight at 4°C. A/G beads were
added samples for 3h at 4 °C. Samples were washed at 4 °C twice with sonication
buffer for 5 min, twice with wash buffer A (50 mM Hepes pH 7.9, 140 mM NaCl,
1 mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate, 0.1% SDS and 500 mM
NaCl) for 5min, twice with wash buffer B (20mM Tris pH 8, 1 mM EDTA,

250 mM LiCl, 0.5% NP-40 and 0.5% Na-deoxycholate), twice with 1 x TE buffer
(10mM Tris pH 8.0 and 1 mM EDTA) for 5min and eluted with elution buffer
(50mM Tris pH 8, 1 mM EDTA and 1% SDS) for 5min at 65°C and 10 min at
room temperature. DNA was precipitated from input and ChIP samples using an
overnight 65 °C treatment of 5 M NaCl, followed by a 2 h proteinase K treatment at
65 °C and phenol-chloroform (pH 8) extraction. DNA was precipitated from the
aqueous layer using 1/10 volume sodium acetate (pH 5.2) and 2.5 volume 200
proof ethanol.

mRNA expression. Prefrontal mRNA expression was quantified from cDNA
produced from 1 pg RNA using the ABI High Capacity cDNA kit (Applied Bio-
systems). RNA expression was quantified using Power SYBR green master mix
(Life Technologies) for 40 cycles. Quantitative PCR cycling conditions were one
hold of 95°C for 10 min, 40 cycles of 95°C for 15s and 60 °C for 1 min, and a
denaturation step. Dam, Gadl and Gad2 quantifications were expressed after
normalization to 18S ribosomal RNA.

Primary cultures. Embryonic day 15 (E15) cortical and hipgocampal tissue was
dissected and dispersed for primary cultures. Six wells (9.5 cm*” per well) of primary
cultures were transiently transfected with TALEG*¥/Dam plasmid or mock trans-
fected using NeuroFect (Amsbio) and 1 X 10° cells for each condition were
harvested after 72 h.

Data availability. All relevant data, protocols and reagents will be available from
the authors.
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