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Abstract

Hutchinson-Gilford progeria syndrome is a premature aging disorder associated with the 

expression of Δ50 lamin A (Δ50LA), a mutant form of the nuclear structural protein lamin A 

(LA). Δ50LA is missing 50 amino acids from the tail domain and retains a C-terminal farnesyl 

group that is cleaved from the wild-type LA. Many of the cellular pathologies of HGPS are 

thought to be a consequence of protein-membrane association mediated by the retained farnesyl 

group. To better characterize the protein-membrane interface, we quantified binding of purified 

recombinant Δ50LA tail domain (Δ50LA-TD) to tethered bilayer membranes composed of 

phosphatidylserine and phosphocholine using surface plasmon resonance. Farnesylated Δ50LATD 

binds to the membrane interface only in the presence of Ca2+ or Mg2+ at physiological ionic 

strength. At extremely low ionic strength, both the farnesylated and non-farnesylated forms of 

Δ50LA-TD bind to the membrane surface in amounts that exceed those expected for a densely 

packed protein monolayer. Interestingly, the wild-type LA-TD with no farnesylation also 

associates with membranes at low ionic strength but forms only a single layer. We suggest that 

electrostatic interactions are mediated by charge clusters with a net positive charge that we 

calculate on the surface of the LA-TDs. These studies suggest that the accumulation of Δ50LA at 

the inner nuclear membrane observed in cells is due to a combination of aggregation and 

membrane association rather than simple membrane binding; electrostatics plays an important role 

in mediating this association.
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1. Introduction

Many human diseases are caused by mutations that alter protein structure and thereby 

function. In most cases, altered protein structure reduces or eliminates function leading to 

disease pathology. However, altered protein structures can also lead to interfacial 

mislocalization, aggregation and other architectural changes. Hutchison Gilford Progeria 

Syndrome (HGPS) is an accelerated aging disorder caused by a single base pair mutation 

(DNA C1824T causes G608G) in LMNA, the gene coding for lamin A.[1] The DNA 

mutation activates a cryptic splice site, and the resulting mutant protein, Δ50 lamin A 

(Δ50LA), lacks 50 amino acids in its tail domain and as a consequence retains the branched 

lipid farnesyl group which is added to the C-terminus during posttranslational processing.

HGPS cells show a thicker, stiffer nucleoskeleton with reduced filament exchange.[2, 3] The 

increased association of Δ50LA with the nuclear membrane also affects processes within the 

nucleus such as DNA repair and transcription[4] as well as transport through nuclear pores.

[5] The hyper-association of Δ50LA and other farnesylated lamin mutants with the nuclear 

membrane is thought to result from the retained lipidation,[6] similar to other farnesylated 

proteins such as Ras and Rho proteins, which show preferential localization to the plasma 

membrane.[7, 8] However, the farnesyl group alone provides only weak protein-membrane 

association,[9] and other factors such as charged amino acid clusters on the protein’s 

membranebinding interface, a second lipid group or altered binding to transmembrane 

proteins are likely required for stable protein-membrane association.[10]

The primary accepted hypothesis is that the farnesyl lipidation of the Δ50LA is responsible 

for the pathology of HGPS, including using farnesyl transferase inhibitors as treatment 

options for patients.[11, 12] Here, we suggest that the interaction of LA with the membrane 

and the hyperinteraction of mutant Δ50LA with the membrane may also be enhanced by 

electrostatic interactions and aggregation. To this end, we quantify binding of the C-terminal 

tail domain (TD) of recombinant LA and farnesylated LA variants to synthetic membrane 

models, sparsely-tethered bilayer lipid membranes (stBLMs). The TDs are spatially distinct 

from the adjacent rod domains, which are responsible for filament assembly.[13, 14] We 

find that the Δ50LA-TD forms aggregates or complexes at the membrane interface, both in 

the unfarnesylated and farnesylated forms, whereas the mature wild type LA-TD (mwtLA-

TD) does not exceed a monolayer of protein at the membrane interface. Thus, the studies of 

a well-defined synthetic model system reported here suggests a mechanism by which 

Δ50LA may trigger the formation of a thicker, [3] stiffer [2] nucleoskeleton with altered 

microdomain structures [2] that accumulate and resist proteolysis.[15]
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2. Experimental section

Protein expression, purification and modification

Δ50LA-TD and mwtLA-TD were expressed and purified from recombinant plasmids as 

described previously.[16] In brief, the TD portion (from R386 to the C-terminus) was co-

expressed with GST in BL21 Codon-Plus cells (Agilent) at 37°C. Purification was 

performed with glutathione magnetic beads (Pierce) and the protein was cleaved 

enzymatically with proTEV cleavage enzyme (Promega) at 30°C for 5–7 hrs. The cleaved 

protein was further purified by exposure to agarose glutathione beads (Pierce) to remove 

excess GST. Purified mwtLA-TD was dialyzed (Slide-A-Lyzer Dialysis Cassettes) into 

diH2O or 50 mM HEPES, 0.5 mM EDTA, pH 7.0.

Δ50LA-TD was modified in vitro to produce fn-Δ50LA-TD.[17] Purified Δ50LA-TD was 

dialyzed into 50 mM HEPES, pH 7.2, 2 mM MgCl2, 50 mM NaCl and 2 mM DTT, 0.2% 

octyl-β-D-glucoside, 100 nM farnesyltransferase (Abcam) and 100 µM farnesyl 

pyrophosphate (MP Biomedicals). The mixture was incubated for >6 hrs at 37°C which 

produced 50% (+/− 10%) farnesylated protein, fn-Δ50LA-TD. Purified proteins were 

verified for size and farnesylation using liquid chromatography electron spray ionization 

mass spectroscopy,[16] for purity using 14% SDS-PAGE and for concentration using a 

Bradford assay (Coomassie Plus, Pierce). The modified protein was dialyzed again into 

buffer (diH2O, 50 mM NaCl or 50 mM HEPES, 0.5 mM EDTA, pH 7.0).

Dynamic light scattering

Approximate sizes of protein aggregates were determined using dynamic light scattering 

(DLS). Purified proteins were concentrated to 1 µM in 100 µL volumes and measured using 

a Malvern Zetasizer NanoZS in the indicated buffer solutions. Characteristic DLS peaks of d 
< 10 nm were regularly observed under high-salt conditions. Resolution of protein size by 

DLS under 10 nm is limited. As such, monomer sizes (diameter: ~3 nm for Δ50LA-TD and 

~5 nm for mwt LA-TD) were estimated from molecular dynamics simulations published 

previously ([17] and Figure 2) and used to approximate the expected surface density on the 

membrane interface.

Quantification of protein surface charge from simulations

From previously determined replica exchange molecular dynamics simulations of mwtLA-

TD and Δ50LA-TD [16], we utilized the three-dimensional structures and labeled positive 

and negative residues. Since there are large regions of intrinsic disorder, we examined the 

four most representative structures of each protein. Solvent accessible surface area (SASA) 

values of each residue were calculated in Visual Molecular Dynamics (VMD) [18] using the 

measure SASA module using a probe radius of 1.4 Å larger than the van der Waals radius of 

each atom within the residue. The SASA was calculated for all the residues in the four 

representative structures of each protein and the results are divided into three categories 

according to the net charge of the residue (positive, negative and neutral). The distributions 

of each type of charged residues as functions of SASA were therefore statistically computed.

Kalinowski et al. Page 3

Biophys Chem. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Preparation of sparsely tethered bilayer lipid membranes (stBLMs)

Acid-washed glass microscope slides (Fisher Scientific) were sputtered (ATC Orion; AJA 

International) with a layer of chromium (typical thickness: 1 nm) followed by a ~ 45 nm 

layer of gold. Sputter conditions were optimized to yield atomically flat gold surfaces 

(typical large-scale height variations < 3%).[19] Out of the magnetron recipient, the gold-

covered slides were immediately transferred into a 3:7 (mol:mol) 0.2 mM (total 

concentration) ethanolic solution of Z 20-(Z octadec-9-enyloxy)-3,6,9,12,15,18,22-

heptaoxatetracont-31-ene-1-thiol (HC18; a kind gift from Dr. D. J. Vanderah, Institute for 

Bioscience and Biotechnology Research, Rockville, MD) and β-mercaptoethanol (βME) to 

form self-assembled monolayers (SAMs) while incubating overnight. After rinsing and 

drying in a stream of nitrogen, the SAM-covered slides were immersed into ethanolic 

solutions containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-

glycero-3-phospho-L-serine (DOPS), and synthetic cholesterol (Avanti Polar Lipids). 

Finally, aqueous buffer was flushed rapidly across the substrate,[20] which led to the 

precipitation of a single bilayer to precipitate on the SAM-covered surface. The resulting 

stBLMs consist of a planar lipid bilayer tethered to the surface through a functionalized 

lipopolymer, where the thiolated oligo(ethyleneoxide) tethers are interspersed with βME to 

create a sub-membrane hydration layer. The molecular structure, functionality and in-plane 

dynamics of such stBLMs have been established with electrochemical impedance 

spectroscopy, neutron scattering, fluorescence microscopy and fluorescence correlation 

spectroscopy.[21–23]

Surface Plasmon Resonance spectroscopy

Surface plasmon resonance (SPR) was used to quantify the membrane association of LA-TD 

on stBLMs by using the gold layer as a medium to support electronic surface plasmons. In a 

SPR spectrometer of local design,[24] purified protein was injected into the buffer adjacent 

to the bilayer and the change of the minimum angle of the optical reflection from the surface 

due to plasmon formation was followed over time. The equilibrium values of the SPR 

signals (time t → ∞) as a function of protein concentration were determined and fitted to a 

Langmuir isotherm,[24] yielding the apparent dissociation constant, KD, of the ligand 

interaction with the surface modeled as a monomeric association. Assuming the optical 

indices to be nprotein = 1.41 and nbuffer = 1.33, and dn/dc = 0.187 mL/g,[25] addition of a 1 

nm layer of protein corresponds to an area density of 5.8 ng/cm2.

3. Results

mwtLA-TDs form a single layer on stBLM at low ionic strength

We previously showed the membrane association of the farnesylated Δ50LA-TD, which was 

expected given the covalently bound lipid group.[16] Here, we examine the membrane 

association of mwtLA-TD, which lacks farnesylation in its mature form within the 

nucleoskeleton of the cell. Protein was titrated onto a DOPC:DOPS (95:5) stBLM in 50 mM 

HEPES at pH 7.2, which we refer to as ‘low ionic strength’ in this paper (Figure 1). Fitting 

the data to a Langmuir model yields an equilibrium dissociation constant of KD ~ 2 µM. 

Based on an estimate of the physical dimension of the TD from molecular dynamics (MD) 

simulations,[16] we calculate the mass density of a single layer of protein on the membrane 
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surface to be ~220 ng/cm2, which is roughly the coverage of protein on the surface (Figure 

1, gray bar). 50 mM NaCl is sufficient to screen these interactions, and no protein binding is 

observed under these conditions (data not shown).

Protein electrostatics from simulation

Utilizing simulated protein structures [16] given by molecular dynamics simulations from 

our previous studies, we found the distribution of the charged residues on the surface of the 

three-dimensional TD structures as shown in Figure 2. For both mwtLA-TD and Δ50LA-

TD, we observe a large cluster of net positive surface charge (Figure 2, SASA in red) as well 

as large clusters of both negative and positive residues. We quantitatively determine the 

distribution of the charged residues in the complex 3D structure by computing the SASA of 

each residue to understand how the surface area of the TD molecule is occupied by neutral, 

negative and positive charges (Figure 2). Using the Gaussian fit, we obtained the mean value 

and variance of the SASA of each type of residues. We found that for mwtLA-TD, the 

positive residues (326 ± 29 Å2) have larger SASA than negative (251 ± 21 Å2) and neutral 

(220 ± 41 Å2) residues. This is similar to Δ50LA-TD for positive (317 ± 27 Å2), negative 

(248 ± 19 Å2) and neutral (227 ± 40 Å2) residues. For comparison, we analyze bovine serum 

albumin (BSA) and found no such clusters of net charge distribution (Supplemental Figure 

1). BSA as the positive (266±50 Å2), negative (250±20 Å2) and neutral residues (231±40 

Å2) have the similar level of SASA. Such analysis, combined with our observation of the 

charge distributions on the surface of 3D structures, suggests that TD surface are more 

covered by cationic clusters, which agrees with our hypothesis that protein-membrane 

association is likely driven by electrostatic interactions between the anionic membrane with 

cationic clusters on the TD.

Unfarnesylated Δ50LA-TD binds to stBLMs at low ionic strength and exceeds a monolayer

We examined membrane association of the unfarnesylated Δ50LA-TD under the same 

conditions as the experiments discussed above. With the lower molecular weight and smaller 

size [17] of Δ50LA-TD, we estimate that monolayer coverage of the protein should amount 

to a mass density at the interface of ~140 ng/cm2, indicated by a gray bar in Figure 3. 

However, the experimental data clearly show that the amount of adsorbed protein greatly 

exceeds the range of mass densities consistent with the formation of a single protein layer. A 

Langmuir fit yields an apparent dissociation constant KD ~7 µM (Figure 3); we note that the 

use of a Langmuir model may be inappropriate for a combination of binding and 

aggregation. Therefore, while both the mwtLA-TD and Δ50LA-TD appear to have 

electrostatic association with stBLMs and show similar affinities in low ionic strength 

buffer, their overall interaction with the membrane is quite different and may be related to 

aggregation of Δ50LA-TD at the interface.

Differences in aggregation of fn-Δ50LA-TD with different divalent cations

To investigate the propensity of the protein for aggregation, the particle sizes of farnesylated 

fn-Δ50LA-TD in the presence of divalent cations were determined by DLS. We showed 

previously that membrane association of fn-Δ50LA-TD requires calcium, and calcium 

induces a conformational change in the protein.[17] Here, we compared fn-Δ50LA-TD 

aggregation in 50 mM NaCl for a variety of divalent cations present in the nucleus including 
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Ca2+, Mg2+, Mn2+ and Zn2+ (Figure 4). Different divalent cations induced two distinct 

classes of size distributions (Figure 4). With Ca2+ and Mg2+, fn-Δ50LA-TD was stable as a 

homogeneous distribution of small particles (size <10 nm), consistent with monomeric 

protein. Conversely, fn-Δ50LA-TD aggregated into µm-sized particles with Mn2+ and Zn2+ 

(Figure 4).

fn-Δ50LA-TD binds stBLM in the presence of Mg2+ and forms interfacial aggregates

To test if membrane binding depends specifically on Ca2+ or is also mediated by other 

divalent cations, we examined if Mg2+, which does not induce protein aggregation in 

solution (Figure 4). Indeed, SPR showed that fn-Δ50LA-TD binds to stBLMs in the 

presence of Mg2+ (Figure 5A) with a similar affinity as in the presence of Ca2+.[17]. 

However, similar to the unfarnesylated form (Figure 1), the amount of adsorbed protein 

exceeds the surface mass density expected for a single protein layer. Rinsing the fully 

formed protein surface aggregates with 50 mM NaCl and 2 mM MgCl2 (solution buffer) 

removes minimal protein (Figure 5B, 2nd and 4th rinse), which suggests that proteins are 

stably associated. However, incubation of the protein-associated membrane with 10 mM 

EDTA removes protein, showing that protein association is Mg2+-dependent (Figure 5B, 

rinse steps labeled “EDTA”).

Membrane association induces aggregation of fn-Δ50LA-TD

Before membrane exposure fn-Δ50LA-TD is a monomer in Mg2+ or Ca2+ containing buffer. 

After membrane exposure, protein size measured by DLS shows formation of large, µm-size 

aggregates (Figure 6). In contrast, control samples of protein not exposed to the membrane 

but held in solution for an extended time were stable as monomers in solution.

4. Discussion

We demonstrated experimentally and with all-atom MD simulations in previous work that 

Ca2+ induces a conformational change in the tail domains of prelamin A and Δ50 lamin A 

that exposes the farnesyl group to the exterior of the protein.[17] Here, we observed that fn-

Δ50LA-TD is stable in Mg2+ but aggregated in the presence of Mn2+ and Zn2+. The 

significance of fn-Δ50LA-TD aggregation in the presence of Mn2+ and Zn2+ is unknown, 

but both ions are found as cofactors for enzymes inside the nucleus.[26] For the full length 

protein and intermediate filament network, it is possible that Mn2+ and Zn2+ induced 

association may help in nucleoskeletal formation after cell division or provide lamin 

scaffolds for DNA transcription.

As stated in the introduction, the farnesyl group has been hypothesized to be responsible for 

the pathology of HGPS by increasing membrane association through direct binding. We 

suggest that it is unlikely that the addition of the 15-carbon farnesyl group alone can alter 

the localization of the 70 kDa protein substantially and reorganize major parts of the larger 

nucleoskeletal network. fn-Δ50LA-TD binds to a stBLM in the presence of Mg2+ avidly, 

and its surface density at high concentrations far exceeds that expected for a monolayer, 

indicating that the protein forms multiple layers on the membrane. Thus, there appears to be 

a combination of membrane association with aggregation. Table 1 summarizes protein-
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membrane association under a variety of buffer conditions observed in this and previous 

works.[17]

Unfarnesylated Δ50LA-TD and mwtLA-TD associate with the membrane only in low ionic 

strength conditions (50 mM HEPES, pH 7.2 and 0.5 mM EDTA), but no membrane 

association was observed at 50 mM NaCl. We suggest that a net positive surface charge 

(30% more positive than negative) of the three-dimensional structure of both Δ50LA-TD 

and mwtLA-TD mediates interaction with the negative membrane (DOPC:DOPS). Both 

Δ50LA-TD in low ionic strength conditions and fn-Δ50LA-TD in 50 mM NaCl with either 

Ca2+ or Mg2+ exceed a monolayer of protein on the surface. Also, these large clusters of 

both positive and negative charge may lead to aggregation and salt bridging from divalent 

cations observed with Mn2+ and Zn2+. Interestingly, mwtLA-TD does not exceed the surface 

density of a monolayer on the stBLM surface. This surface aggregation difference between 

Δ50LA-TD and mwtLA-TD may be partially responsible for the thickening of the 

nucleoskeleton observed in patients with HGPS. [3] From the simulations, we observe a 

slight increase in net positive charge for mwtLA-TD over Δ50LA-TD; the monolayer versus 

multilayer may be a function of the charge differences or from structural differences 

between the proteins.[16]

We conclude from these observations that there is a delicate balance between protein-protein 

and protein-membrane interactions, as well as a balance between electrostatic interactions 

and hydrophobic interactions, which depends critically on the magnitude of the Debye 

screening length, which is approximately 1.4 nm in 50 mM NaCl. Interestingly, this is 

roughly the length of the farnesyl group, suggesting that the lipidation stays within the 

electrostatic interaction distance between cationic clusters on the protein and the acidic 

membrane surface under binding/unbinding fluctuations such that it may easily re-associate 

with the membrane.

DLS of the protein after membrane exposure indicates that membrane exposure induces 

protein aggregation. Whether the membrane triggers a protein conformational change is 

unclear, but it is apparent that the membrane promotes protein-protein interaction and 

aggregation. The aggregation of the TDs – adsorption beyond a single monolayer and 

membrane-induced protein aggregation – may correlate with the aggregation potential for 

the full length form of the protein, Δ50LA. Inside cells, filaments of fn-Δ50LA thicken the 

nucleoskeleton[3] and can organize into ordered microdomains of filaments at the inner 

nuclear membrane.[2] Our results suggest that the formation of these thick, ordered filament 

networks results as much from aggregation of Δ50LA as from a farnesyl-mediated 

membrane association. Even if unfarnesylated, full length Δ50LA forms tighter in vitro 
reconstituted structures than the mwtLA in vitro,[27] likely from the smaller, more stable 

TD.[16] Furthermore, the membrane-induced aggregation and other patho-physiologic 

aspects of the non-farnesylated form of Δ50LA-TD (as well as of its farnesylated 

counterpart) are consistent with the disease-causing nature of the non-farnesylated form of 

Δ50LA in mice, where expression of nonfarnesylated Δ50LA results in milder cellular and 

organismal phenotypes of HGPS, which were, however, not completely functional.[28]
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Conclusion

In this work, the membrane affinities of LA-TD and its pathogenic mutants provide insight 

in the toxic enhancement of Δ50LA with the inner nuclear membrane. We find that both the 

normal mwtLA and unfarnesylated mutant Δ50LA-TD can associate with charged 

membranes in low ionic strength buffer, but Δ50LA-TD exceeds a monolayer on the 

membrane surface. The farnesylated form of Δ50LA-TD binds the membrane strongly at 

physiological levels of salt in the presence of Ca2+ or Mg2+, but membrane association is 

coupled with aggregation. Zn2+ and Mn2+, both found in the nucleus, cause aggregation of 

fn-Δ50LA-TD in solution.

Supplementary Material
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Highlights

• We measured the protein-membrane binding of lamin tail domains

• Farnesylated lamins bind in the presence of Mg2+ and Ca2+

• Electrostatics also promote protein-membrane binding

• Disease causing lamin mutants both bind membranes and aggregate at the 

interface
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Figure 1. 
mwtLA-TD associates with charged membranes in low ionic strength buffer but does not 

exceed monolayer coverage on the interface. Purified mwtLA-TD in 50 mM HEPES, pH 7.2 

with 0.5 mM EDTA exposed to a stBLM composed of 5% DOPS in DOPC. mwtLA-TD 

does not exceed the mass density expected for a monolayer of protein (~220 ng/cm2, gray 

bar).

Kalinowski et al. Page 11

Biophys Chem. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
mwtLA-TD and Δ50LA-TD have large clusters of surface charge. From previous molecular 

dynamics studies, we examine representative structures of the TD sequences with highest 

probability of appearing. Two sample structures of each protein are shown with charged 

residues highlighted in red (basic, positive) and blue (acidic, negative) and neutral residues 

in black. BSA is shown in Supplemental Figure 1 as a comparison. The solvent accessible 

surface area (SASA) is then calculated from the three dimensional structure. Both tail 

domains show a net positive surface with a high percentage of positive residues with a large 

SASA.
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Figure 3. 
Unfarnesylated Δ50LA-TD associates with charged membranes in low ionic strength buffer 

and exceeds the mass density of a protein monolayer on the membrane interface. Purified 

Δ50LA-TD in 50 mM HEPES, pH 7.2 with 0.5 mM EDTA exposed to a stBLM composed 

of 5% DOPS in DOPC. The mass density expected for a protein monolayer (~140 ng/cm2, 

gray bar) is exceeded at ~2−3 µM Δ50LA-TD.
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Figure 4. 
Aggregation of fn-Δ50LA-TD in buffers with divalent cations. DLS-derived size 

distributions of 1 µM fn-Δ50LA-TD in 50 mM NaCl and 2 mM divalent cations as 

indicated. This result suggests that fn-Δ50LA-TD is a monomer in solution without divalent 

cations or when Ca2+ or Mg2+ are present in the solvent but aggregates in the presence of 

Mn2+ or Zn2+.
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Figure 5. 
fn-Δ50LA-TD exceeds monolayer mass density on membrane surfaces in the presence of 

Mg2+ (A) SPR measurements show membrane association of increasing concentrations of 

fn-Δ50LA-TD in 50 mM NaCl and 2 mM MgCl2 added to an stBLM (30 % DOPS in DOPC 

with 3 % cholesterol). The upper bound of area mass density of a complete monolayer of fn-

Δ50LA-TD protein is estimated to be 139 ng/cm2 (gray bar). At 2.5 µM, we observe nearly 

an order of magnitude higher mass density. (B) fn-Δ50LA-TD dissociates from the 

membrane surface only minimally when rinsing with EDTA-free buffer (50 mM NaCl and 2 

mg MgCl2), but dissociates substantially in the presence of 10 mM EDTA.
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Figure 6. 
fn-Δ50LA-TD is aggregated after membrane exposure. Before exposure of fn-Δ50LA-TD to 

an stBLM, fn-Δ50LA-TD with 2 mM CaCl2, is a monomer in solution, as shown by DLS. 

After exposure, fn-Δ50LA-TD is aggregated.
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Table 1

Summary of protein binding to stBLM in different solution conditions. Protein binding under different buffer 

conditions where + represents binding that does not exceed a monolayer, ++ represents binding that exceeds a 

monolayer and - represents no or weak association.

Solution conditions Δ50LA-TD fn-Δ50LA-TD mwtLA TD

no salt ++ aggregation +

+ 50 mM NaCl − − −

+ 2 mM (CaCl2 or MgCl2) − ++ −
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