
Incremental and Encoding Formulations for Mixed
Integer Programming

Sercan Yıldıza, Juan Pablo Vielmab,c,⇤

aTepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
United States

bSloan School of Management, Massachusetts Institute of Technology, 77 Massachusetts Ave.,
Cambridge, MA 02139, United States

cDepartment of Industrial Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh,
PA 15261, United States

Abstract

The standard way to represent a choice between n alternatives in Mixed Integer
Programming is through n binary variables that add up to one. Unfortunately, this
approach commonly leads to unbalanced branch-and-bound trees and diminished
solver performance. In this paper, we present an encoding formulation frame-
work that encompasses and expands existing approaches to mitigate this behavior.
Through this framework, we generalize the incremental formulation for piecewise
linear functions to any finite union of polyhedra with identical recession cones.

Keywords: Mixed Integer Programming, Disjunctive Programming,
Formulations

1. Introduction

A textbook approach to selecting among n discrete alternatives in a Mixed
Integer Programming (MIP) problem is to utilize n binary variables {yi}ni=1 with
the additional requirement that they add up to one. In particular, this is captured
by the set Dn := �n \ {0, 1}n where �n :=

�

y 2 Rn
+ :

Pn
i=1 yi = 1

. For instance,
given a finite set {a1, . . . , an} ⇢ R, we may model the constraint x 2 {a1, . . . , an}

⇤Corresponding author. Tel.:+1 617 324 1204
Email addresses: syildiz@andrew.cmu.edu (Sercan Yıldız), jvielma@mit.edu (Juan

Pablo Vielma)

Preprint submitted to Elsevier September 13, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83229897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

via the MIP formulation given by

x =
n

X

i=1

aiyi, y 2 Dn. (1)

This approach is quite simple and, as we discuss in Section 3, it can be easily
extended to more general settings. Unfortunately, although the approach is usually
quite e↵ective, it has some unfavorable properties that can slow down branch-and-
bound based MIP solvers. These properties stem from the way the formulation is
a↵ected by standard variable branching in a branch-and-bound algorithm. While
fixing a given binary variable yi to one (usually denoted up-branching) fixes all
other variables to zero, fixing the same variable to zero (usually denoted down-
branching) does not impose any constraints on the other variables (unless n = 2).
It is well-known that this behavior leads to unbalanced branch-and-bound trees
and may result in long solution times.

To this date, there have been three central approaches to dealing with the
branching issues that arise in formulations based on Dn. The first approach re-
places the usual variable branching strategy with a more sophisticated constraint
branching scheme [1]. For instance, Beale and Tomlin [2] introduced SOS1
branching as a very e↵ective branching scheme for Dn and other related sets. Un-
fortunately, if SOS1 branching is not implemented using modern techniques, it
can be slower than variable branching in state-of-the-art solvers [3]. One way
to circumvent this problem is to use binary variables to simulate a specialized
constraint branching scheme [4, 5]. The second approach is normally employed
in scheduling problems where selecting option i corresponds to executing a cer-
tain activity in period i. In this setting, we can use an alternative set of binary
variables that instead indicate whether the activity is executed in period i or be-
fore. These new variables are sometimes called by-variables and lead to balanced
branch-and-bound trees that can significantly reduce solution times [6–12]. The
third approach proposes to model n alternatives with a number of binary variables
that is logarithmic in n [5, 13–17]. This approach tends to generate more balanced
branch-and-bound trees, but, as we will see in Section 2, they are not immune
to imbalance issues either. Nevertheless, formulations that are built using a log-
arithmic number of binary variables usually provide a significant computational
advantage.

The encoding formulations that we describe in Section 2 provide a general
framework in which all three approaches can be viewed. In Section 3, we use
this framework to come up with an incremental formulation for the finite union

2

of polyhedra with identical recession cones. We end the paper with a note on the
selection of encodings in Section 4. In the remainder, we let [n] := {1, . . . , n} with
the understanding that [0] = ;. We use 0

n 2 Rn to refer to the n-dimensional
vector of all zeros and ei,n 2 Rn to refer to the ith n-dimensional standard unit
vector.

2. Encoding Formulations and Branch-and-Bound

The basis for our analysis will be a reformulation of Dn which has been part
of the mathematical programming folklore since at least 1972 [13] and which
has recently been re-discovered by several authors [5, 15, 17]. This formulation
requires a set of vectors

n

bi
on

i=1
✓ {0, 1}m such that bi , bj for any i , j. For any

such set, it models y 2 Dn as

n
X

i=1

yi = 1, u =
n

X

i=1

biyi, u 2 {0, 1}m , y 2 Rn
+. (2)

A key theoretical strength of (2) is the tightness of its LP relaxation. In this
regard, a MIP formulation has the strongest possible property when all extreme
points of its LP relaxation obey the corresponding integrality requirements. Such
formulations are referred to as locally ideal by Padberg [18] and Padberg and Rijal
[19]. We note here that (2) is locally ideal for any choice of

n

bi
on

i=1
✓ {0, 1}m as

long as bi , bj for any i , j [16, 17].
Formulation (2) may seem wasteful as it contains more variables and con-

straints than the original definition of Dn. However, depending on the choice of
n

bi
on

i=1
, (2) can present a computational advantage by significantly reducing the

number of binary variables or by leading to more balanced branch-and-bound
trees. One reason for this advantage stems from the fact that variable branching
on u induces a constraint branching scheme on y in the spirit of [4, 5]. More
specifically, we have that up-branching on the variable uj fixes yi = 0 for all i such
that bi

j = 0 while down-branching on uj fixes yi = 0 for all i such that bi
j = 1.

The e↵ectiveness of this induced branching scheme will of course depend on the
choice of

n

bi
on

i=1
. We now describe three such choices and analyze the branching

schemes they induce. We will refer to the resulting formulations as encoding for-
mulations since one can think of

n

bi
on

i=1
as an encoding of a selection among the

alternatives in the sense that u = bi if and only if alternative i is selected.

3

We obtain the simplest encoding when we set m = n and bi = ei,n. In this case,
(2) reduces to

n
X

i=1

yi = 1, ui = yi, 8 i 2 [n], (3)

u 2 {0, 1}n , y 2 Rn
+,

which is nothing more than a redundant reformulation of Dn. We can easily see
that the induced branching scheme is just the standard variable branching on y
and, hence, we do not obtain any benefits. We refer to this choice as the unary
encoding formulation.

A more meaningful choice appears in the development of logarithmic-sized
formulations. For ease of exposition, let us assume that n = 2k for some positive
integer k 2 Z+ although the approach can easily be adapted to more general cases
as well. In this setting, we can simply let m = k and

n

bi
on

i=1
= {0, 1}m. This choice

transforms (2) into a formulation with a logarithmic number of binary variables
which was the original case studied in [5, 13, 15, 17]. The induced constraint
branching scheme is not quite clear, but we can easily see that it creates balanced
branch-and-bound trees by observing that we have

�

�

�

�

n

i 2 [n] : bi
j0 = 0, bi

j = uj, 8 j 2 J
o

�

�

�

�

=
�

�

�

�

n

i 2 [n] : bi
j0 = 1, bi

j = uj, 8 j 2 J
o

�

�

�

�

for all j0 2 [m], J ✓ [m] \ { j0} and u 2 {0, 1}m. Here, J can be considered as
the subset of

n

uj
om

j=1
which has been fixed to some value at a particular node of

the branch-and-bound tree. Together with the reduced number of variables, this
property can lead to a significant computational advantage. We refer to this choice
as the binary encoding formulation.

While the binary encoding formulation induces a non-trivial branching scheme,
as noted in [5], it does not induce the traditional SOS1 constraint branching
scheme. To construct a formulation that induces SOS1 branching on y, we can
set m = n � 1, b1 = 0

m and bi =
Pi�1

j=1 e j,m for all i 2 {2, . . . , n}. In this case, we
have that up-branching on the variable uj fixes yi = 0 for all i  j while down-
branching on uj fixes yi = 0 for all i > j. Thus, we recover precisely the SOS1
branching scheme of Beale and Tomlin [2]. We refer to this choice as the incre-
mental encoding formulation because it can be used to construct a formulation for
piecewise-linear functions that is known as the incremental model in the literature.

4

To illustrate the potential advantage of the incremental encoding formulation,
we study the behavior of a simple branch-and-bound algorithm on the di↵erent
formulations of the following simple problem. For a given a 2 (Z \ {0})n such that
ai < ai+1 for all i 2 [n � 1], consider the problem

min |x| (4a)
s.t.

x 2 {a1, . . . , an} . (4b)

We can use (2) to model the discrete alternatives constraint (4b) and usual linear
programming tricks to linearize the objective function. Applying these techniques
leads us to the MIP formulation of (4) given by

min t (5a)
s.t.

x  t, �x  t (5b)

x =
n

X

i=1

aiyi,
n

X

i=1

yi = 1, y 2 Rn
+, (5c)

u =
n

X

i=1

biyi, u 2 {0, 1}m . (5d)

Note that, in (5), we have modeled the discrete alternatives constraint and lin-
earized the objective function independently. While it is possible to construct a
stronger formulation for this problem by considering both aspects at the same
time, we refrain from this because our intent here is to evaluate the e↵ectiveness
of the formulations as they would be used in practice where di↵erent portions
of an optimization problem are modeled independently and then combined. The
following proposition shows that the incremental encoding formulation never re-
quires branching on more than a single variable to solve this problem. In contrast,
there are choices of n and a for which the unary and binary encoding formulations
may need branching on up to n/2 and log2 n variables, respectively.

Proposition 2.1.

1. For any n and choice of a 2 (Z \ {0})n, the incremental encoding version
of (5) can be solved by a branch-and-bound algorithm by branching on at
most one variable.

5

2. If n is even, ai < 0 for all i  n/2 and ai > 0 for all i > n/2, then a branch-
and-bound algorithm solving the unary encoding version of (5) requires
branching on at least n/2 variables.

3. If n is a power of two, ai < 0 < an for all i  n�1, then a branch-and-bound
algorithm solving the binary encoding version of (5) requires branching on
at least log2 n variables.

Proof. Prior to any branching, the LP relaxation of (5) equals the interval [a1, an]
in the x-space. When an < 0 or a1 > 0, the optimal solution of the LP relaxation
occurs at one of the endpoints of this interval and satisfies (4b). Therefore, no
branching is necessary. Otherwise, there exists i⇤ 2 [n] such that ai⇤ < 0 < ai⇤+1.
It is clear that the optimal solution to (4) is either x = ai⇤ or x = ai⇤+1. Recall that,
in the incremental encoding formulation, we have bi

i⇤ = 0 for all i  i⇤ and bi
i⇤ = 1

for all i > i⇤. Hence, up-branching on the single variable ui⇤ fixes yi = 0 for all
i  i⇤ while down-branching on ui⇤ fixes yi = 0 for all i > i⇤. When projected on to
the x-space, the LP relaxation of (5) in the first branch corresponds to the interval
[ai⇤+1, an] and has the optimal solution x = ai⇤+1. Similarly, the LP relaxation in
the second branch projects down to [a1, ai⇤] and has the optimal solution x = ai⇤ .
This proves Claim 1.

Now, suppose a branch-and-bound algorithm can solve the unary encoding
version of (5) by branching on the variables {ui}i2K where K ⇢ [n] and |K| < n/2.
As we have observed before, up-branching on the variable ui fixes yi = 1 and
y j = 0 for all j , i in the unary encoding formulation. Hence, the optimal value
of (5) at any leaf reached by up-branching on a variable ui must equal |ai| > 0. On
the other hand, the LP relaxation of (5) at the leaf reached by down-branching on
all {ui}i2K has the optimal value 0 since there exist distinct i0, j0 2 [n] \ K such that
i0  n/2 and j0 > n/2 and the projection of the LP relaxation on to the x-space
contains 0. This leaf could have been pruned by neither integrality nor bound and
must still be active. This contradiction proves Claim 2.

The proof of Claim 3 follows an outline similar to that of Claim 2. Let l :=
log2 n and suppose a branch-and-bound algorithm can solve the binary encoding
version of (5) by branching on the variables {ui}i2K where K ⇢ [l]. At termination,
the branch-and-bound tree has a leaf at which u = bn is a feasible assignment. Let
j0 2 [l] \ K. Let i0 2 [n] be such that bi0

j0 = 1 � bn
j0 and bi0

j = bn
j for all j , j0.

It follows that u = bi0 is a feasible assignment at this leaf as well. The fact that
ai0 < 0 implies that the projection of the LP relaxation of (5) on to the x-space at
this leaf contains 0. Again, we conclude that this leaf could have been pruned by
neither integrality nor bound. This completes the proof of Claim 3.

6

3. Incremental Formulations

An interesting behavior of the incremental encoding formulation is that it natu-
rally induces the order u1 � u2 � . . . � un�1. This ordering condition is also shared
by the by-variable formulations [6–12], which explains why they lead to balanced
branch-and-bound trees. Moreover, it is explicitly imposed in other more compli-
cated ad-hoc formulations for piecewise-linear functions [20–23] and probabilis-
tic constraints [24, 25]. We now show that all these formulations can be obtained
through a generic procedure.

The first step in this procedure is to note that we can use Dn to formulate
more general discrete alternatives by using the following formulation introduced
by Lowe [26] and Jeroslow and Lowe [27].

Proposition 3.1 ([26, 27]). Let {Pi}ni=1 be a finite family of polyhedra such that
there exists

n

rk
oR�1

k=0
⇢ Rd and

n

v j
i

oVi�1

j=0
⇢ Rd for i 2 [n] such that Pi := conv

n

v j
i

oVi�1

j=0
+

cone
n

rk
oR�1

k=0
for all i 2 [n]. Then a MIP formulation of x 2 Sn

i=1 Pi is given by

x =
n

X

i=1

Vi�1
X

j=0

� j
i v

j
i +

R�1
X

k=0

µkrk, (6a)

Vi�1
X

j=0

� j
i = yi, 8 i 2 [n], (6b)

µ � 0, �i � 0, 8 i 2 [n], y 2 Dn. (6c)

Formulation (6) is locally ideal [26–28]. We can combine this standard for-
mulation with the generic encoding formulation (2) of Dn to obtain the following
generalization of a formulation for piecewise-linear functions introduced in [16].

Corollary 3.2. Let {Pi}ni=1 be a finite family of polyhedra such that there exists
n

rk
oR�1

k=0
⇢ Rd and

n

v j
i

oVi�1

j=0
⇢ Rd for i 2 [n] such that Pi := conv

n

v j
i

oVi�1

j=0
+

cone
n

rk
oR�1

k=0
for all i 2 [n]. Then a MIP formulation of x 2 Sn

i=1 Pi is given by

7

x =
n

X

i=1

Vi�1
X

j=0

� j
i v

j
i +

R�1
X

k=0

µkrk, (7a)

n
X

i=1

Vi�1
X

j=0

� j
i = 1, u =

n
X

i=1

Vi�1
X

j=0

bi� j
i , (7b)

µ � 0, �i � 0, 8 i 2 [n], u 2 {0, 1}m . (7c)

The fact that (7) is locally ideal follows directly from the similar result on (2).
For the specific case of the incremental encoding, we can use simple algebraic
manipulations to obtain the following formulation which explicitly considers the
order property among the u variables.

Proposition 3.3. Let {Pi}ni=1 be a finite family of polyhedra such that there ex-
ists

n

rk
oR�1

k=0
⇢ Rd and

n

v j
i

oVi�1

j=0
⇢ Rd for i 2 [n] such that Pi := conv

n

v j
i

oVi�1

j=0
+

cone
n

rk
oR�1

k=0
for all i 2 [n]. Then a MIP formulation of x 2 Sn

i=1 Pi is given by

x = v0
1 +

n�1
X

i=1

ui

⇣

v0
i+1 � vVi�1

i

⌘

(8a)

+

n
X

i=1

Vi�1
X

j=1

� j
i

⇣

v j
i � v0

i

⌘

+

R�1
X

k=0

µkrk,

ui  �Vi�1
i , 8 i 2 [n � 1], (8b)

Vi+1�1
X

j=1

� j
i+1  ui, 8 i 2 [n � 1], (8c)

V1�1
X

j=1

� j
1  1, (8d)

µ � 0, �i � 0, 8 i 2 [n], u 2 {0, 1}n�1 . (8e)

Proof. We exhibit a bijection which preserves the values of the x variables be-
tween points satisfying (8) and the incremental encoding version of (7). The claim
then follows from Corollary 3.2. In the rest of the proof, we refer to the incremen-
tal encoding version of (7) as simply (7). Let (x, u, �, µ) be a solution to (7). Define
u0 := 1 and un := 0 and observe that (7b) can be rewritten as ui =

Pn
l=i+1

PVl�1
j=0 �

j
l

8

for all i 2 {0, 1, . . . , n � 1} when the vectors
n

bi
on

i=1
are chosen according to incre-

mental encoding. Let �
j
i := �

j
i for all j 2 [Vi � 2] and �

Vi�1
i := ui + �

Vi�1
i for all

i 2 [n]. The validity of (8b) and (8e) for (x, u, �, µ) follows from the definition of �
and the non-negativity of �. Similarly, (8c) and (8d) are satisfied because the non-
negativity of � implies

PVi+1�1
j=1 �

j
i+1 = ui+1 +

PVi+1�1
j=1 �

j
i+1  ui+1 +

PVi+1�1
j=0 �

j
i+1 = ui

for all i 2 [n� 1] and
PV1�1

j=1 �
j
1 = u1 +

PV1�1
j=1 �

j
1  u1 +

PV1�1
j=0 �

j
1 = 1. To verify that

(8a) also holds, let r =
PR�1

k=0 µ
krk and observe

x =
n

X

i=1

Vi�1
X

j=0

�
j
i v

j
i + r

=

n
X

i=1

0

B

B

B

B

B

B

@

0

B

B

B

B

B

B

@

ui�1 � ui �
Vi�1
X

j=1

�
j
i

1

C

C

C

C

C

C

A

v0
i +

Vi�1
X

j=1

�
j
i v

j
i

1

C

C

C

C

C

C

A

+ r

=

n
X

i=1

0

B

B

B

B

B

B

@

(ui�1 � ui)v0
i +

Vi�1
X

j=1

�
j
i (v

j
i � v0

i)

1

C

C

C

C

C

C

A

+ r

= v0
1 +

n�1
X

i=1

ui(v0
i+1 � v0

i) +
n

X

i=1

Vi�1
X

j=1

�
j
i (v

j
i � v0

i) + r

= v0
1 +

n�1
X

i=1

ui(v0
i+1 � v0

i)

+

n
X

i=1

0

B

B

B

B

B

B

@

Vi�2
X

j=1

�
j
i (v

j
i � v0

i) + (�
Vi�1
i � ui)(vVi�1

i � v0
i)

1

C

C

C

C

C

C

A

+ r

= v0
1 +

n�1
X

i=1

ui(v0
i+1 � vVi�1

i) +
n

X

i=1

Vi�1
X

j=1

�
j
i (v

j
i � v0

i) + r.

To prove the reverse inclusion, let (x̃, ũ, �̃, µ̃) be a solution to (8). Define ũ0 :=
1 and ũn := 0 and let �̃ j

i := �̃ j
i for all j 2 [Vi � 2], �̃Vi�1

i := �̃Vi�1
i � ũi and

�̃0
i := ũi�1 �

PVi�1
j=1 �̃

j
i for all i 2 [n]. It is not di�cult to see that these definitions

imply ũi =
Pn

l=i+1
PVl�1

j=0 �̃
j
l for all i 2 {0, 1, . . . , n � 1}. Furthermore, the equalities

in the first part of the proof continue to hold. Thus, (x̃, ũ, �̃, µ̃) satisfies (7a)-(7b).
To complete the proof, it is enough to show that �̃ is non-negative. However, this
follows directly from its definition and (8b)-(8c).

Formulation (8) is locally ideal. To see this, observe that the linear mapping

9

defined in the proof of Proposition 3.3 is in fact a bijection between points satisfy-
ing the LP relaxations of (8) and the incremental encoding version of (7). Given
any solution to the LP relaxation of (8) in which the u variables have fractional
values, this mapping associates with it a solution to the LP relaxation of (7) with
the same u values. However, this cannot be an extreme point solution to the LP
relaxation of (7) by the simple fact that (7) is locally ideal. Hence, it can be ex-
pressed as the convex combination of other solutions to the LP relaxation of (7).
Mapping these solutions back to (8) and using the continuity of linear mappings
shows that the LP relaxation of (8) cannot have any extreme point solutions that
violate the integrality restrictions.

Formulation (8) generalizes a formulation introduced by Wilson [23] for piecewise-
linear functions in two ways. First, it presents a direct extension from piecewise-
linear functions to the union of a finite number of arbitrary polyhedra with iden-
tical recession cones. Second, it enjoys a broader scope of applicability by elim-
inating the need for a topological condition that was required for the validity of
Wilson’s formulation.

We may obtain other incremental formulations through the following rather
straightforward lemma.

Lemma 3.4. The incremental encoding formulation for y 2 Dn is equivalent to

u 2 {0, 1}n�1 , ui � ui+1, 8 i 2 [n � 2], (9a)
y1 = 1 � u1, yn = un�1, (9b)

yi = ui�1 � ui, 8 i 2 {2, . . . , n � 2} . (9c)

Given any formulation that requires y 2 Dn, we can replace this constraint
with (9a) and eliminate every occurrence of y through the relationships (9b)-(9c).
For instance, following this procedure leads us to the formulation for probabilistic
constraints studied in [24, 28] from a standard formulation introduced in [29–31].
We refer the readers to [28] for details on this specific transformation.

4. Creating and Selecting Encodings

In this paper, we have concentrated on the unary, binary and incremental en-
codings. While formulations that use the binary and incremental encodings usu-
ally outperform those that use the unary encoding, it can still be hard to predict
which encoding will perform best in a specific class of instances. For example,
[5, 16] present computational results which show that formulations for piecewise-
linear functions based on the binary encoding can significantly outperform those

10

based on the unary and incremental encodings. In contrast, in a di↵erent set of
problems, [32] reports that the incremental formulation performs better than the
binary encoding formulation. Formulation (7) o↵ers a convenient way to pre-
liminarily evaluate the performance of these three encodings without having to
hard-code the specific formulations derived from them (e.g., (8) for the incremen-
tal encoding). Furthermore, (7) is valid for any selection of distinct binary vectors
n

bi
on

i=1
and hence can be used to construct alternative formulations that could out-

perform all three previously considered encodings. Developing techniques for
constructing such alternative encodings is beyond the scope of this paper, but to
illustrate their potential, we present a hierarchy of encodings that combine the
properties of the incremental and unary encodings. Such encodings could be use-
ful in settings where the incremental encoding works best in certain portions of
the problem while the binary encoding works best in others.

To simplify presentation, we assume in the rest of this section that n is a power
of 2. The hierarchy we propose is indexed by h 2 �

0, 1, . . . , log2 n

, which can be
considered as the number of bits of

n

bi
on

i=1
that behave as in the binary encoding.

Let tl := n/2l. For a given value of h, we set m = h + th � 1 and define the
vectors

n

bi
on

i=1
⇢ Rm in the encoding as follows: For all l 2 [h], let bi

l = 1 if
there exists p 2 [d2l�1e] such that i 2 {2(p � 1)tl + 1, . . . , (2p � 1)tl} and bi

l = 0
otherwise. For all s 2 [th � 1], let bi

h+s = 1 if there exists p 2 [d2h�1e] such
that i 2 {2(p � 1)th + s + 1, . . . , (2p � 1)th + s} and bi,h+s = 0 otherwise. Figure 1
shows this hierarchy of encodings in matrix form (we present a matrix whose
columns are

n

bi
on

i=1
) for n = 8 and h 2 {0, 1, 2, 3}. Note that p indexes the blocks

of contiguous 1’s in each row in the definition above. It can be seen that setting
h = 0 produces the incremental encoding whereas setting h = log2 n (or even
h = log2 n � 1) produces the binary encoding. However, using di↵erent values of
h yields hybrid encodings that share aspects of both the binary and incremental
encodings. For instance, choosing h = 1 in Figure 1 yields an encoding where
the selection between the sets of options {1, . . . , 4} and {5, . . . , 8} is done as in the
binary encoding while the selection among the options in {1, . . . , 4} or {5, . . . , 8}
is done as in the incremental encoding.

References

[1] D. M. Ryan, B. A. Foster, An integer programming approach to scheduling,
in: A. Wren (Ed.), Computer Scheduling of Public Transport Urban Passen-

11

0

BBBBBBBBBBB@

0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCA

(a) h = 0

0

BBBB@

1 1 1 1 0 0 0 0

0 1 1 1 1 0 0 0

0 0 1 1 1 1 0 0

0 0 0 1 1 1 1 0

1

CCCCA

(b) h = 1
0

B@
1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0

1

CA

(c) h = 2

0

B@
1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1

CA

(d) h = 3

Figure 1: Encodings in the hierarchy for n = 8.

ger Vehicle and Crew Scheduling, North-Holland, 1981, pp. 269–280.

[2] E. M. L. Beale, J. A. Tomlin, Special facilities in a general mathematical pro-
gramming system for non-convex problems using ordered sets of variables,
in: OR 69: Proceedings of the Fifth International Conference on Operational
Research, pp. 447–454.

[3] J. P. Vielma, A. B. Keha, G. L. Nemhauser, Nonconvex, lower semicontinu-
ous piecewise linear optimization, Discrete Optimization 5 (2008) 467–488.

[4] J. A. Appleget, R. K. Wood, Explicit-constraint branching for solving
mixed-integer programs, volume 12 of Operations Research / Computer
Science Interfaces Series, Kluwer, 2000, pp. 245–261.

[5] J. P. Vielma, G. L. Nemhauser, Modeling disjunctive constraints with a
logarithmic number of binary variables and constraints, Mathematical Pro-
gramming 128 (2011) 49–72.

[6] D. L. Bricker, Reformulation of special ordered sets for implicit enumeration
algorithms with applications in nonconvex separable programming, AIIE
Transactions 9 (1977) 195–203.

12

[7] E. Y. H. Lin, D. L. Bricker, On the calculation of true and pseudo penalties
in multiple choice integer programming, European Journal of Operational
Research 55 (1991) 228–236.

[8] W. Ogryczak, A note on modeling multiple choice requirements for simple
mixed integer programming solvers, Computers & Operations Research 23
(1996) 199–205.

[9] C. C. Souza, L. A. Wolsey, Scheduling Projects with Labour Constraints,
Relatório Técnico IC-97-22, IC - UNICAMP, 1997.

[10] C. C. B. Cavalcante, C. C. de Souza, M. W. P. Savelsbergh, Y. Wang, L. A.
Wolsey, Scheduling projects with labor constraints, Discrete Applied Math-
ematics 112 (2001) 27–52.

[11] R. H. Möhring, A. S. Schulz, F. Stork, M. Uetz, On project scheduling with
irregular starting time costs, Operations Research Letters 28 (2001) 149–
154.

[12] E. Y. H. Lin, D. L. Bricker, Connecting special ordered inequalities and
transformation and reformulation technique in multiple choice program-
ming, Computers & Operations Research 29 (2002) 1441–1446.

[13] D. C. Sommer, Computational experience with the ophelie mixed integer
code, 1972. Talk presented at the International TIMS Conference, Houston.

[14] T. Ibaraki, Integer programming formulation of combinatorial optimization
problems, Discrete Mathematics 16 (1976) 39–52.

[15] H. L. Li, H. C. Lu, Global optimization for generalized geometric programs
with mixed free-sign variables, Operations Research 57 (2009) 701–713.

[16] J. P. Vielma, S. Ahmed, G. L. Nemhauser, Mixed-integer models for nonsep-
arable piecewise-linear optimization: Unifying framework and extensions,
Operations Research 58 (2010) 303–315.

[17] W. P. Adams, S. M. Henry, Base-2 expansions for linearizing products of
functions of discrete variables, Operations Research 60 (2012) 1477–1490.

[18] M. Padberg, Approximating separable nonlinear functions via mixed zero-
one programs, Operations Research Letters 27 (2000) 1–5.

13

[19] M. W. Padberg, M. P. Rijal, Location, Scheduling, Design and Integer Pro-
gramming, volume 3 of International Series in Operations Research&Man-
agement Science, Springer, 1996.

[20] H. Markowitz, A. Manne, On the solution of discrete programming prob-
lems, Econometrica 25 (1957) 84–110.

[21] G. B. Dantzig, On the significance of solving linear-programming problems
with some integer variables, Econometrica 28 (1960) 30–44.

[22] G. B. Dantzig, Linear Programming and Extensions, Princeton University
Press, Princeton, 1963.

[23] D. L. Wilson, Polyhedral Methods for Piecewise-Linear Functions, Ph.D.
thesis, University of Kentucky, Lexington, KY, USA, 1998.

[24] J. Luedtke, S. Ahmed, G. L. Nemhauser, An integer programming approach
for linear programs with probabilistic constraints, Mathematical Program-
ming 122 (2010) 247–272.

[25] J. P. Vielma, S. Ahmed, G. L. Nemhauser, Mixed integer linear programming
formulations for probabilistic constraints, Operations Research Letters 40
(2012) 153–158.

[26] J. K. Lowe, Modelling with Integer Variables, Ph.D. thesis, Georgia Institute
of Technology, 1984.

[27] R. G. Jeroslow, J. K. Lowe, Modeling with integer variables, Mathematical
Programming Studies 22 (1984) 167–184.

[28] J. P. Vielma, Mixed integer linear programming formulation techniques, Op-
timization Online (2012). http://www.optimization-online.org/DB_
HTML/2012/07/3539.html.

[29] E. Balas, On the convex-hull of the union of certain polyhedra, Operations
Research Letters 7 (1988) 279–283.

[30] R. G. Jeroslow, A simplification for some disjunctive formulations, Euro-
pean Journal of Operational Research 36 (1988) 116–121.

[31] C. Blair, Representation for multiple right-hand sides, Mathematical Pro-
gramming 49 (1990) 1–5.

14

[32] B. Geißler, A. Martin, A. Morsi, L. Schewe, Using piecewise linear func-
tions for solving MINLPs, in: J. Lee, S. Ley↵er (Eds.), Mixed Integer Non-
linear Programming, volume 154 of The IMA Volumes in Mathematics and
its Applications, Springer, 2012, pp. 287–314.

15

	Introduction
	Encoding Formulations and Branch-and-Bound
	Incremental Formulations
	Creating and Selecting Encodings

