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Abstract

The TET methylcytosine dioxygenase 1 (TET1) enzyme is an important regulator of 5-

hydroxymethylcytosine (5hmC) in embryonic stem cells. Decreased expression of TET proteins 

and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic 

modification. Here we show that deletion of Tet1 promoted the development of B cell lymphoma 
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in mice. Tet1 was required for maintaining normal content of 5hmC, preventing DNA 

hypermethylation and in the regulation of B cell lineage, chromosome maintenance and DNA 

repair genes. Whole-exome sequencing of Tet1-deficient tumors revealed mutations frequently 

found in Non-Hodgkin B cell lymphoma, where TET1 was hypermethylated and transcriptionally 

silenced. These findings provide in vivo evidence of TET1 function as a tumor suppressor of 

hematopoietic malignancy.

Epigenetic pathways regulating DNA methylation and chromatin modifications are 

frequently found to be dysregulated in human cancers1. The Ten-eleven-translocation 

(TET1-3) proteins are a family of 2-oxoglutatrate (2OG) and Fe-(II) dependent 

dioxygenases that catalyze the oxidation of 5-methylcytosine (5mC) to sequentially generate 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), 

modifications that have been shown to be intermediates in the regulation of DNA 

demethylation2–4. Decreased expression of TET proteins and loss of 5hmC has been 

reported in breast, colorectal, skin, stomach and lung cancer, suggesting a critical role for 

the maintenance of this epigenetic modification in normal cellular function5,6.

Genome wide studies have shown 5hmC to be enriched at enhancers, promoters and gene 

bodies of actively expressed genes7,8. The presence of 5hmC may contribute to both passive 

and active DNA demethylation in the mammalian genome. Maintenance methylation 

mediated by DNA methyltransferase 1 normally follows replication, and may be unable to 

recognize 5hmC9, causing 5mC to be lost passively during cell division. The TET proteins 

may also actively prevent DNA hypermethylation and promote demethylation by a 

sequential process involving AID- or APOBEC-mediated deamination of 5hmC to 5hmU 

followed by base excision repair (BER)4. TET-mediated oxidation of 5hmC to 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC) may also trigger DNA demethylation 

by BER independently of deamination10.

The TET gene family was first identified because of the involvement of TET1 as a fusion 

partner of MLL in acute myeloid leukemia (AML)11, a translocation event that has also been 

detected in patients with T cell lymphoma12 and B-ALL13. TET1 mutations are also found at 

a low frequency in AML (~1%)14 compared to T cell acute lymphoblastic leukemia (T-

ALL) (~14%)15 although mutations in B cell malignancy have not been reported. Mutations 

in TET2 occur in ~30% of patients with myeloproliferative neoplasms and acute myeloid 

leukemia (AML)16,17 and loss of TET2 function is associated with aberrant DNA 

methylation in the hematopoietic system18,19. TET1 is known to be an important regulator 

of 5hmC in embryonic stem cells7,20,21, adult4 and reprogrammed cells22,23. However, loss 

of TET1 function in the etiology of cancer has not been directly investigated. Here we show 

that deletion of the Tet1 gene in mice promoted the development of B cell lymphoma after 

an extended period of latency. Whole-exome sequencing of Tet1-deficient tumors revealed 

mutations frequently found in Non-Hodgkin B cell lymphoma (B-NHL) patients24–27 where 

TET1 was also shown to be hypermethylated and transcriptionally silenced. Hematopoietic 

stem and progenitors cells deficient in Tet1 displayed decreased 5hmC, increased 5mC and 

altered expression of transcriptional programs involved in B cell-lineage specification, 

chromosome maintenance, and DNA repair. Loss of Tet1 promoted increased progenitor B 

Cimmino et al. Page 2

Nat Immunol. Author manuscript; available in PMC 2015 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell self-renewal in vitro, enhanced stem cell self-renewal in vivo and cooperates with Bcl2 

overexpression to drive B lymphocytosis in mice. Tet1-deficient pro-B cells also displayed 

increased DNA damage. These findings provide the first in vivo evidence of TET1 function 

as a tumor suppressor of hematopoietic malignancy and more specifically B cell lymphoma.

Results

Tet1-deficiency drives B cell malignancy upon advanced age

We aged a cohort of Tet1-deficient animals28 and monitored their health for over two years. 

The majority of heterozygous (Tet1+/−) and homozygous (Tet1−/−) Tet1-deficient mice 

remained healthy for up to 1 year of age after which a loss in survival was observed, with 

less than ~20% of Tet1−/− mice remaining viable at 2 years of age compared to ~70% of 

wild-type animals (Fig. 1a). Peripheral blood analysis of mice aged 18–24 months showed 

mild but significant lymphocytosis (Fig. 1b and Supplementary Fig. 1a–d). Upon necropsy, 

moribund Tet1-deficient mice often displayed severely enlarged peripheral lymph nodes 

(Fig. 1c) and hepato-splenomegaly. By histological analysis, spleens of Tet1-deficient 

animals revealed disrupted architecture with loss of delineation between the red and white 

pulp and extensive infiltration by atypical lymphocytes with high Ki67 positivity 

(Supplementary Fig. 1e). Immunostaining of cells in the peripheral blood, lymph nodes or 

spleen of moribund Tet1-deficient mice revealed that the majority displayed a mature B 

lymphoma phenotype of SSChiB220+CD19+CD43−IgM+IgDhi/lo cells (Fig. 1d). Co-

expression of the myeloid lineage marker CD11b, and in some cases erythroid lineage 

markers was also observed (Supplementary Fig. 2a,b, Supplementary Table 1). Histological 

analysis of the liver, lung and kidney in Tet1-deficient mice revealed destructive tissue 

infiltration by atypical lymphocytes (Fig. 1e and Supplementary Fig. 1f,g). The lymph nodes 

of Tet1-deficient mice showed a diffuse staining pattern of lymphocytes by hematoxylin and 

eosin (Fig. 1f). In addition, these cells stained positive by immunohistochemistry for Bcl-6 

and IRF4 that are typically expressed in mature germinal center B cells, and negative for 

CD138 (Syndecan-1), a marker of plasma cells (Fig. 1g). In approximately 20% of cases, 

multinucleated cells and histiocytic sarcomas were also observed in lymph nodes, spleens 

and infiltrated solid organs (Supplementary Fig. 2c,d). The phenotypic and malignant 

characteristics of Tet1-deficient spleen and lymph node cells were transplantable, causing 

rapid disease 12 weeks post-transplant into congenic mice (Supplementary Fig. 2e–g). These 

data suggested that Tet1 functions as a tumor suppressor of hematopoietic malignancy, 

specifically in the B cell lineage.

Tet1-deficient tumors harbor mutations of B-lymphoma

To understand the etiology of Tet1-deficient hematopoietic malignancy in mice we 

performed whole-exome sequencing on genomic DNA isolated from thirteen Tet1-deficient 

tumors. Tumor samples were derived from the spleen, lymph node and peripheral blood of 

Tet1+/− and Tet1−/− mice, including a three tumors that stained negative for IgM by flow 

cytometry (Supplementary Table 2). Matched germline tail DNA was used as the reference 

genome for each mouse. In the coding genome, we identified >2000 somatic mutations, 

involving 1785 unique genes, of which 157 genes were recurrently mutated in 2 or more 

tumors (Supplementary Data Set 1–3). While the proportion of indels was equivalent across 
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all tumors, the frequency of non-synonymous single nucleotide variants (nsSNVs) differed 

by more than 10-fold for several samples (Fig. 2a, Supplementary Fig. 3). Increased 

numbers of nsSNV in the highly mutated tumors corresponded to an increased frequency of 

A/T base substitutions (Fig. 2b), which has been previously reported in patients with diffuse 

large B cell lymphoma (DLBCL) and associated with increased frequency of mutation in 

DNA repair genes29. In the combined tumors, nsSNVs were predominantly missense 

mutations, making up 83% of all variations observed (Fig. 2c). Independent of mutation load 

we observed more transitions than transversions (Fig. 2d,e) and a prevalence of C>T 

transitions in the context of GCG trinucleotides, suggesting a bias toward mutation of CpG 

cytosines (Fig. 2f).

Several whole genome and exome sequencing studies of B-NHL patients incorporating both 

DLBCL and follicular lymphoma (FL) have revealed a core set of recurrently mutated genes 

involved in RhoA signaling (GNA13), histone modification (KMT2D/MLL2), and B cell 

function (MYD88, CD83)24–26. Several of these genes are also known targets of aberrant 

somatic hypermutation (PIM1, CD79B, FAS)30. We found that many of the genes mutated in 

≥3 Tet1-deficient tumors (both IgM− or IgM+) corresponded with those recurrently 

identified in B-NHL patients (Fig. 2g, Supplementary Fig. 4a–c and Supplementary Table 

3). These included Kmt2d, which encodes for the H3K4-methyltransferase protein, Mll2, 

mutated in 30–50% of DLCBL and up to 89% of FL patients24,25. In addition, we identified 

mutations in several linker histone genes (Hist1h1c, Histh1d and Hist1h1e) along with other 

histone variants and histone modifying enzymes (Fig. 2h,i). HIST1H1 B–E mutations were 

recently reported in up to 27% of FL patients26,27. Together, the immunophenotype and 

mutation spectra of Tet1-deficient tumors suggested that loss of Tet1 predisposed mice to 

the formation of B cell lymphoma.

TET1 is hypermethylated and silenced in human B-NHL

Despite the overlapping spectrum of mutations that correspond to human B-NHL, TET1 

somatic mutations have not been reported in this disease. We investigated alternative 

mechanisms of TET1 inactivation in human B-NHL and found that the TET1 gene is 

epigenetically silenced in FL (Fig. 3a) and Multiple Myeloma (MM) (Supplementary Fig. 

4d) and transcriptionally downregulated in both DLBCL and FL patients (Fig. 3b). 

MassARRAY analysis of TET1 CpG methylation was performed in an independent cohort 

of 26 FL patients compared to normal germinal center B (GCB) cells (Fig. 3c, 

Supplementary Fig. 4e). Corresponding RNA-seq analysis of TET1 expression in the same 

patients showed a direct correlation between hypermethylation and decreased expression of 

TET1 (Fig. 3d). These studies are consistent with our animal findings that demonstrate that 

Tet1−/− animals develop exclusively B cell lymphoma and with the fact that the Tet1−/− 

lymphomas carry mutations in genes consistent with those found in FL and DLBCL 

patients. Interestingly, we have noticed no hypermethylation of TET2 in human B-NHL 

samples. This finding is in agreement to the spectra of hematopoietic malignancies reported 

in Tet2-deficient mice, which developed primarily myeloid disease (Supplementary Fig. 4f–

h). Compared to other hematopoietic malignancies, the significant hypermethylation of the 

TET1 promoter in FL patients, which correlated directly with decreased TET1 expression, 
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would suggest that consistent with the phenotype observed in Tet1-deficient mice, TET1 

plays a role as a tumor suppressor specifically in B cell lymphoma.

Loss of Tet1 co-operates with Bcl2 overexpression

To determine whether loss of Tet1 alters stem and progenitor differentiation in a cell 

intrinsic manner we performed primary transplants of total bone marrow and secondary 

transplants of purified long-term HSCs (LT-HSCs) (Fig. 4). In both the primary and 

secondary transplants, CD45.2+ Tet1−/− donor cells exhibited a greater contribution to the 

maintenance of peripheral blood reconstitution (Fig. 4a) and a significant increase in B cell 

frequency 20 weeks post-transplant compared to CD45.2+ Tet1+/+ donor cells (Fig. 4b). 

Together these data suggest that the primary defect in Tet1-deficient mice is enhanced HSC 

activity with a bias toward B lymphopoiesis.

Given the prevalence of BCL2 translocations in FL patients (~90%)31 that drive 

overexpression of this pro-survival gene, we tested whether retroviral introduction of Bcl2 

overexpression in Tet1−/− LSKs could cooperate to promote B lymphomagenesis. Up to 10 

weeks post-transplant we found that neither Tet1 loss nor Bcl2 overexpression alone had an 

effect on the total leukocyte counts. However, the combination of loss of Tet1 and 

overexpression of Bcl2 drove a rapid and sustained elevation in circulating total leukocytes, 

specifically B lymphocytes, with little effect on the number of circulating myeloid cells (Fig. 

4c,d).

To gain further insight into the development of hematopoietic malignancies in Tet1-deficient 

mice we quantified Tet1 mRNA abundance at various stages of hematopoiesis. We found 

that Tet1 was most highly expressed in LT-HSCs, multipotent progenitors (MPPs) and 

common lymphoid and myeloid progenitors (CLPs and CMPs, respectively), decreased 

during B lineage commitment and was undetectable in immature and mature myeloid cells 

(Fig. 5a). Flow cytometric analysis of Tet1-deficient bone marrow and spleen cells from 

young mice (1–3 months) showed no perturbation in hematopoietic development 

(Supplementary Fig. 5a,c). However in sick mice, the total B220+ cell frequency was 

decreased in both the spleen and bone marrow, with progenitor and precursor B cells 

(B220+IgM−IgD−) making up the majority of the B cell compartment (Supplementary Fig. 

5b,d–g). In young animals, loss of Tet1 alone was sufficient to cause a decrease in 5hmC 

content in total bone marrow and B cells (Fig. 5b,c). Flow cytometry of the bone marrow 

stem cell compartment from sick Tet1-deficient mice showed no significant difference in the 

frequency of lineage negative c-Kit+ progenitors or LSKs (Lin−Sca-1+cKit+) compared to 

wild-type animals (Fig. 5d). However, within the LSK compartment, staining with CD150 

and CD48 showed that LT-HSCs (CD150+CD48−) were significantly decreased, whereas 

MPP2 cells (CD150−CD48+) and LMPP cells (CD34+Flt3+) were increased in frequency 

(Fig. 5e–g). These data suggested that loss of Tet1 caused a bias towards lymphoid 

differentiation in hematopoietic stem and progenitor cells despite a later block in B cell 

maturation.
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Tet1-loss promotes B-lineage differentiation

In the Tet1-deficient LSK compartment, the decreased frequency of LT-HSCs and increased 

frequency of lymphoid-primed MPPs prompted us to identify molecular signatures that 

define these subpopulations of LSKs in the absence of Tet1. We performed microarray 

analysis of RNA isolated from total LSKs and RNA-seq analysis on RNA from purified 

Tet1+/+ and Tet1−/− LT-HSCs and MPPs (Fig. 5h–j and Supplementary Fig. 6). Genes with 

greater than 2-fold change in expression were equally up- and down-regulated in Tet1−/− 

compared to Tet1+/+ LSKs (Fig. 5h). By gene set enrichment analysis (GSEA), we observed 

that in total LSKs and MPPs there was a significant up-regulation in mature hematopoietic 

cell genes and specifically B lymphoid and lymphoma expression profiles32,33. This 

included the transcription factors Ebf1, Pax5, Irf4, and their downstream targets, VpreB, 

Cd79a, Igh, and Blnk, suggesting an increased differentiation bias toward the B lymphoid 

lineage (Fig. 5h,i and Supplementary Table 4). Down-regulated and negatively enriched 

gene sets by GSEA included pathways involved in chromosome maintenance, transcription, 

and DNA repair (Fig. 5h,j and Supplementary Table 5). Histone cluster 1 genes were found 

to be significantly down-regulated, including the linker histone genes (Hist1h1a,b,d,e) and 

other histone 2, 3 and 4 variants, several of which (including Hist1h1d,e, Hist1h2bc,bb and 

Hist1h3a,b,e) were also found mutated in Tet1-deficient lymphoma cells. The increased 

expression of histone variants in ST-HSCs, LMPPs and pre-B cells (Supplementary Fig. 6d) 

and their frequent mutation in B cell lymphoma implicates these proteins as potentially 

important regulators of B cell development and function.

Aberrant DNA hydroxymethylation of Tet1-deficient cells

The role of TET proteins in DNA-demethylation suggests that in the absence of these 

enzymes, the genome may be vulnerable to the acquisition of increased DNA methylation. 

We performed a genome-wide analysis of 5hmC and 5mC at CpG sites in Tet1+/+ and 

Tet1−/− LSKs using HELP-GT34 and reduced representative bisulfite sequencing (RRBS)35 

assays, respectively. The frequency of CpG sites with differential 5hmC or 5mC was 

calculated for Tet1−/− compared to Tet1+/+ LSKs (Supplementary Fig. 7). A global loss of 

5hmC and gain in 5mC was observed across all chromosomes (Fig. 6a–d), with greater 

losses in 5hmC occurring in gene bodies (exons and introns) and intergenic regions 

(Supplementary Fig. 7a) that overlapped significantly with histone modifications 

(H3K4me1, H3K4me2, and H3K27Ac) characteristic of both poised and active enhancers in 

mouse MPPs36 (Supplementary Fig. 7b). Interestingly, only 10% of promoters exhibited 

losses in 5hmC whereas the frequency of 5mC gain at promoters contributed to 27% of all 

differentially methylated CpGs (Fig. 6e, Supplementary Fig. 7c–e). Using Ingenuity 

Pathway Analysis (IPA) of loci that lose 5hmC in Tet1-deficient LSKs we found that 

amongst the top 20 networks and disease categories were multiple regulators of DNA 

replication, recombination and repair (Supplementary Tables 6, 7). Several genes involved 

in RhoA signaling (RhoA, Gna12, Arghap12) and specifically base excision repair (Apex1, 

Lig1, Exo1) lost 5hmC, whereas genes that displayed both 5hmC loss and 5mC gain were 

enriched in G-protein coupled receptor (Gna14), TGFβ (Smad 2–4) and WNT (Ctnnb1) 

signaling pathways known to play important roles in stem cell homeostasis and 

transformation37,38 (Supplementary Fig. 7f, Supplementary Table 8). Many down-regulated 
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genes in Tet1-deficient LSKs or MPPs also exhibited loss of 5hmC in their gene bodies or 

promoters, including B cell function (Cd74), apoptotic (Casp3) and chromosome 

maintenance (Mcm4, Mcm10) genes, in agreement with our previous data demonstrating 

dysregulation of these gene pathways by gene set enrichment analysis in stem and 

progenitor cells. These data show for the first time in hematopoietic stem and progenitor 

cells that Tet1 expression is required for the maintenance of DNA hydroxymethylation and 

to protect the genome from aberrant DNA hypermethylation.

Increased self-renewal and DNA damage in Tet1-deficient cells

DLBCL and FL are characterized as diseases of mature lymphocytes, originating from 

germinal center or post-germinal center lymphocytes31. It has been shown however that 

HSCs from patients with chronic lymphocytic leukemia (CLL) already display lymphoid 

lineage gene priming that in xenograft transplants develop into mature CLL-like B cells39. 

To assess the self-renewal potential of Tet1-deficient stem and progenitor cells in vitro we 

performed pro-B, pre-B and myeloid cell colony formation assays. Loss of Tet1 promoted a 

significant increase in the number of self-renewing pro-B cell colonies (Fig. 7a) with only a 

moderate increase in colony formation for pre-B cells (Fig. 7b) and no effect on myeloid 

CFU replating capacity (data not shown). In both pro-B and pre-B CFU cells from Tet1-

deficient mice, V(D)J recombination appeared normal (data not shown). However, the 

expression of several Histone Cluster 1 (with the exception of Hist1h1c) and DNA repair 

genes showed on average 2-fold decrease in mRNA expression (Fig. 7c,d). Consistent with 

deficient DNA repair pathway gene expression, ProB cells from Tet1−/− mice were found to 

display increased DNA damage with a greater percentage of γ-H2AX positive cells and 

significantly more foci per cell (Fig. 7e–g). These data show that Tet1-deficiency has the 

potential to generate pre-malignant B cells at the pro-B cell stage of differentiation.

Discussion

NHL constitutes a diverse array of malignancies arising from B or T lymphocytes of various 

developmental stages, immunophenotype, size, clinical presentation and disease 

progression31,40 DLBCL, FL and Mantle cell lymphoma (MCL) are the most common B 

cell NHLs and together comprise over 60% of all NHL. Epigenetic factors have been shown 

to contribute to the heterogeneity of NHL, with several recent studies implicating aberrant 

DNA methylation in disease progression. Methylation heterogeneity in FL and DLBCL 

increases with disease severity and aberrant DNA methylation can predict patient survival41.

Interestingly, B and T cell lymphoma with different histological subtypes are associated 

with distinct global DNA methylation states42,43. Key genes involved in cell cycle 

regulation, survival signaling and DNA repair have been shown to be hypermethylated in FL 

(germinal center tumors) compared to MCL (pre-germinal center) and chronic lymphocytic 

leukemia (CLL)/small lymphocytic lymphoma (pre- or post-germinal center tumors)44 and 

may reflect either the stage of normal lymphoid maturation from which these lymphomas 

arise or etiology of the disease.

Methylation profiling of DNA from AML patients led to the first observation that TET2 

mutant AMLs are characterized by a hypermethylation phenotype18. TET2 is also mutated 
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or deleted in 6–12% of DLBCL45,46. Genome-wide profiling studies have found that 

DLBCL patients also display a TET2 mutant hypermethylation signature compared to TET2 

wild-type DLBCL46. Together these findings are consistent with a role for TET proteins in 

generating 5hmC as an intermediate step in DNA demethylation at sites that would 

otherwise remain marked by 5mC. Gene silencing by DNA methylation in somatic cells is 

relatively stable and compounded by repressive histone modifications and the recruitment of 

proteins involved in histone deacetylation. Studies have shown that DNA methylation 

inhibits H3K4 methylation47, a marker of gene activation, and is associated with H3K27 

methylation35 a marker of repressive chromatin. Reversal of this gene silencing therefore 

provides an attractive strategy for pharmacologic intervention. Epigenetic treatments that 

promote gene activation at silenced chromatin include histone deacetylase inhibitors 

(HDACis), such as Vorinostat48. Many phase I/II clinical trials are currently being 

conducted to expand the clinical use of HDACis in MM, DLBCL, MDS and AML patients. 

DNA demethylating agents such as 5-aza-2′-deoxycytidine are approved by the FDA for use 

in the treatment of MDS however, very little is known of the molecular effect of using DNA 

hypomethylating agents alone or in combination with HDACis in NHL patients. Additional 

DNA methylation profiling in various lymphoma subtypes may help facilitate both diagnosis 

and clinical treatment.

Leukemia is appreciated as a disease of stem cell origin, however lymphoma is more 

commonly known as a disease of mature lymphocytes and in the case of DLBCL and FL, a 

manifestation of germinal center or post-germinal center reactions31. However, HSCs from 

patients with CLL were shown to already display lymphoid lineage gene priming that 

develop into mature CLL-like B cells in xenograft transplants39. Clonal evolution of the 

same biallelic mutations in TET2 within CD34+ cells of a patient has been shown to 

contribute to both B cell lymphoma and AML, suggested that the patient was predisposed to 

malignancy from cells that retained multi-lineage differentiation potential. In a donor-

recipient pair that developed FL 7 years after allogeneic bone marrow transplant, the donor-

lymphocyte infusions were found to harbor the same BCL2-IGH and IGH V-DJ 

rearrangements49. While the BCL2-IGH rearrangement was shown to be restricted to CD19+ 

cells, ultra deep-sequencing of CD34+CD10−CD19− cells within the donor-lymphocyte 

infusions, comprising both MPP and HSC cells, resulted in detection of 3/14 shared 

mutations between donor and recipient lymphomas, including mutations in EP300 and 

KLHL649, known to be recurrently mutated in FL patients24. How epigenetic dysregulation 

within stem and progenitor cells may create a premalignant state or increased susceptibility 

to the acquisition of transforming alterations is not clear. Further deep-sequencing studies to 

determine the mutational status and epigenetic state of stem and progenitor cells from 

patients with DLBCL and FL may provide additional insight into the molecular ontogeny of 

B cell lymphoma.

Despite the evidence that loss of either the TET proteins or 5hmC correlates with cancer 

progression, a role for TET1 as a tumor suppressor in hematopoietic malignancy had not 

been previously established. Our findings suggest that loss of Tet1 function predisposes 

hematopoietic stem cells to malignancy and more specifically, B cell lymphoma. Deletion of 

either Tet1 (our study) or Tet250 in mice causes phenotypically distinct tumors affecting 
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predominantly B or myeloid lineages, respectively, suggesting non-redundant or lineage-

specific roles for these enzymes during hematopoiesis or transformation. TET1 mutations in 

patients with hematopoietic malignancy are reported at low frequency compared to TET2, 

however loss of TET1 function due to altered transcription or post-translational regulation in 

hematopoietic stem and progenitor cells may be an overlooked mechanism by which these 

cells are able to transform into lymphoma. These data suggest that hypomethylating agents 

could be an efficient therapy for B-NHL patients characterized by epigenetic silencing of 

TET1.

Methods

Generation of Tet1-deficient mouse cohort

The Tet1 knockout mouse strain used in this study has been previously reported28. Tet1+/− 

animals were intercrossed to generate cohorts of Tet1+/+, Tet1+/− and Tet1−/− mice. All mice 

in the study were maintained on a mixed 129 and C57BL/6 background and monitored 

weekly for signs of poor health. Moribund animals were sacrificed and subjected to 

necropsy. Spleen, liver, lymph nodes, kidneys, lungs, bone marrow and blood were 

harvested for further analysis. Animal care was in accordance with institutional guidelines 

and approved by the Institutional Animal Care and Use Committee of the NYU School of 

Medicine and the Committee on Animal Care, Department of Comparative Medicine, 

Massachusetts Institute of Technology. Log Rank test was used for statistical analyses. 

Plotting of Kaplan-Meier survival curves and statistical analyses (t-test) were performed 

using Prism Graphpad software.

Histology and Immunohistochemistry

Peripheral blood smears were briefly fixed in methanol and stained with Wright-Giemsa 

solution (Fisher). Slides were rinsed with water, dried, mounted with Cytoseal 60 and cover 

slipped. Tissues were dissected from mice for fixation overnight in 10% formalin (Fisher). 

Fixed tissues were dehydrated and embedded in paraffin for sectioning. 5 μm paraffin 

sections were prepared and stained with hematoxylin and eosin (H&E) (Leica Autostainer 

XL). For immunohistochemistry, Bcl6 (N3, Santa Cruz Bio, SC-858), IRF4 (Santa Cruz 

Bio, SC-6059), CD138 (BD Pharmingen, 553712) and Ki67 (Clone SP6, Epitomics) 

antibodies were used and counterstained with hematoxylin. Light microscopy was 

performed using a Zeiss Axio Observer microscope.

Array-based methylation analysis using HELP

After informed consent from all participants, the genomic DNA from the primary leukemia 

and lymphoma cases were obtained for the HELP assay with the approval of the Institutional 

Review Boards of Weill Cornell Medical College. DNA methylation of patient samples was 

performed and analyzed using the HELP (HpaII tiny fragment enrichment by ligation 

mediated PCR) as previously published52,53. The HELP array data was available from the 

GEO database accession numbers GSE31671, GSE23967, GSE34937, GSE44860, and 

GSE18700. Basically, raw data (.pair) files were generated using NimbleScan software. 

Signal intensities at each HpaII amplifiable fragment were calculated as a robust (25% 

trimmed) mean of their component probe-level signal intensities. Any fragments found 
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within the level of background MspI signal intensity, measured as 2.5 mean-absolute-

deviation (MAD) above the median of random probe signals, were considered as 3failed2 

probes and removed. A median normalization was performed on each array by subtracting 

the median log-ratio (HpaII/MspI) of that array (resulting in median log-ratio of 0 for each 

array).

Gene expression microarray data

Gene expression microarray data of patient samples was obtained from the GEO database 

accession number GSE1245354. FL patient samples were used after informed consent from 

all participants with the approval of the Institutional Review Boards of Weill Cornell 

Medical College. The microarray raw data were normalized using the MAS5 method with 

Expression Console software (Affymetrix).

Single locus quantitative DNA methylation assays

EpiTYPER assays (Sequenom) were performed on bisulfite-converted DNA from FL 

patients as previously described55 after informed consent from all participants with the 

approval of the Institutional Review Boards of Weill Cornell Medical College. The primers 

were designed using Sequenom EpiDesigner beta software (http://www.epidesigner.com/). 

The primer sequences are available in (Supplementary Table 9).

Fluorescence activated cell sorting and flow cytometry

Single cell suspensions were prepared from bone marrow (femur and tibia), spleen and 

lymph nodes. Red blood cells were lysed with ammonium-chloride-potassium (ACK) buffer 

and remaining cells were resuspended in PBS with 3% FBS. Nonspecific antibody binding 

was blocked by incubation with 20 μg/ml Rat IgG (Sigma-Aldrich) for 15 min. Cells were 

incubated with antibodies for 30 min on ice. All antibodies were purchased from BD-

PharMingen, eBioscience or BioLegend and consisted of fluorochrome or biotin-conjugated 

anti-mouse antibodies: CD11b (M1/70), Gr-1 (RB6-8C5), CD71 (RI7217), Ter-119, CD3 

(145-2C11), B220 (RA3-6B2), IgD (IA6-2), IgM (II/41), cKit (CD117, 2B8), Sca-1 (D7), 

CD150 (9D1), CD48 (HM481), CD45.1 (A20), CD45.2 (104). Bone marrow mature lineage 

positive markers were defined as CD11b, Gr-1, Ter-119, CD4, CD8, CD3, and B220. For 

5hmC detection, 106 cells were fixed at 25 °C with 3% paraformaldehyde, permeabilized 

with 0.2% Triton X-100, denatured with 2N HCl followed by neutralization with 100 mM 

Tris-HCl, pH 8.0. Cells were then incubated with anti-5hmC (1:400) (Active Motif) and 

isotype control antibodies for 30 min, washed with PBS and incubated with secondary 

antibodies conjugated with Alexa Fluor 488 (1:500) (Invitrogen) for 30 min followed by 

wash and resuspension in PBS for visualization. Stained cells were quantified using a BD 

Fortessa analyzer or isolated with a MoFlo cell sorter (Beckman Coulter) or BD ARIA II. 

FlowJo software (TreeStar) was used to generate flow cytometry plots.

Whole-exome sequencing and identification of tumor-specific variants

Genomic DNA (gDNA) was isolated from the spleen, peripheral blood and lymph node 

tumor cells of Tet1-deficient mice and paired with gDNA isolated from the tail of each 

respective mouse as a reference genome. The mouse exome was enriched using SeqCap EZ 
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design mouse exome capture kit (Roche NimbleGen, Inc.) The coding sequence selected for 

the mouse exome probe pool design includes 203,225 exonic regions, including 

microRNAs, and collectively comprises over 54.3 Mb of target sequence (C57BL/6J, 

NCBI37/mm9). Sequencing libraries were generated from captured exomes using standard 

Illumina protocols and sequenced on the Illumina HiSeq 2500 using 100 bp paired-end 

reads. Approximately 100 million reads were sequenced per tumor at 2X the coverage of 

matched tail DNA to allow for more sensitive somatic variant calling. All tumor samples 

achieved average coverage above 85X with over 90% of bases above 20X coverage. Reads 

were aligned to the mouse genome (UCSC build mm10) using the Burrows-Wheeler Aligner 

(BWA). Additional refinement included duplicate-read removal with Picard as well as 

realignment and base quality score recalibration using the Genome Analysis Toolkit 

(GATK). Somatic variant callers MuTect and GATK Somatic Indel Detector were used to 

generate single nucleotide substitution and indel calls, respectively, in matched tumor-

normal pairs. Mutations were annotated using Annovar based on all annotated transcripts in 

RefSeq Gene with likely germline variants marked using data from dbSNP (build 137). 

Recurrent mutations were visualized using Circos online software56. Trinucleotide 

mutational signatures were calculated based on equal trinucleotide frequency.

Bone marrow-competitive transplantation

Freshly dissected femurs and tibias were isolated from donor Tet1+/+, Tet1−/− (CD45.2+) and 

support Tet1+/+ (CD45.1+) mice. Bones were flushed with PBS using a 22.5 gauge needle, 

and the isolate was centrifuged (5 min, 0.5g, 4 °C) and treated with red cell lysis buffer as 

described above. Total nucleated bone marrow cells were re-suspended in PBS, passed 

through a 40 μM cell strainer and counted. For primary transplants, donor cells (0.5 × 106 

per genotype, per mouse) were mixed 50:50 with support bone marrow cells and 

transplanted via retro-orbital injection into lethally irradiated (2 × 550 Rad) CD45.1+ 

recipient mice. Chimerism was monitored by flow cytometry (anti-CD45.1 and anti-CD45.2, 

BD Bioscience) of peripheral blood at 4-week internals post-transplant for 20 weeks at 

which time mice were sacrificed to assess chimerism in total cell isolates of other 

hematopoietic compartments (bone marrow and spleen). For secondary transplants, CD45.2+ 

LT-HSCs were purified by flow cytometry from the bone marrow of primary transplanted 

mice 20 weeks post transplant and re-injected into lethally irradiated CD45.1+ recipient mice 

(500 LT-HSCs per mouse) with support cells (0.5 × 106 total bone marrow cells per mouse) 

and monitored for chimerism as described above.

Retroviral transduction

Hematopoietic stem and progenitor cells were isolated by sorting Lin− c-Kit+Sca1+ cells, 

cultured in the presence of 50 ng/ml SCF, 50 ng/ml Flt3 ligand, 10 ng/ml IL-3, and 10 ng/ml 

IL-6 and infected with concentrated retroviral supernatants after 24 and 48 h. Transduction 

efficiency was determined by reporter fluorescence at 96 h, and total or sorted populations 

were transferred via retro-orbital injection into irradiated (2 × 550 Rad) congenic recipients 

along with 2 × 105 unfractionated bone marrow cells (BMMCs) for hemogenic support.
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In vitro colony formation assays

Total bone marrow from Tet1+/+, Tet1+/− and Tet1−/− mice (24 weeks of age) was plated in 

methylcellulose medium (Stem Cell Technologies); M3630 for pre-B, M3434 for myeloid/

erythroid and M3630 supplemented with Flt3L (50ng/ml) for pro-B colony formation. Cells 

were seeded at a density of 20,000 cells/ml for pro-B or pre-B and 2,000 cells/ml for 

myeloid progenitor colony formation assay. Colony forming units were counted and re-

plated (2000 cells/replicate) every 7–10 days.

Quantitative RNA expression assays

Total RNA was extracted from flow cell sorted LSK cells using the RNeasy Plus Mini Kit 

(Qiagen) from Tet1+/+ and Tet1−/− mice (24 weeks of age, n = 3 per genotype). RNA 

quantification and quality was determined using an Agilent 2100 Bioanalyzer. The Ovation 

RNA Amplification System V2 (NuGEN) kits were used for amplification. Amplified RNA 

was labeled and hybridized to the Mouse 430.2 microarrays (Affymetrix). Mouse 

hematopoietic microarray samples used in Extended Data Fig. 8f have been described 

previously51 and are available at the Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo/) under the reference GSE14833. The Affymetrix gene 

expression profiling data was normalized using the previously published Robust Multi-array 

Average (RMA) algorithm using the GeneSpring GX software (Agilent). RNA-seq libraries 

were prepared from total RNA of flow cell sorted CD45.2+LT-HSCs and MPPs from 

Tet1+/+ and Tet1−/− mice (20 weeks post-primary bone marrow transplant, combined from 3 

mice per genotype per library) by PolyA selection using oligo-dT beads (Life Technologies) 

according to the manufacturer’s instructions. The resulting RNA samples were then used as 

input for library construction using standard Illumina protocols and sequenced on the 

Illumina HiSeq 2000 using 50 bp paired-end reads. All RNA-Seq data was aligned to mm9 

using TopHat v1.4 with default parameters and Cuffdiff v1.3 for all differential expression 

(DE) analyses. In all DE tests, a gene was considered significant if the q-value was less than 

0.05 (Cuffdiff default). All gene expression data were gene/row normalized (z-score 

transformation) using Multiple Experimental Viewer (MeV) software (v4.7.4) for gene 

expression intensity visualization. For mRNA quantification, total RNA was used for cDNA 

synthesis using Superscript III first strand synthesis kit (Invitrogen). Real-time PCR 

reactions were carried out using SYBR Green Master Mix (Roche) and run with a 

Lightcycler 480 II (Roche). The following primer sequences were used for cDNA 

quantification: Hprt (mouse) 5′-CAGTACAGCCCCAAAATGGT-3′ and 5′-

CAAGGGCATATCCAACAACA-3′, Tet1 5′-AGCTGGATTGAAGGAACAGG-3′ and 5′-

GTCTCCATGAGCTCCCTGAC-3′. The NanoString nCounter gene expression system 

(NanoString Technologies Inc.) was utilized to directly measure mRNA abundance in pro-B 

colony forming cells. A custom nCounter Elements probeset (IDT) composed of probes to 

Histone Cluster 1, DNA repair and control genes (Supplementary Table 10), together with 

genes unrelated to this study was hybridized with 100 ng samples of total RNA and 

processed according to manufacturer’s instructions.
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Gene set enrichment analysis

Gene set enrichment analysis was performed using gene set as permutation type, 1,000 

permutations and log2 ratio of classes or with gene_set and Signal2Noise as metrics for 

ranking genes. Gene sets used in this study were identified from the Molecular Signatures 

Database (MSigDB Curated v4.0). Previously published LSK ChIP-seq data57, available at 

the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under the reference 

(GSE22075), was downloaded and aligned to mm9 using bowtie. Following alignment 

regions that showed significant enrichment for H3K4me3 or H3K27me3 were determined 

using MACSv1.4 (for H3K4me3 a P < 10−13, for H3K27me3 P < 10−5 and fold enrichment 

> 7). Enriched regions were extended by 500 bp in both directions and overlapping intervals 

were merged. Bivalent regions were identified as regions of H3K27me3 and H3K4me3 

enrichment according to the cutoffs above. Genes (RefSeq mm9) were identified as bivalent 

if a bivalent region had any overlap in the interval spanning 5 kb upstream of the TSS to the 

TTS and intersects with Refseq genes containing CpG islands in promoters (2 kb upstream 

of the TSS) were generated using BED Tools software.

HELP-GT assay

Genomic DNA (gDNA) was isolated from sort-purified LSK (Lin−c-Kit+Sca1+) cells from 

Tet1+/+ and Tet1−/− mice (24 weeks of age, n = 2 per genotype). The HELP-GT assay was 

used to map cytosine hydroxymethylation as previously described34. Briefly, gDNA with or 

without β-glucosyltransferase (β-GT) pre-treatment was digested by HpaII or MspI. HpaII 

only cuts at CCGG sequences where the central CCGG dinucleotide is unmethylated. The 

first Illumina adapter (AE) is ligated to the compatible cohesive end created, juxtaposing an 

EcoP15I site beside the HpaII/MspI digestion site and allowing EcoP15I to digest within the 

flanking DNA sequence. An A overhang is created, allowing the ligation of the second 

Illumina adapter (AS). This creates AE-insert-AS products and AS-insert-AS molecules. By 

performing a T7 polymerase-mediated in vitro transcription from a promoter sequence 

located on the AE adapter, the AE-insert – AS product is selectively enriched, following 

which, limited PCR amplification is performed to generate a single sized product for 

Illumina sequencing. The final library is sequenced by multiplexing in-house adapter 

primers (in multiples of 4) using an Illumina HiSeq2000 (50 bp single end reads). An 

average coverage of 10–15× per base was achieved and comparison of β-GT+MspI and 

MspI only digested sample was used to determine hydroxymethylated sites.

Bisulfite sequencing

Genomic DNA (gDNA) was isolated from sort-purified LSK (Lin−c-Kit+Sca1+) cells from 

Tet1+/+ and Tet1−/− mice (24 weeks of age, n = 3 per genotype). DNA methylation 

sequencing was performed and analyzed using an enhanced reduced representation 

bisulphite sequencing (ERRBS) methodology as previously described58. Bisulfite treatment 

was performed using the EZ DNA Methylation Kit (Zymo Research) and upon addition of 

the CT conversion reagent, the incubation was conducted in a thermocycler (Eppendorf 

MasterCycler). Purified products were subjected to PCR amplification using the FastStart 

High Fidelity PCR System (Roche). PCR products were isolated using AMPure XP beads 

(Life Sciences). Library amplification and quality was determined using the Agilent 2100 
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Bioanalyzer. The amplified libraries were sequenced on an Illumina HiSeq2500 with 50 bp 

single-end reads following standard Illumina sequencing protocols. Primary and 

downstream data analysis including calculation of differential methylation was performed as 

previously described58.

Immunofluorescence staining

Cytospins of sort-purified pro-B cells from Tet1+/+ and Tet1−/− mice (24 weeks old) on poly-

lysine coated slides (50,000 per slide) were fixed with 4% paraformaldehyde for 10 min at 

25 °C, permeabilized with 0.15% triton X-100 in PBS with for 2 min and blocked with 3% 

FBS/PBS for 30 min then incubated with anti-phospho-H2A.X (Ser139) (20E3) rabbit mAb 

(Cell Signaling Technology) overnight at 4 °C. Slides were washed three times in PBS and 

incubated for 1 hour at room temperature in 3% FBS/PBS with Alexa 488-conjugated goat 

anti-rabbit antibody (Life Technologies). Slides were washed three times in PBS and 

mounted using VectaShield (Vector Laboratories) containing 1 μg/ml DAPI.

V(D)J recombination

Igh, Igk, and Igl rearrangements were amplified by PCR using Ig gene-specific primers 

(Supplementary Table 11). DNA was isolated from cells by proteinase K digestion, phenol 

extraction and ethanol precipitation. PCR cycle numbers were adjusted to be in the linear 

range, based on the analysis of serially diluted DNA and PCR products were separated on 

agarose gels.

Statistics

All data were expressed as Mean ± SEM as indicated and P-values calculated using a 

Student’s t-test with Graphpad Prism software unless otherwise described in the methods or 

figure legend. No specific randomization or blinding protocol was used for these analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tet1-deficiency drives B cell malignancy upon advanced age
a) Kaplan-Meier survival curve of Tet1-deficient mice with heterozygous (Tet1+/−, n = 44) 

and homozygous (Tet1−/−, n = 78) deletion compared to wild-type mice (Tet1+/+ n = 28). * P 

= <0.0005. b) Peripheral blood smears stained with Wright-Giemsa; arrows indicate normal 

lymphocyte (left panel) and aberrant lymphocyte (right panel). Representative of n = 8–10 

mice per genotype. c) Lymph nodes from Tet1+/+ and Tet1−/− mice; representative of n = 8–

10 mice per genotype. Scale bar = 1cm. d). Flow cytometric analysis of malignant cells in 

the lymph nodes of moribund Tet1−/− compared to age-matched Tet1+/+ mice. Upper panels; 
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side-scatter (SSC) vs. B cells (B220+). Middle Panels; B220+ gated cells stained for 

progenitor/precursor B cells (IgM−IgD−), immature B cells (IgM+IgD−), transitional B cells 

(IgM+IgDlow) and mature B cells (IgM+IgDhigh). Lower panels; B220+ gated cells stained 

for progenitor B cell marker CD43 vs. CD19 staining. Data are representative of 3 

independent experiments, n = 8–10 mice per genotype. Histological analysis by H&E 

staining of e) liver, lung, kidney and f) lymph node sections from sick Tet1+/− and Tet1−/− 

mice compared to Tet1+/+ controls. Arrows indicate infiltration of lymphocytes. C = cortex, 

M = Medulla; Scale bar = 100 μm in all panels g) Immunohistochemistry of lymph nodes 

from Tet1+/+ and sick Tet1−/− mice stained with anti-Bcl-6, anti-IRF4, anti-CD138 

antibodies (brown) and hematoxylin. Scale bar = 100 μm in all panels. Data are 

representative of n = 4 mice per genotype.
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Figure 2. Whole-exome sequencing of Tet1-deficient tumors reveals mutations of B-non 
Hodgkin’s lymphoma
a) Total number of non-synonymous single nucleotide variants (nsSNVs) and insertions and 

deletions (Indels) detected by whole exome sequencing in thirteen Tet1-deficient tumor cell 

populations (T1-13) in order of increasing mutation load. b) Total number of nsSNVs 

divided into A, T, C or G base substitutions, ordered from left to right in tumors according 

to increasing total exonic variations. c) The frequency of missense, indel, splicing, ncRNA, 

and nonsense mutations found in Tet1-deficient tumors and d) the average frequency of 
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nsSNVs that are transition and transversion mutations (mean ± SEM, n = 13) and e) 
according to base substitution frequency per tumor. f) Average mutation frequency of base 

substitutions in Tet1-deficient tumors according to trinucleotide context (mean ± SEM, n = 

13). Circos plots of g) the most frequently mutated genes and their co-occurrence in Tet1-

deficient tumors; red = B-NHL recurrently mutated genes, pink = T11 nsSNVs, blue = 

indels, black = IgM+ tumors, orange = IgM− tumors. Circos plots of mutations and their co-

occurrence in h) histone-modifying enzymes and i) histone cluster 1 genes.
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Figure 3. TET1 is hypermethylated and transcriptionally down-regulated in B-NHL
a) Methylation profiling by HELP-assay of the TET1 promoter in DLBCL and FL patients 

compared to normal naïve (NB) and centroblast (CB) B cells. b) mRNA expression analysis 

of TET1 in B-NHL patients. c) MassARRAY analysis of TET1 CpG methylation in 26 FL 

patients compared to normal Germinal Center B (GCB) cells and d) RNA-seq of TET1 and 

TET2 expression in the same 26 FL patients and normal GCB cells. Each circle indicates an 

individual patient in all panels; * P = <0.05, ** P = <0.005, *** P = <0.0005.
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Figure 4. Tet1-deficient hematopoietic stem display increased self-renewal in vivo with a bias 
toward B cell differentiation
Competitive bone marrow (BM) reconstitution assays. Primary transplants were performed 

with CD45.2+ Tet1+/+ and Tet1−/− total BM cells (200,000 per mouse), mixed in equal ratio 

with CD45.1+ support BM cells and transplanted into lethally irradiated recipient mice. 20 

weeks post transplant, CD45.2+ Tet1+/+ and Tet1−/− purified LT-HSCs (500 per mouse) 

were serially transplanted into lethally irradiated recipient mice with CD45.1+ support BM. 

a) Frequency of donor-derived CD45.2+ cells in the peripheral blood (PB) of primary and 

secondary transplanted mice. Data are the average of two independent experiments (mean ± 
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SEM, n = 3 recipient mice per donor BM), n = 2 donor BM per genotype, per experiment. b) 
Average frequency of CD45.2+Lineage+ cells stained for CD11b/Gr1 (M), B220 (B) and 

CD3 (T) surface markers in peripheral blood 20-weeks post transplant in secondary recipient 

mice (mean ± SEM, n = 6 mice per genotype). Loss of Tet1 cooperates with Bcl2 

overexpression to drive B lymphocytosis in mice. Purified LSK cells from Tet1+/+ and 

Tet1−/− mice were transduced with either pMIG-Bcl2 or an empty vector control retrovirus, 

and transplanted into lethally irradiated recipient mice (5000 LSKs were injected per 

recipient with 200,000 wild-type support bone marrow cells). c) Total numbers of GFP+ 

leukocytes, GFP+ B lymphocytes and GFP+ myeloid cells monitored 4, 8 and 10 weeks 

post-transplant in the peripheral blood of recipient mice. d) Representative flow cytometric 

analysis of peripheral blood for CD45.2+ GFP+ cells, with B220, IgM and IgD staining as 

indicated (n = 6–12 mice per genotype). Small horizontal lines indicate the mean. * P = 

<0.01 ** P = <0.001, *** P = <0.0001 in all panels.
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Figure 5. Loss of Tet1 in hematopoietic stem cells promotes differentiation with a lymphoid bias
a) Tet1 mRNA expression abundance in long-term hematopoietic stem cells (LT-HSC), 

multi-potent progenitors (MPP), lymphoid-primed multipotent progenitors (LMPP), 

common lymphoid (CLP) and myeloid progenitors (CMP), megakaryocyte and erythroid 

progenitor (MEP), granulocyte and macrophage progenitor (GMP), progenitor B (ProB), 

precursor B (PreB), Immature B (ImmB), Mature splenic B (MatB), immature myeloid cells 

in the bone marrow (ImmGM) and mature myeloid cells in the spleen (MatGM) of wild-type 

mice. Tet1 mRNA expression was normalized to Hprt mRNA (mean ± SEM, n = 3 
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experiments). b) Loss of Tet1 mRNA expression upon deletion in hematopoietic stem and 

progenitor cells (Lin−cKit+ cells) measured by qPCR and normalized to Hprt (mean and 

SEM, n = 3 experiments). c) Intracellular flow cytometric analysis of 5-

hydroxymehtylcytosine (5hmC) in total bone marrow (BM) and B cells from Tet1+/+ and 

Tet1−/− mice (data are representative of 3 experiments). d–f) Frequency of Lin−Sca1+cKit+ 

(LSK) subsets in old Tet1-deficient mice compared to wild-type mice (mean ± SEM, n = 6–

8 mice per genotype). * P = <0.01, ** P = <0.001, *** P = <0.0001. g) Representative flow 

cytometric analysis of Tet1+/+ and Tet1−/− LSKs. Upper panels = LT-HSC (CD150+CD48−), 

ST-HSC (CD150−CD48−), MPP1 (CD150+CD48+) and MPP2 (CD150−CD48+); Lower 

panels = LMPP (Flt3+CD34+). Data are representative of 6–8 mice per genotype. h) 
Microarray analysis of LSK cells. Significantly differentially expressed genes (P = <0.05) 

with changes >2-fold are displayed. GSEA analysis of RNA-seq from purified Tet1+/+ and 

Tet1−/− MPP cells with corresponding heatmaps of leading edge gene expression changes in 

i) B lineage and j) histone cluster 1 genes.
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Figure 6. Aberrant DNA hydroxymethylation of Tet1-deficient stem and progenitor cells
DNA sequencing data was obtained from purified bone marrow LSK cells of 6 month-old 

Tet1+/+ and Tet1−/− mice using HELP-GT (n = 2 per genotype) and RRBS (n = 3 per 

genotype) assays for quantitation of 5hmC and 5mC, respectively. Graphic representation of 

the differentially methylated genomic regions are displayed as circos plots for a) 5hmC and 

b) 5mC with respect to their chromosomal location. Bar graphs depict the overall frequency 

of c) differential hydroxymethylation (%DhMC) compared to d) differential methylation 

(%DMC) per chromosome and e) genomic location. Differential hyper- and hypo-

Cimmino et al. Page 27

Nat Immunol. Author manuscript; available in PMC 2015 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methylated sites were calculated for CpG sites with methylation difference cutoff >25%, q-

value < 0.01.
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Figure 7. Enhanced colony formation and accumulation of DNA damage in Tet1- deficient 
progenitor B cells
Colony-formation assays in methylcellulose media were performed to measure a) pro-B and 

b) pre-B self-renewal capacity. Cells were passaged every 7 days for 3 successive weeks 

(P1-3), (mean ± SEM, n = 3 experiments). Quantitative mRNA expression analysis of pro-B 

cells from P1 for the relative fold-change in expression of c) histone cluster 1 gene variants 

and d) DNA repair genes in Tet1−/− compared to Tet1+/+ (mean + SEM, n = 3 experiments, 

P = <0.05). e) Immunofluorescence staining of γH2AX foci in purified ProB cells from 
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Tet1+/+ and Tet1−/− mice, scale bar = 10μm. Quantitation of f) the frequency of γH2AX 

positive cells and the number of foci per positive cell (mean ± SEM, n = 3 per genotype). In 

all panels: * P = <0.05, ** P = <0.005.

Cimmino et al. Page 30

Nat Immunol. Author manuscript; available in PMC 2015 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


