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Spin dynamics of counterrotating Kitaev spirals via duality
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Incommensurate spiral order is a common occurrence in frustrated magnetic insulators. Typically, all magnetic
moments rotate uniformly, through the same wavevector. However the honeycomb iridates family Li2IrO3 shows
an incommensurate order where spirals on neighboring sublattices are counterrotating, giving each moment a
different local environment. Theoretically describing its spin dynamics has remained a challenge: The Kitaev
interactions proposed to stabilize this state, which arise from strong spin-orbit effects, induce magnon umklapp
scattering processes in spin-wave theory. Here we propose an approach via a (Klein) duality transformation
into a conventional spiral of a frustrated Heisenberg model, allowing a direct derivation of the dynamical
structure factor. We analyze both Kitaev and Dzyaloshinskii-Moriya based models, both of which can stabilize
counterrotating spirals, but with different spin dynamics, and we propose experimental tests to identify the origin
of counterrotation.
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Introduction. Quantum spin liquid phases [1] have enjoyed
renewed attention in recent years, driven by candidate ma-
terial platforms. Possible experimental settings in magnetic
insulators [2] include the layered kagome systems, the nearly-
metallic organics, as well as iridates including the recently
explored family of honeycomb iridates, (Na/Li)2IrO3 and the
related α-RuCl3, distinguished by their significant spin-orbit
coupling. Here Ir4+ (Ru3+) hosts an effective S=1/2, observed
to order magnetically at low temperature. While Na2IrO3

and α-RuCl3 show collinear zigzag antiferromagnetism [3–
14], the three structural polytypes of the lithium iridate,
α,β,γ -Li2IrO3, all order into an unconventional incommensu-
rate magnetic phase, involving counterrotating spirals [15–19].

Recent experiments on β-Li2IrO3 under high pressures [16]
as well as hydrogenated α-Li2IrO3 [20] under ambient pressure
found no evidence for magnetic long-range order at base
temperatures, raising the interesting possibility of a transition
into a long-sought Kitaev quantum spin liquid. Robustly
identifying the properties of such a phase is experimentally
rather challenging as the defining long-range entanglement
cannot be directly measured in a solid, and the expected
emergent fractionalized excitations are predicted to produce
only broad spectral features [21–26]. A possible route to quan-
tify proximity to spin-liquid physics is through a knowledge
of the appropriate Hamiltonian in the magnetically-ordered
phase, whose properties could in principle be more directly
accessible experimentally. This requires detailed predictions
for characteristic signatures in the spin dynamics for various
Hamiltonians to be able to distinguish between competing
models.

The counterrotating spiral orders in α,β,γ -Li2IrO3 offer a
promising avenue for such an approach. However, theoretically
computing the spin dynamics has proven to be a nontrivial
task. As we show below, the barrier consists of strong magnon
umklapp scattering, associated both with the nonuniform spin
environment of counterrotation as well as with the lack of
any continuous spin rotation symmetry in the Hamiltonian. A
similar issue was recently discussed for β-CaCr2O4 [27,28].
Easy-axis and easy-plane anisotropy, as well as antisymmetric
Dzyaloshinskii-Moriya (DM) exchange, which are expected

to arise from spin-orbit coupling, can preserve a continuous
SO(2) symmetry subgroup; in contrast, the “Kitaev” exchange
of Kitaev’s honeycomb spin liquid [29], proposed to arise in
the honeycomb iridates [30–35], breaks it down to a discrete
subgroup. Such a reduced symmetry in a minimal Hamiltonian
implies a remarkable spin-orbit coupling effect.

In this Rapid Communication we theoretically analyze the
spin dynamics of a minimal 1D model on a zigzag chain with
coplanar xy spiral order with counterrotation on top/bottom
sites as shown in Fig. 1(a). This captures the unifying common
feature of the magnetic structures in all three Li2IrO3 structural
polytypes; the actual structures differ in the value of the spin
rotation angle, the magnitude of the tilt of the rotation plane
away from the xy plane, and the pattern of those tilts between
adjacent chains, and we consider the tilts to be secondary
features left for future work. We describe the spin rotation
along the zigzag chain via a magnetic ordering wave vector
q in units of 2π/a1, where a1 = 5.16 Å is the repeat distance
along the zigzag chain, see Fig. 1(c). In this description [17–19]
q = 0.32 for α and 0.28 for β and γ -Li2IrO3. It is important
to note [36] that while for maximum generality and simplicity
we focus here on the parent 1D model, ultimately we want
properties that are relevant for 3D systems. Hence we are not
interested in the true quantum excitations of an isolated 1D
chain [37], which are usual 1D spinons. Instead, using the
spin-wave method we expose precisely those features which
are common to the 2D and 3D ordered materials. Our goal is to
capture the “semiclassical” quantum fluctuations, appropriate
for the real materials, within a unified transparent setting.

The Hamiltonians we study are constructed as the Klein
duals of the known parent Hamiltonians for conventional
spirals. The Klein duality, a four-sublattice spin transformation
whose site-dependent π rotations connect to the Kitaev
exchange via the multiplication rules of the Klein four group,
was previously used to expose a fluctuation-free point in a
stripy antiferromagnet [31] among other contexts [31,35,38–
43]. Here we find that it transforms a co-rotating spiral in a
frustrated J1-J2 model into a counterrotating spiral in a Kitaev-
based model, with additional J2 xy anisotropy appropriate
for the xy-coplanar spiral mode. We compare this mechanism
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FIG. 1. Counterrotating spiral order of α,β,γ -Li2IrO3 as the
Klein dual of a conventional (co-rotating) spiral. (a): The counter-
rotating spiral on a zigzag chain is the unifying common feature
of the magnetic structures of all three α,β,γ -Li2IrO3 honeycomb
iridates. The bottom sublattice rotates clockwise, while the top
rotates counterclockwise. (b): The co-rotating spiral, of a con-
ventional Heisenberg J1-J2 model, transforms by Klein duality
into a counterrotating spiral with a Kitaev-J1-J2 model and xy

anisotropy. (c): Competing models to stabilize counterrotation: Kitaev
exchange (x,y) or second-neighbor Dzyaloshinskii-Moriya (DM)
exchange (out/in for top/bottom bonds). The Klein transformation
μ ∈ {1,x,y,z} acts as identity 1 or by π rotation around a spin’s
x,y,z axis. This exact duality for the counterrotating spiral shows
its stability and circumvents the magnetic umklapp of its Kitaev
exchange for computing its dynamical structure factor.

against a model of antisymmetric DM couplings, here required
to be purely intrasublattice and with a sublattice-dependent
orientation [44]. We compute the dynamical spin structure
factor for various models of both classes, through a rotating
frame exposed by the duality transformation. The dynamics
in the Kitaev-based model are found to be quite unusual
but can be interpreted via the duality to the J1-J2 model’s
well-understood dynamics.

The general Hamiltonian consists of the following:
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where 〈ij 〉 and 〈〈ij 〉〉 refer to first and second neighbor bonds,
respectively, γij ∈ {x,y} is the Kitaev bond type, and the
Dzyaloshinskii-Moriya coupling D2 is oriented as in Fig. 1(c),
with j>i and ± sign for the A/B sublattice.

Classical ground states: mechanism for stability of the
counterrotating spiral. First let us consider how to stabilize
the corotating and counterrotating spirals as ground states
for various terms in this Hamiltonian. There are two known
mechanisms for stabilizing conventional (corotating) spiral
orders: (A) Frustration from competing exchanges, such as
ferromagnetic nearest-neighbor and antiferromagnetic second-
neighbor exchanges; and (B) DM couplings. As an example of
mechanism (A), we take a J1-J2 (K = 0) model with J1 < 0

and J2 > 0; its classical ground state is a spiral order with
a rotation angle between consecutive sites arccos(−J1/4J2)
for J2 > |J1|/4. For mechanism (B), the rotation angle is
arctan(D/J1) for the usual nearest-neighbor DM model. When
the zigzag chain separates into two decoupled A/B chains with
DM interaction of opposite sign the angle of rotation for each
chain is θA,B = ± arctan(D2/J2).

The Klein duality, which maps a conventional co-rotating
spiral to a counterrotating spiral, transforms these conven-
tional spiral Hamiltonians to produce Hamiltonians for the
counterrotating spiral. It is easy to see (Fig. 1) how the
classical conventional spiral order is transformed, by the rules
of the Klein transformation, into the counterrotating spiral
order, with q → π/a1 − q. Let us then consider how the
transformation acts on the Hamiltonians for mechanisms (A)
and (B) above, or relatedly on the Hamiltonian Eq. (1) at
K = 0 and uniform orientation of the DM term (−D2 rather
than ±D2). It is easy to show the following action for the Klein
transformation:

(
J

xy

1 , J
xy

2 , J z
1 , J z

2

) ↔ (−J
xy

1 , −J
xy

2 , −J z
1 , + J z

2

)
(2)

−D2 ↔ ±D2 (3)

(K = 0) ↔ (
K = −2J

xy

1

)
. (4)

A Kitaev term is produced, with twice the magnitude and
opposite sign relative to the J

xy

1 term. This transformation is
a duality, i.e., it maps Eq. (1) to itself with a different set of
parameters.

A known Hamiltonian for a conventional spiral thus
produces a Hamiltonian for the counterrotating spiral, via the
mapping above. The dual of mechanism (B) is obvious—
one can force counterrotation between sublattices by giving
opposite signs to pure-second-neighbor (intrasublattice) DM
terms, as in Eq. (1). The dual of mechanism (A) however pro-
duces a Kitaev-based model, with additional first and second
neighbor Heisenberg-type terms, whose classical ground state
is the counterrotating spiral. We note that the Klein duality
necessarily introduces easy-plane anisotropy via the differing
transformation of J z

2 . Since the J z
1 ,J z

2 couplings do not change
the nature of the spiral order when the spin rotation plane
is xy, i.e., for sufficient easy-plane xy anisotropy, a minimal
description is afforded by setting J z

1 =J z
2 =0. The result (Fig. 2)

is a Kitaev-J xy

1 -J xy

2 model whose classical ground state is the
counterrotating spiral.

Spin dynamics and magnetic umklapp from spin-orbit
coupling. To compute the dynamical structure factor via spin
wave theory, one transforms the Hamiltonian Eq. (1) into a
“rotating” (or “moving”) frame, i.e., a site-varying coordinate
system which is locally aligned with the spin orientation in
the ordered spiral configuration. In the following we find it
convenient to use the orthorhombic axes (a,b,c) instead of the
Kitaev (x,y,z) axes for the spin components, with the relation
[45] x̂ = (â + ĉ)/

√
2, ŷ = (â − ĉ)/

√
2 and ẑ = b̂ shown in

Fig. 1(c), where x̂ indicates a unit vector along x and so
on. Let R[θ ] be a rotation by angle θ around the spin z ≡ b

axis. The local spin orientation in the wave-vector-q spiral
is expressed by e3 ≡ R[−ηsqr] · ĉ. Here the sublattice sign
ηs is ηs = ∓ on the A/B sublattice for the counterrotating
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FIG. 2. Duality of classical spirals. The classical Heisenberg
J1-J2 model with ferromagnetic J1 < 0 and frustrating second-
neighbor J2 > 0 has a (co-rotating) spiral ground state with nonzero
wavevector q for |J2/J1| > 0.25 (gray curve). With easy-plane xy

anisotropy, the resulting xy-plane spiral is independent of J z
1 ,J z

2

and depends only on J
xy

2 /J
xy

1 . The Klein transformation produces a
counterrotating spiral with q → π/a1 − q (blue curve) while flipping
the signs of J

xy

1 ,J
xy

2 ,J z
1 , preserving J z

2 and creating a Kitaev exchange
K = −2J

xy

1 . The resulting model has the counterrotating spiral
shown in Fig. 1(a) as its classical ground state.

spiral, or is uniformly ηs = + for the co-rotating spiral. The
local coordinate system e± ≡ R[−ηsqr] · (â ± ib̂) can then
be used to write the spin operator as �S = e3S3 + (e−S+ +
e+S−)/2. In the 1/S spin wave expansion, S3 → 1/2 − b†b
and S± → b,b† ≡ a±. The spin wave Hamiltonian is then
HSW = ∑

ij [J̃ μρ

i,j σ 1
ρν/8 − δμνδijEcl/2](aμ

i )†aν
j with repeated

indices summed. The important ingredient is the interaction
matrix in the rotating frame, J̃

μ,ν

i,j ≡ e
μ

i ·Ji,j ·eν
j , where Ji,j is

the spin interaction matrix between spins i,j associated with
Eq. (1).

We thus turn to evaluate the interactions in the rotating
frame, J̃

μν

i,j . The rotation around z ≡ b leaves b̂ invariant,

e± = (R · â) ± ib̂, so its effects are contained in the R · â
component; for concreteness, we can isolate it by setting J z

1 =
J z

2 = 0, in which case J̃ → â · RT · J · R · â. Evaluating this
term on nearest-neighbor bonds (i,j ), which connect opposite
sublattices, we find [36]

J̃i,j = â · RT [−ηsqr] · Ji,j · R[ηsq(r + a1/2)] · â

= −K

2
sin

(
qa1

2

)
+

[
J

xy

1 + K

2

]
cos

(
qa1

2
+ 2qr

)
,

(5)

where ηs = ∓ is defined by the A/B sublattice of site i,
at position r . The explicit dependence on coordinate r in
the last term—the rotated Hamiltonian is not translation-
ally invariant—changes the spin wave physics drastically.
This is exposed by Fourier transform, where the expression
above produces magnetic umklapp terms such as b

†
kbk+2q .

The magnons experience magnetic umklapp scattering that
changes their wave vector by multiples of q. Even if q is
taken to be approximately commensurate, the wave-vector
quantum number k is lost outside of a highly-folded magnetic
Brillouin zone; for incommensurate q, the magnon wave vector
k becomes ill defined.

One might generally expect to lose the wave-vector quan-
tum number k when translation symmetry is fully broken by an
incommensurate order; this is masked in conventional spirals
through a rotating frame, which relies on continuous SO(2)
rotation symmetry in the model Hamiltonian. The SO(2)-
symmetric J

xy

2 -D2 second-neighbor model of the counterro-

tating spiral can similarly preserve the magnon wave vector k.
However the counterrotation configuration means that each
spin has a different local (nearest-neighbor) environment,
giving rise to magnetic umklapp processes even through the
SO(2)-symmetric J

xy

1 term, as well as through the discrete
symmetry K terms. The loss of k as a good quantum number
is fully apparent.

Here we circumvent the magnetic umklapp scattering by
tuning parameters to the duality with the co-rotating spiral.
Recall from Eq. (4) that the counterrotating spiral Hamiltonian
with K = −2J

xy

1 is dual to a J1-J2 XY model. The continuous
SO(2) symmetry group of the XY model is preserved in an
altered form by the duality, allowing the Hamiltonian at K =
−2J

xy

1 to preserve the magnon quantum numbers. Indeed,
Eq. (5) shows that the translation symmetry in the rotated frame
is restored when K + 2J

xy

1 = 0. We proceed by analyzing
this case. Perturbations away from this parameter point will
generically open gaps in the spin wave dispersions via Bragg
reflections through multiples of the spiral wave vector q, such
as at wave vectors k = ±q, as well as mix the Sa , Sc spin
polarizations.

Using the counterrotating spiral model produced by the
duality, the dynamical structure factor can be computed
straightforwardly by diagonalizing the spin wave Hamiltonian.
The results are shown in Fig. 3 for various polarizations as
well as for a spherical average relevant to powder samples.
The Kitaev-based model shows unusual features, which are
nevertheless transparently related, via the Klein duality, to
the usual features from the conventional spiral. The duality
shifts magnon wave vectors by ±π/a1 for the Sa and Sc spin
components, respectively, and by 2π/a1 (corresponding to
Néel correlations) for the Sb spin component. The Bragg peaks
and intensity pattern are thus found by appropriately shifting
the known structure factor of the J1-J2 conventional spiral.
Observe that the counterrotating spiral can be considered
as a sum of two distinct Sa , Sc spin density waves π/2
out-of-phase. The two sublattices have in-phase Sc but π -
out-of-phase (2π/a1-modulated) Sa , producing Sc-polarized
Bragg peaks at k = 0 ± q, but Sa-polarized Bragg peaks
at k = 2π/a1 ± q. Universal, linearly-dispersing Goldstone
modes with the same polarization as the Bragg peaks emerge
from q and 2π/a1 ± q positions. The Sbb dynamical cor-
relations (out-of-plane fluctuations) contain a mode with
maximum energy and strong intensity at the zone center
(k = 0), as in other Kitaev-based models [41]. We expect
these generic features survive when the 1D chains are coupled
together [45] as in the actual 2D and 3D honeycomb iridates
and to help distinguish between Kitaev or other exchange
models.

Conclusion. We have identified a transparent theoretical
mechanism for the key feature in the unconventional magnetic
orders recently observed in three honeycomb iridates. These
materials host different crystal structures, but nonetheless
their magnetism shares the unifying feature of counterrotating
spirals, with opposite handedness in neighboring sublattices.
This magnetic configuration, as well as a Kitaev-based parent
Hamiltonian, are constructed by acting with the Klein duality
on the well-understood frustrated J1-J2 model of a spiral order.
This connection also enables us to solve for the spin dynamics
in this system and to interpret them transparently. We have
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FIG. 3. Dynamical structure factor signature of Kitaev exchange. The dynamical correlations of various spin polarizations [a,b,c axes
defined in Fig. 1(c)] are computed via spin wave theory for two possible models of the counterrotating spiral: decoupled sublattices with
pure-second-neighbor DM exchanges of opposite signs (column b), and nearest-neighbor Kitaev exchange together with smaller easy-plane
J1-J2 (column c). The plots shown were computed for the minimal models with J z

1 ,J z
2 → 0. (Color is the dynamical spin structure factor,

convolved with a σ=0.025 energy Gaussian; thin blue lines are underlying spin wave dispersions.) Magnetic umklapp scattering, which usually
breaks down spin waves of the Kitaev exchange, was avoided by tuning to the duality with the conventional co-rotating spiral of a J1-J2

XY model (panel a). The Klein duality between panels (a) and (c) shifts wave vectors by ±π/a1 for Sa,Sc and by 2π/a1 for Sb, producing
distinctive signatures for the Kitaev exchange; for example, the shifted Sbb is evident in the spherical average, via the strong signal at high
energy and low momentum.

identified key features in the dynamical structure factor that
could be tested via polarized and unpolarized inelastic neutron
scattering or resonant inelastic x-ray scattering experiments.
Our work helps build towards a full understanding of the
lattice-scale model Hamiltonians for these systems, which
would shed further light on the unusually similar features
across these disparate materials, as well as enable a controlled

identification and understanding of possible proximity to a
spin liquid state.
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