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Abstract

ATP-dependent protein remodeling and unfolding enzymes are key participants in protein 

metabolism in all cells. How these often-destructive enzymes specifically recognize target protein 

complexes is poorly understood. Here, we use the well-studied AAA+ unfoldase-substrate pair, E. 

coli ClpX and MuA transposase, to address how these powerful enzymes recognize target protein 

complexes. We demonstrate that the final transposition product, which is a DNA-bound tetramer 

of MuA, is preferentially recognized over the monomeric apo-protein through its multivalent 

display of ClpX recognition tags. The important peptide tags include one at the C-terminus (“C-

tag”) that binds the ClpX pore and a second (enhancement or “E-tag”) that binds the ClpX N-

terminal domain. We construct a chimeric protein to interrogate subunit-specific contributions of 

these tags. Efficient remodeling of MuA tetramers requires ClpX to contact a minimum of three 

tags (one C-tag and two or more E-tags), and that these tags are contributed by different subunits 

within the tetramer. The individual recognition peptides bind ClpX weakly (KD>70μM), but when 

combined in the MuA tetramer, impart a high-affinity interaction (KD~1.0 μM). When the weak 

C-tag signal is replaced with a stronger recognition tag, the E-tags become unnecessary and 

ClpX’s preference for the complex over MuA monomers is eliminated. Additionally, because the 

spatial orientation of the tags is predicted to change during the final step of transposition, this 

recognition strategy suggests how AAA+ unfoldases specifically distinguish the completed “end-

stage” form of a particular complex for the ideal biological outcome.

Keywords

adaptor protein; ClpXP; MuA; protein; chaperon; degron

*To whom correspondence should be addressed: phone: 617-253-3594, fax: 617-252-1852, tabaker@mit.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Mol Biol. Author manuscript; available in PMC 2016 September 11.

Published in final edited form as:
J Mol Biol. 2015 September 11; 427(18): 2966–2982. doi:10.1016/j.jmb.2015.03.008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Cells are densely packed with proteins that have structural and/or enzymatic roles essential 

for life. To help respond to environmental changes, manage protein turnover, and maintain 

protein quality control, cells employ energy-dependent unfoldases/disaggregases and 

proteases of the AAA+ enzyme family1 (ATPases associated with various cellular 

activities). Powered by cycles of nucleotide binding, hydrolysis, and release, these ATPases 

remodel complexes, solubilize aggregates, and degrade proteins when coupled with partner 

peptidases1,2. E. coli ClpX is arguably the best-characterized AAA+ unfoldase and is known 

to disassemble complexes and unfold target proteins3,4. ClpX can either act alone as a 

protein-remodeling enzyme or in a complex with the ClpP peptidase, forming the ClpXP 

protease. Within the ClpXP enzyme, ClpX recognizes, unfolds and translocates substrates 

into the degradation chamber of ClpP where the substrate is processed into short peptides. 

Because of its destructive power, ClpX must select substrates with exquisite precision to 

ensure proper substrates are chosen, and unfolding specifically occurs at the proper stage in 

a biochemical pathway. The sequences, affinities and organization of recognition signals 

used for different classes of ClpX substrates is being actively investigated.

Proteins targeted for ClpXP degradation or ClpX disassembly are recognized via short 

peptide sequences. These recognition signals, or tags, are often located near the termini of 

otherwise native substrate proteins5,6. Examples of substrates with N-terminal recognition 

tags are a protein that binds the phage λ origin of DNA replication (λO) and a subunit of a 

DNA repair/tolerance polymerase (UmuD)7,8. A well-characterized ClpX C-terminal signal 

is the 11-residue ssrA tag, which marks incompletely translated proteins from stalled 

ribosomes for degradation by ClpXP9. Some substrates have multicomponent recognition 

signals. Studies that identified ClpXP substrates in vivo revealed that numerous proteins 

carry multiple ClpX-recognition sequences and that many substrates were subunits of 

homomeric or heteromeric complexes 10,11. Thus, we are interested in understanding 

mechanistically how ClpX recognizes multi-protein complexes for remodeling or 

disassembly.

ClpX is a homohexamer. Each subunit contains three domains; the N-terminal zinc-binding 

domain (N-domain) and the large and small domains characteristic of the AAA+ ATPase 

fold 2,4. The ATPase domains of six subunits assemble into a donut-shaped complex with a 

central pore that binds the specific peptide tags on substrates and contains critical 

components of the active center for ATP-driven protein unfolding and translocation (e.g. the 

conserved pore loops). The N-domain forms dimers such that there are three N-domain 

dimers in a ClpX hexamer12,13. These N-domains bind auxiliary recognition peptides are 

present on adapter proteins or within some substrates; binding of these recognition-peptides 

to the ClpX N-domain enhances recognition of specific substrate proteins.

To investigate how ClpX specifically recognizes multi-protein complexes and does so at the 

proper step in a biological pathway, we used MuA transposase as a substrate. Phage Mu 

1Abreviations: AAA+, ATPases associated with various cellular activities superfamily; STC, Strand transfer complex; CDC, cleaved 
donor complex; C-tag, C-terminal recognition tag; E-tag, enhancement recognition tag
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duplicates its genome by replicative transposition, a process in which MuA binds DNA sites 

at the ends of the Mu genome, forms a tetramer that brings the two ends of the phage DNA 

together, and catalyzes the DNA cleavage and joining reactions necessary for 

transposition 14–16. These recombination steps of transposition are driven forward because 

each reaction step generates an increasingly stable nucleoprotein complex (transpososome). 

The final recombination complex is the hyperstable DNA product-bound transpososome (the 

strand transfer complex or STC)17. Remodeling by ClpX then converts this hyperstable 

MuA-DNA complex into a fragile complex, which facilitates MuA disassembly, release of 

the DNA, and recruitment of DNA-replication machinery18–20. Completion of the later 

stages of replicative transposition therefore requires that the stable, terminal STC be 

remodeled by ClpX. Genetic studies confirm that ClpX is essential for Mu growth, whereas 

ClpP is clearly dispensable21. Thus, the unfolding activity of ClpX is important for the Mu 

life cycle, rather than the protease activity of ClpXP.

Although both monomeric and DNA-bound tetrameric MuA are substrates of ClpX, the STC 

transpososomes are the highest-priority target. Thus, we sought to understand how 

preferential recognition and remodeling of this specific complex is achieved. Previous 

studies revealed that information in the C-terminal domain of MuA (domain IIIβ) plays a 

central role in guiding ClpX recognition. A tag at the very C-terminus of domain IIIβ 

(RRKKAI-COOH; termed “C-tag”) binds in the ClpX pore and is necessary for ClpX 

recognition of both monomeric MuA and of transpososomes18,22,23. However, 

transpososome recognition requires more than simply the avidity afforded by four C-tags. 

Efficient disassembly by ClpX was inferred to require additional sequence elements within 

MuA’s domain IIIβ based on the defect in disassembly resulting from three specific point 

mutations in this domain23. Furthermore, the N-domain of ClpX is critical for 

transpososome remodeling but plays little role in MuA monomer degradation23. Domain 

IIIβ of MuA transposase contains another regulatory region that interacts with the target 

DNA-delivery protein MuB. Interestingly, the site of MuB interaction at least partially 

overlaps with the C-tag recognized by ClpX, and MuB is an antagonist of the ClpX-

transpososome interaction22. Despite being a key regulatory domain, there is no high-

resolution structure of domain IIIβ. This region is predicted to be largely disordered, with 

some helical structure near the C-terminus24. Nonetheless, the low-resolution EM 

structure25 of the transpososome and the crystal structure of the STC26 constructed with 

MuA variants that contained the C-terminal domain through domain IIIα, help to constrain 

where domain IIIβ may lie within the STC.

Here, we define a specific domain IIIβ sequence as an enhancement or “E-tag” signal and 

demonstrate that this sequence is recognized by the N-domain of ClpX. To determine how 

the structure and geometry of the STC modulates ClpX recognition and activity, we 

designed a hybrid protein with novel DNA-binding specificity to control the location of 

subunits within assembled complex. This analysis reveals that efficient disassembly of STCs 

requires ClpX interaction with a minimum of three tags (one C-tag and two or more E-tags) 

distributed among the subunits of the MuA tetramer. Finally, replacing the natural C-tag of 

MuA with a high-affinity ClpX-targeting tag overrides the need for E-tags. These studies 

establish that preferential targeting of assembled MuA tetramers requires at least three 
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distinct contacts between MuA and ClpX and reveal key features of recognition sequences 

likely to be common in the specific biological recognition of multimeric protein complexes.

RESULTS

Identification of a region critical for enhanced recognition of transpososomes by ClpX

MuA transpososome assembly, recombination of DNA, and remodeling by ClpX have been 

reconstituted in vitro. MuA is a monomer in solution but assembles efficiently into STC 

transpososomes in vitro17. We generated STCs by incubating MuA with supercoiled plasmid 

DNA containing “right” and “left” DNA binding sites for MuA (Fig. 1a)27. Under the 

conditions used, attack on a target DNA proceeds rapidly after an active MuA tetramer is 

formed on the donor plasmid, and the target site used is usually another location on the same 

plasmid (i.e. transposition is largely intramolecular)28. On a native agarose gel, stable STC 

transpososomes (asterisk) migrates more slowly than the supercoiled substrate plasmid 

(black arrow in Fig.1b & 1c). In contrast, the fragile complex is unstable during 

electrophoresis, and the liberated DNA transposition products are visible as a characteristic 

series of topoisomers (Fig. 1b & 1c). To quantify the rate and extent of ClpX remodeling, 

we measured appearance of the fastest running topoisomer (white arrow) of the 

recombination products. Migration of this specific product is rapid, as it is the only product 

isomer that constrains supercoils from the substrate miniMu plasmid29. Using this species as 

the remodeling product insured that we specifically measured ClpX activity against STC 

transpososomes that had successfully completed the recombination phases of Mu 

transposition.

MuA is a multi-domain protein (Fig. 2a) and belongs to the DDE family of transposases and 

integrases (reviewed in 22–24). The majority of the structure of MuA is known, including 

the architecture of the transpososome 26,33–35, but there is little structural information about 

domain IIIβ, which contains the C-tag and three arginine residues that appear to participate 

in transpososome-specific contacts with ClpX 23. To search domain IIIβ for the specific 

sequence element(s) important in recognition by ClpX, we mutated blocks of residues near 

suspected interaction regions to aspartic acids 

(617IVG→DDD; 620IF→DD; 623PS→DD; 625GN→DD; 654IL→DD, and 656EQN→DDD) 

surrounding a previously mutated 622R→A residue23. We used nonconservative Asp 

substitutions because acidic residues disrupt ClpX interactions with other recognition tags in 

contrast to Ala, which often binds ClpX well36. The rate that ClpXP degraded MuA 

monomers and their variants was determined (Fig. 2c). Furthermore, after assembly into 

stable STCs, the efficiency of remodeling by ClpX was also quantified (Fig. 2b). These 

experiments were performed at substrate concentrations significantly below the apparent KM 

of ClpX for wild-type transpososomes23. The 620IF→DD mutation had dramatic effects on 

both degradation and disassembly by ClpXP, the 622R→A and 623PS→DD mutations had 

major effects on disassembly but not degradation, and the remaining mutations had small 

effects on both reactions (Fig. 2d). Thus, residues 620–624 (called the E-tag hereafter) 

appear to function as a peptide signal that enhances STC recognition by ClpX.

To quantify how mutations in the E-tag affect the interaction between STCs and ClpX, we 

assayed rates of disassembly of complexes constructed with either wild type or 
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the 623PS→DD MuA variant at different concentrations of ClpX. Because of technical 

difficulties of obtaining STCs in high concentration, we determined the disassembly rate 

constants from single-turnover kinetics. The apparent rate (kobs) was calculated at each ClpX 

concentration from the semilog plot (Fig. 3a). Values for kobs were then plotted as a function 

of ClpX (Fig. 3b). These data were fit (as described in 21 and 29) to determine the enzyme 

concentration needed to achieve half-maximal velocity (apparent KM) and the disassembly 

rate at saturating enzyme concentrations (apparent Vmax). We used the terminology of 

apparent KM (appKM) and apparent Vmax (appVmax) even though the reaction pathway 

describing disassembly of STCs does not fulfill the standard assumptions of Michaelis-

Menten equation; nonetheless, they provide reproducible, valuable terms useful in 

comparing the impact of various MuA or ClpX mutants on disassembly. Compared to STCs 

consisting of all wild-type MuA, disassembly of 623PS→DD MuA complexes had a five-

fold slower maximal velocity and required 8-fold higher concentrations of ClpX to achieve 

50% of this maximal rate. Thus the 623PS→DD mutations in MuA impact both initial ClpX 

recognition of STCs as well as a subsequent step(s) important for disassembly (see 

Discussion).

The MuA E-tag interacts with the N-domain of ClpX

Efficient disassembly of Mu STCs requires the ClpX N-domain23, which is a docking site 

for specific peptide signals in some substrates and adaptor-substrate complexes. For 

example, a peptide in the SspB adaptor binds to the N-domain of ClpX and thereby tethers 

specific substrates to ClpXP to enhance their degradation 38–41. Thus, we reasoned that the 

E-tag in one or more MuA subunit(s) might bind to the N-domain of ClpX, providing 

adaptor-like contacts to enhance recognition specifically of STCs. Indeed, we detected weak 

binding (KD ~380 μM) between the purified ClpX N-domain and a fluorescein-labeled 

peptide carrying the E-tag (MuA residues 614–633) by fluorescence anisotropy (Fig. 4a). 

Importantly, when we changed the 622RPS sequence in the synthetic peptide to DDD, N-

domain binding was reduced by at least a factor of 10 (Fig. 4a). These results strongly 

support the hypothesis that the E-tag makes weak adapter-like contacts between MuA and 

the N-domain of ClpX.

The C-tag of MuA is an intrinsically poor ClpX signal

MuA monomers are degraded by ClpXP with a appKM of ~10 μM23, whereas a peptide 

substrate carrying just the minimal C-tag of MuA is degraded with a appKM of ~70 μM42. 

We measured the degradation tag efficiency of this MuA C-tag by fusing a short peptide 

containing the last ten residues of MuA (LEQNRRKKAI) to the C-terminus of the N-

terminal domain of the λcI repressor (λNcI-MuC-tag). This fusion protein was degraded by 

ClpX with an appKM of ~90 μM (Fig. 4b). These results demonstrate that the native MuA C-

tag is a feeble ClpX recognition signal when acting in isolation. In contrast the STC is 

remodeled by ClpX with an appKM of ~1 μM (Fig. 3b). Previous studies establish that 

transpososomes containing only one MuA subunit bearing a C-tag are efficiently remodeled 

by ClpX 23,43. Thus, the additional ClpX contacts present in MuA, and especially in the 

STC, dramatically enhance recognition; the cohort of tags displayed by the STC produce a 

strong “composite remodeling signal” between the transpososome and ClpX. In the 
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experiments presented below, we address how, within the architecture of MuA complexes, 

the E-tags contribute to recognition and remodeling by ClpX.

Step-wise loss of E-tags weakens ClpX affinity for complexes

Biochemical and structural studies have shown that there are two different classes of 

subunits within the MuA tetramer25,26,44. The Mu transpososome structure shown in Fig. 5a 

has 2-fold symmetry around its vertical axis, but the upper and lower subunits adopt 

different conformations. Note that tetramers for structural studies were formed using two 

identical DNAs that mimic the phage right end, but such complexes are highly active in 

vitro and expected to be structurally similar to those formed with natural left and right 

ends26,45. The active sites of the catalytic class-1 subunits (green in Fig. 5a) are positioned 

for DNA cleavage and strand transfer (the DNA ligation activity catalyzed by MuA during 

transposition). In contrast, the active sites of the class-2 subunits (purple and pink in Fig. 5a) 

face solvent and are far from any DNA. We sought to determine how the positions of MuA 

subunits in the transpososome affect the ability of their E-tags to enhance recognition and 

activity of ClpX against the Mu STC.

To assay the E-tag contributions of individual subunits, we engineered a chimeric MuA 

variant that facilitated assembly of complexes with a defined mixture of wild-type and 

mutant subunits. For subunit-specific mutations we improved upon a strategy of creating a 

variant MuA protein with distinct binding specificity46. The transpososome structure 

suggested that the sequence-specific DNA binding domains (Iβ and Iγ) of the class-2 

subunits could be swapped for heterologous DNA binding domains because they make no 

protein-protein contacts within the tetramer (Fig. 5a). We therefore constructed a “SinMu” 

chimera comprised of the DNA-binding domain from Sin resolvase (residues 147–200), 

which recognizes a DNA sequence distinct from MuA47,48, covalently joined to domains II 

and III of MuA (residues 253–663) via a short flexible polypeptide linker (Fig. 5b). We also 

constructed an altered-specificity DNA substrate from a parental mini-Mu plasmid (see 

Materials and methods). The resulting DNA (pSinRRSin) carried symmetrical protein 

binding sites on the left and right ends of the “mini Mu transposon” sequence with native 

MuA-binding sites for each of the two catalytic (class-1) subunits and Sin-DNA binding 

sites for each of the two structural (class-2) subunits (Fig. 5c). Assembly of mixed subunit 

STCs with the pSinRRSin plasmid depended on the presence of both MuA and SinMu 

proteins (Fig. 5d, lane 6); these data reveal that these mixed subunit transpososomes were 

fully competent to assemble stable complexes and carryout the DNA cleavage and joining 

reactions needed for transposition. In contrast no stable complex formation or catalytic 

activity was detected in reactions containing either MuA or SinMuA alone (Fig. 5d, lanes 2–

5). We conclude from these mixing experiments, that the Sin-DNA sites position SinMu 

subunits to become the class-2 subunits whereas two subunits of wild type MuA become the 

class-1 subunits in these transpososomes.

ClpX disassembled mixed subunit STCs (with two WT MuA subunits and two SinMuA 

subunits) efficiently when all four subunits carried wild-type domain IIIβ, with intact E-tags 

and C-tags. The appKM for disassembly was ~1.3 μM and an appVmax was 3.0 min−1 (Fig. 6a, 

black). These kinetic parameters are very similar to the values for disassembly of native 
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MuA STCs (Fig. 3b), indicating that the presence of the Sin DNA-binding domain does not 

significantly alter ClpX’s ability to remodel the complexes. In contrast, with this hybrid 

DNA substrate (pSinRRSin), ClpX disassembly of transpososomes assembled with a 

mixture of SinMuA and MuAΔC8 subunits was barely detectable (Fig. 6a, gray). As the 

MuAΔC8 protein can only occupy the class-1 position of our hybrid substrate, this result 

agrees with earlier experiments (not using SinMu) which established that efficient ClpX 

recognition of an STC requires at least one class-1 subunit to have a functional C-tag49,50.

We also assayed ClpX disassembly of transpososomes bearing the 623PS→DD E-tag 

mutations in class-1 subunits (appKM ~4.5 μM), class-2 subunits (appKM ~4.4 μM), or all 

four subunits (appKM ~11.5 μM) (Fig. 6b). These data reveal that E-tags in both catalytic 

subunits and structural subunits of the STC contribute to its recognition by ClpX. 

The appVmax for transpososome disassembly was also reduced by E-tag mutations in both 

types of subunits, albeit to different extents, indicating that post-recognition steps in STC 

remodeling are also hampered by removal of functional E-tags. Interestingly, having fully 

functional E-tags on the class-2 subunits was more important for ClpX to engage a class-1 

subunit for unfolding. These data show a benefit the assembled complex imparts to the ClpX 

remodeling reaction since interaction with both a class-1 and a class-2 subunit is needed to 

achieve the more rapid unfolding/remodeling events (see Fig. 8 and discussion).

Transpososomes with a strong C-tag do not require E-tags for efficient disassembly

Our results support a model in which the sequences throughout the Mu STC transpososomes 

serve as “auto-adapters” for ClpX recognition. By this model, the E-tags of MuA, like an 

adapter, enhance ClpX’s affinity and activity for a substrate with a weak intrinsic pore-

binging tag, such as the weak C-tag of MuA. To test if the function of the four E-tags would 

be bypassed if the MuA C-tag was replaced by a C-tag with a much tighter affinity for the 

ClpX pore, we constructed a MuA variant in which the C-tag was replaced with an ssrA tag 

(MuAΔC-tagssrA; Fig. 7a). The appKM for ClpX disassembly of STCs composed of 

MuAΔC-tagssrA subunits with wild-type E-tags (1.6 ± 0.2 μM) was only marginally tighter 

than for STCs constructed with MuAΔC-tagssrA subunits with 623PS→DD E-tags (2.1 ± 0.3 

μM) and both values were close to that determined for wild-type MuA complexes (1.4 ± 0.2 

μM) (Fig. 7b). We conclude that the E-tag is unnecessary for efficient transpososome 

recognition in the context of a high-affinity C-tag. It was also clear that ssrA-tagged STC 

transpososomes were remodeled much faster than native complexes, indicating the sequence 

identity of the C-tag, and the presence or absence of E-tags influences both the initial 

affinity of ClpX for the STC as well as subsequent step(s) in catalysis of remodeling (Fig. 

7b; see Discussion). Furthermore, ClpXP degraded MuAΔC-tagssrA monomers with an 

apparent KM of 1.6 ± 0.4 μM (Fig. 7c), a very similar value as measured for recognition of 

the ssrA-tagged STCs. Thus, we conclude that the tight-binding C-tag on transpososome 

subunits causes ClpX to lose its ability to preferentially recognize assembled STCs 

compared to monomers of MuA.
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DISCUSSION

MuA transposase carries two distinct types of ClpX-interacting sequences (called tags). 

Here we identify and define the characteristics of the primary enhancement tag (E-tag) in 

domain IIIβ of MuA as well as furthering the understanding of MuA’s C-terminal pore-

binding tag. We find that both classes of tags are intrinsically weak (E-tags, KD> 300μm, C-

tag appKM~ 70 μM). However, when one C-tag is recognized with the assistance of two or 

more E-tags distributed among the subunits of the MuA tetramer, together they constitute a 

composite recognition signal with an appKM of approximately 1 μm, substantially tighter 

than any of the tags acting alone and also tighter than unassembled MuA monomers. 

Furthermore, the manner in which these two classes of tags are distributed among the 

multiple subunits of MuA lays the foundation for elucidating how ClpX may be guided to 

preferentially attack the end-stage MuA-tetramer-DNA complex (the STC), where ClpX 

unfolding is essential for phage replication and propagation (see below).

The C-tag of MuA, comprised of the ~ 8 C-terminal residues (QNRRKKAI), has long been 

known to be essential for ClpX to recognize and process both tetrameric and monomeric 

MuA18. Here we establish that, although it is an essential part of the MuA STC’s composite 

recognition signal, when acting in the absence of E-tags, MuA’s C-tag is weak (appKM of 

~90 μM) and also supports a comparably slow maximal degradation rate of only ~3 

molecules per minute per ClpX6 (Our groups commonly report Vmax values normalized to 

the total enzyme concentration, to facilitate direct comparison between different 

experiments; the term kcat is avoided as we do not know the functional number of active 

sites in our enzyme.) We argue that the fact that MuA carries such a weak intrinsic C-tag for 

ClpX protein-processing pore is a key signal feature that allows ClpX recognition and 

unfolding to be controlled by MuA’s assembly state as well as by the stage of the 

recombination pathway.

The apparent KM for STC disassembly by ClpX is substantially tighter than the KM for MuA 

monomer degradation by ClpXP 23. In both cases, a single C-tag is likely to be engaged by 

ClpX, and thus differences in ClpX E-tag interactions, as well as accessibility of an exposed 

C-tag on a class-1 MuA subunit almost certainly explain most or all of the preference of 

ClpX for the STC transpososome compared to MuA monomers. The simplest possibility is 

that two or more of the three N-domain dimers in the ClpX hexamer engage two or more E-

tags in the assembled STC, whereas only one such interaction would be possible in MuA 

monomers. Moreover, the geometry and thus energetic coupling between C-tag and E-tag 

binding is likely to be very different in tetrameric transpososomes than monomers. Most E-

tag mutations we characterized have small effects on degradation by ClpXP, suggesting that 

the mutated residues play little role in monomer recognition. For example, the 622R→A 

and 623PS→DD mutants were degraded at 75–95% of the wild-type rate but were 

disassembled at 10–15% of the wild-type rate. By contrast, the 620IF→DD mutant was 

degraded at approximately 15% of the wild-type rate and disassembled at about 5% of the 

wild-type rate. Thus, during monomer recognition, ClpX appears to interact with at least 

part of our newly identified E-tag.
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The nature and geometry of interactions between adaptor-like tags and ClpX can have 

substantial effects on the maximal rate of ClpXP degradation3,51. For transpososome 

disassembly, we find that the 623PS→DD mutation reduces the maximal rate of ClpX 

disassembly approximately 5-fold and weakens (increases) the appKM substantially. This 

result can be understood if transpososome-ClpX contacts in the 623PS→DD mutant are 

dynamic (Fig. 8). For example, weakened E-tag interactions in complexes of this MuA 

variant (623PS→DD) with ClpX might result in the C-tag only being engaged part of the 

time by ClpX (Fig. 8b). This model can also explain why replacing the native C-tag of MuA 

with the ssrA tag both eliminates the need for the E-tag and increases the maximal 

disassembly rate substantially (Fig. 8c). Specifically, we envision that in ClpX complexes 

with transpososomes bearing the ssrA tag, this tight-binding tag is engaged by the axial pore 

of ClpX essentially constantly, eliminating the need for E-tag assistance because the C-tag 

already achieves its maximum level of binding and engagement. By contrast, in ClpX 

complexes with transpososomes bearing the wild-type C-tag of MuA, this weak-binding tag 

might be engaged by the axial pore only 20% of the time with wild-type E-tag assistance, 

and only 4% of the time with 623PS→DD mutant E-tags. From a biological perspective, 

slowing the rate of transpososome disassembly by utilizing a weak C-tag could prevent 

ClpX disassembly of MuA-DNA complexes that had not completed recombination and also 

cause the preferential recognition of transpososomes, especially STCs (see below and Fig. 

7), while minimizing ClpXP degradation of unassembled MuA subunits.

For many ClpX substrates, we consider the appKM as a useful approximation of the binding 

affinity between ClpX and it’s substrate. For transpososome disassembly, we observe that 

mutations of the E-tag reduce the maximal velocity up to 5-fold. This unexpected finding 

reveals that E-tags contribute to the initial substrate-enzyme interaction and to a downstream 

step, which we have denoted as “engagement” in our model (Fig.8). The engagement step 

may be interpreted as a commitment by ClpX to translocate the bound polypeptide. In wild-

type transpososomes, E-tags may enhance the engagement/commitment of the weak C-tag; 

this engagement step should be principally expressed in the reaction’s Vmax. Without E-

tags, the commitment step is slowed and this suppression of engagement is manifested as a 

slower appVmax (Fig 8b). Characterization of the enzyme-substrate contacts and the kinetic 

contributions of “engagement” has been difficult using bulk assays with simple single-

domain proteins. However, recent experiments with multi-domain substrates, pre-

engagement protocols and single molecule optical trap experiments are allowing isolation of 

initial recognition and engagement into distinct steps. Although these approaches are not yet 

readily applied to transpososome remodeling, we are observing distinctions between these 

two steps and evidence that weaker engagement is expressed in a slower appVM. These 

observations are consistent with the behavior seen in this study where the strong ssrA C-tag 

is efficiently engaged whereas the weaker MuA C-tag is engaged less readily, resulting in a 

slower VMAX and the opportunity to have this velocity enhanced by the E-tags.

The architecture of the Mu transpososome restricts how the C-tags and E-tags of the two 

catalytic and two structural MuA subunits could interact with the pore and N-domains of 

ClpX. E-tags in both types of MuA subunits can interact with ClpX, whereas the C-tags can 

only be donated from the catalytic (“class-1”) subunits during ClpX recognition45,49,50. 
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Simple modeling suggests that ClpX could span the C-terminal regions of the two catalytic 

subunits in the STC (Fig. 9a). Furthermore ClpX also appears able to reach the C-terminal 

terminal regions of a catalytic subunit and a structural subunit on the same side of the axis of 

symmetry, or the C-terminal regions of a catalytic subunit and a structural subunit on 

opposite sides of the axis of symmetry. Either model that involves both a catalytic subunit 

and a structural subunit is consistent with our experimental observations. By making the E-

tag accessible on all four subunits, the architecture of the transpososome maximizes the 

permutations for successful recognition. Having E-tags in multiple subunits accessible to 

ClpX is also likely to be beneficial as the MuB regulatory protein also binds the C-terminal 

region of subunits in Mu transpososomes, and ClpX might make initial contacts with some 

MuA subunits in a complex prior to the exit of the dimeric MuB from the same complex.

An attractive model for ClpX interaction and attack on the STC is proposed in Fig. 9b, 

which takes its foundations from the dynamic interaction results presented here, in context 

with the recent Mu transpososome structure, and the insights regarding how domains must 

reorient during the multiple steps of the recombination process. The structure strongly 

implies that domain III of the class-1 subunits must move upon target binding. The MuA 

variant used for structure determination ended with domain IIIα (residues 575–605). This 

domain IIIα region forms a long, positively charged, amphipathic helix. Consistent with 

biochemical analyses52,53, domain IIIα of the class-2 subunits appears integral to the 

stability of the complex and may not move after initial complex assembly. However, in the 

class-1 subunits, two copies of domain IIIα pair between the arms of the bent target DNA, 

presumably electrostatically stabilizing the DNA conformation. These domain IIIα regions 

must adopt this clamped down conformation only after the target DNA has bound, as they 

would otherwise block its access to the transpososome active site. We propose that the 

optimal arrangement of ClpX recognition tags is only achieved after target DNA binding. 

Movement of domain IIIα from the class I subunits into the central cleft would necessarily 

reposition the rest of domain IIIβ and its ClpX recognition tags.

The use of multivalent recognition signals, some interacting with the axial pore and some 

with auxiliary domains, is a common theme in substrate recognition by AAA+ unfolding 

and remodeling enzymes. The bacterial cell-division protein, FtsZ, was recently shown to 

contain two sites important for proteolysis by ClpXP. Similarly to MuA, FtsZ contains a C-

terminal tag and an internal recognition element located 30 residues from the C terminus54. 

The bacterial AAA+ ClpV unfoldase disassembles VipA/VipB tubules of the type-VI 

secretion system in many pathogenic proteobacteria, and multiple interactions between ClpV 

and VipA/VipB tubules result in an enzymatic preference for assembled VipA/VipB 

complexes over VipB monomers55. Recognition of ubiquitin-tagged substrates by the 26S 

proteasome also involves multivalent signals. A poly-ubiquitin tag can mediate proteasome 

binding, but the tagged protein is not degraded unless it has an unstructured region that can 

be engaged by the AAA+ Rpt subunits that form the hexameric protein-unfolding ring in the 

19S cap56–58. This multivalent recognition strategy parallels ClpX recognition of Mu 

transpososomes. One signal is engaged by the axial pore of the AAA+ enzyme (unstructured 

regions of proteasomal substrates or the C-tag of MuA), and the second signal is recognized 

by an auxiliary domain or subunit (ubiquitin binding to the Rpn13 receptor or E-tag binding 

to the N-domain of ClpX). It will be interesting to continue examining how the relative 
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strengths of different signals that bind remodeling and degradation enzymes regulate 

recognition of a protein or multi-protein complex.

Materials and Methods

Buffers

Buffer L1, W20, W250 contained 25mM HEPES-KOH pH 7.6, 100mM KCl, 400mM NaCl, 

10mM beta-mercaptoethanol, 10% glycerol, and Imidazole at concentrations of 10mM, 

20mM, and 250mM, respectively.

Buffer S300 and S1000 contained 25mM HEPES-KOH pH 7.6, 0.1mM EDTA, 1mM DTT, 

10% glycerol, and KCl at concentrations of 0.3M and 1M, respectively.

PD50 buffer contained 25mM HEPES-KOH pH 7.6, 50mM KCl, 5mM MgCl2, 0.032% 

NP-40, 10% glycerol.

Buffer LM, LM20, LM250 contained 10mM Tris-Cl pH 8, 100mM NaCl, 1mM DTT, 10% 

glycerol, and imidazole at concentrations of 10mM, 20mM, and 250mM, respectively.

Buffer S50 and S500 contained 50mM Tris-Cl pH 8, 1mM DTT, 10% glycerol, and NaCl at 

concentrations of 50mM and 500mM, respectively.

Protein and peptide purification

Wild-type and mutant variants of MuA proteins28, E. coli ClpX 59, HU 60, ClpP 61, ClpXΔN 

(residue 47–424) 23, N-domain of ClpX (residue 1–64) with a cleavable N-terminal His6 

tag 62 were purified as previously described.

Construction and optimization of SinMu—SinMu, the construct used in the 

experiments reported here, is comprised of (in order): an N-terminal His6 tag, Sin residues 

147–200, a ten-residue SG repeat, and residues 253–663 of MuA.

The initial Sin-Mu chimera construct, termed Sin5Mu, was the same except the interprotein 

linker was only 5 amino acids and the MuA portion comprised only residues 258–605. 

Sin5Mu was cloned using sticky-end PCR cloning63. Two sets of PCR were initially 

performed. The first reaction utilized primers that would amplify the DNA encoding Sin 147 

to 200 with a 3′-terminal extension that includes the linker and the first 15 base pairs from 

the MuA construct. The second reaction utilized primers that would amplify the DNA 

encoding MuA 258 to 605 with a 5′-terminal extension that starts with the last 15 base pairs 

from the Sin construct followed by the linker. The PCR products from these two reactions 

were then combined to serve as a template in the next round of PCR. This round involved 

two sets. The first set utilized 5′TATGGGACGACCTTTGCTTTATTCACCG and 5′-

CTTACGGCAGCAGCTCTGCCACTTCC, and the second set utilized 5′-

TGGGACGACCTTTGCTTTATTCACCG and 5′-

GATCCTTACGGCAGCAGCTCTGCCACTTCC for their respective forward and 

backwards primers. These primers were designed such that when the top strand of the first 

PCR product anneals with the bottom strand of the second product, it will form a DNA with 
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overhangs that mimic a DNA that has been cleaved with NdeI and BamHI. Product from 

these two reactions were therefore combined, boiled for five minutes, and annealed at room 

temperature. This newly annealed DNA was then ligated to pET3a that has been treated with 

NdeI and BamHI. The sequence was verified with the University of Chicago DNA 

Sequencing Facility, and contained only one amino acid change, T504A. T504 is surfaced-

exposed, and A is the WT residue in the nearly-identical D108A protein 64. To test the 

activity of Sin5Mu, we carried out in vitro strand transfer reactions using pUC19 as target 

DNA, equimolar mixtures of Sin5Mu and WT MuA77–605, and donor DNA duplexes that 

carried the R1 MuA binding site and the Sin binding site juxtaposed as suggested by 

molecular modeling, as well as spaced +/− 1 and +/− 2 bp from the modeled optimum. 

Activity was only seen on the −1 donor DNA. This result suggested that the chimera might 

be more active if the spacer were longer.

Additional chimeras with longer linkers were made using QuikChange (Stratagene). 

Sin10Mu contains additional GSGSG linker. Sin15Mu and Sin20Mu are essentially 

Sin10Mu but with Mu constructs starting at residues 253 and 248, respectively. All four Sin-

Mu chimeras were then tested against 2 donor DNAs: the −1nt spacing between binding 

sites that was experimentally optimal for Sin5Mu, and that expected to be optimal from 

modeling. Lengthening the amino acid spacer between the two protein domains clearly 

improved the yield of the strand-transfer product. Although Sin5Mu and Sin10Mu still 

preferred the −1 spacing between recognition sites, Sin15Mu and Sin20Mu did not 

discriminate. All further work was based on the Sin15Mu construct and the −1 spacing in 

the donor DNA sequence.

The remainder of domain III was appended to create SinMu, the construct used in these 

studies. pSinMu was cloned from plasmid pSin15Mu by appending the remaining MuA 

transposase sequence such that the construct ends at the natural C-terminus of MuA, 

(residue 663), using Quickchange to remove an internal BamHI site, and inserting into 

pET3a vector via its NdeI and BamHI restriction sites.

Purification of SinMu—pSinMu was transformed into E. coli strain BL21(DE3). Cells 

were grown at 37°C to OD600nm ~ 0.6 in Luria-Bertani broth containing 100 μg/mL 

ampicillin. Protein expression was induced for 3 hours by addition of 0.4mM IPTG. The 

culture was harvested by centrifugation, resuspended in 10mL of BufferL1 per liter of initial 

cell culture, and lysed by French press. The lysate was treated with PMSF, cleared by 

centrifugation for 30min at 30,000×g 4°C and incubated with Ni- NTA agarose beads 

equilibrated in BufferL1 for 1 hour at 4°C. The beads were transferred to a column, washed 

with Buffer W20, and bound protein was eluted using Buffer W250. Fractions containing 

SinMu variants were identified by SDS-PAGE, buffer-exchanged into Buffer S300 using 

PD-10 desalting columns. The eluate was further purified by anion exchange 

chromatography, MonoS equilibrated with Buffer S300, and eluted by gradient to Buffer 

S1000. Fractions containing SinMu variants were identified by SDS-PAGE, pooled, and 

concentrated using Amicon (MWCO 5k) filter tubes, and the protein concentration by 

determined by Bradford reagent.
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MuΔ8ssrA was generated from pTB1, a pET3d containing MuA transposase. The last eight 

Cterminal residues were replaced with the sequence for ssrA tag, generated by PCR with 5′-

phosphate primers:

LLO62: aactacgctttagcagctTAAGGATCCGGCTGCTAACAAAGCC and

LLO63: ttcgtcgtttgcggcTTCCAGAATATCCAGCGAATGATTCAGATA.

The variant MuΔ8ssrA (P623D S624D) was cloned by PCR using 5′-phosphate primers

LLO64: gaTgaCGGTAATACGGAACGGGTGAAG and

LLO55: CCGGAAAATACCAACAATTCGTGA. Both MuΔ8ssrA and MuΔ8ssrA 

(PS/DD) proteins were expressed and purified using the protocol for wild-type MuA.

Strain TB352 contains pET28b: λ-cI-MuA comprised of residues 1–93 of lambda cI 

repressor, followed by FLAG-His6 tag, a linker and residues 654–663 of MuA. The plasmid 

was transformed into E. coli strain BL21(DE3). Cells were grown at 37°C to OD600nm ~ 1.0 

in Luria-Bertani broth containing 100 μg/mL kanamycin, harvested and transferred to 

M9+10% v/v LB media containing antibiotic, then grown at 37°C for another hour. Protein 

expression was induced for 3 hours by addition of 0.4mM IPTG. 20min after IPTG addition, 

cultures were spiked with 2mCi EasyTag EXPRESS protein labeling mix (PerkinElmer). 

The culture was harvested by centrifugation, resuspended in 2mL of Buffer LM per 100mL 

of initial cell culture, and lysed by lysozyme in four freeze/thaw cycles. Lysate was 

incubated with benzonase nuclease and protease inhibitor cocktail III for 1 hr, cleared by 

centrifugation for 30min at 21,000xg 4°C and incubated for 1 hour at 4°C with Ni-NTA 

agarose beads equilibrated in BufferLM. The beads were transferred to a column, washed 

with Buffer LM20, and bound protein was eluted using Buffer LM250. Elution fractions 

were buffer exchanged into Buffer S50. The eluate was further purified by anion exchange 

chromatography, MonoS equilibrated with Buffer S50, and eluted by gradient to Buffer 

S500. Fractions containing λ-cI-MuA were identified by SDS-PAGE, pooled and 

concentrated using Amicon (MWCO 5k) filter tubes, and the protein concentration by 

determined by absorbance at 280nm.

N-λcI is a His6-SUMO followed by residues 1–93 of λ cI in pET23b. The plasmid was 

transformed into E. coli strain BL21(DE3). Cells were grown at 37°C to OD600nm ~ 1.0 in 

Luria-Bertani broth containing 100 μg/mL ampicillin, harvested and transferred to M9+10% 

v/v LB media containing antibiotic, grown at 37°C for another hour. Protein expression was 

induced for 3 hours by addition of 0.4mM IPTG. 20min after IPTG addition, cultures were 

spiked with 2mCi EasyTag EXPRESS protein labeling mix (PerkinElmer). The culture was 

harvested by centrifugation, resuspended in 2mL of Buffer LM per 100mL of initial cell 

culture, and lysed by lysozyme in four freeze/thaw cycles. Lysate was incubated with 

benzonase nuclease and protease inhibitor cocktail III for 1 hr, cleared by centrifugation for 

30min at 21,000×g 4°C and incubated for 1 hour at 4°C with Ni-NTA agarose beads 

equilibrated in BufferLM. The beads were transferred to a column, washed with Buffer 

LM20, and bound protein was eluted using Buffer LM250. Elution fractions were buffer 

exchanged into Buffer LM and incubated with Ulp1 enzyme overnight to cleave His6-

SUMO tag. N-λcI was separated from uncleaved His-SUMO fusion protein by flowing over 

Ni-NTA agarose equilibrated with Buffer LM and collecting the flow through. Protein was 
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buffer exchanged into Buffer LM absent imidazole, and the protein concentration by 

determined by absorbance at 280nm.

Fluorescein-labeled peptides corresponding to MuA residues (614–633), MuA variants 

containing aspartate substitutions, and to SspB residues (152–162) were synthesized by 

FMOC technique on an Apex 396 solid-phase synthesizer and purified by HPLC on a 

reverse-phase C12 column running a gradient 0–100% Acetonitrile, 0.06% v/v TFA. 

Fractions containing fluorescein-labeled peptides were verified by MALDI-TOF mass 

spectrometry (MIT Biopolymer facility).

DNA for transposition

pSinRRSin was generated from miniMu plasmid, pMK586. pMK586 was digested with ClaI 

and EcoN1 to remove the phage left-end attachment sites, treated with Antartic phosphatase, 

and ligated to 5′-phosphorylated and annealed oligonucleotides (lower case denotes Sin 

binding motifs).

LLO37: 

CCAAGGAAGCTTGAAGCGGCGCACGAAAAACGCGAAAGCcgtatgattagggtAT 

and

LLO38: 

CGATaccctaatcatacgGCTTTCGCGTTTTTCGTGCGCCGCTTCAAGCTTCCTTG 

containing the R1-Sin binding sites with appropriate overhangs. The right-end R2 

binding site was replaced with Sin binding sequence, generated by PCR with 5′-

phosphate primers

LLO46: tcatacgGCTTTCGCGTTTTTCGTGCGC and

LLO47: ttagggtCTTTAGCTTTCGCGCTTCAAATG

Transpososome Assembly

Transpososomes were assembled in vitro in the following buffer: 25mM HEPES pH7.6, 

10mM MgCl2, 15% glycerol, 0.1mg/mL BSA, 1mM DTT, 100mM NaCl, 9% DMSO. 

Transposition reactions contained 16μg/mL supercoiled pMK586, 130nM HU, 100nM 

MuA. The reaction was incubated at 30°C for 20min. To assemble SinMu chimeric 

transpososomes, 16μg/mL supercoiled pSinRRSin, 130nM HU, 50nM MuA variant, 50nM 

SinMu variant were incubated at 30°C for 60min.

Degradation Assay

ClpX and ClpP were preincubated with ATP regeneration mix for 1min at 30°C prior to 

addition of substrate in PD50 buffer. Final concentrations: ClpX6=0.3μM, ClpP14=0.8μM, 

substrate=1μM, ATP=4mM, creatine phosphate= 5mM, creatine kinase=0.05mg/mL. 

Samples (5μL) were removed at different times and stopped by addition of 2.5x SDS loading 

buffer. After SDS-PAGE, products were visualized with Coomassie Blue stain
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Degradation Assay for determination of steady-state kinetic parameters

ClpX and ClpP were preincubated with ATP regeneration mix for 1min at 30°C prior to 

addition of S35-labeled substrate in PD50 buffer. Final concentrations: ClpX6=0.3μM, 

ClpP14=0.8μM, substrate= as indicated in figures, ATP=4mM, creatine phosphate= 5mM, 

creatine kinase=0.05mg/mL. Samples (10μL) were removed at each timepoint, added to ice 

cold 5uL 50% TCA and incubated on ice for 15min. Samples were centrifuged at 21000×g 

4°C 10min. The supernatant containing TCA-soluble peptides was transferred to vials of 

4mL scintillation fluid. Two samples from each reaction were added directly to scintillation 

fluid for upper-limit controls. Vials were counted by the Tri-Carb 2910 (Perkin Elmer). 

Rates of degradation were quantified by linear regression of the cpm (counts per min) 

normalized to specific radioactivity over time.

Disassembly Assay for determination of Steady-State kinetic parameters

ClpX was preincubated with ATP regeneration mix for 1min at 30°C prior to addition of 

substrate in PD50 buffer. Final concentrations: ATP 4mM, Creatine phosphate= 20mM, 

creatine kinase=0.25mg/mL. For each timepoint, the reaction was stopped by addition of 

EDTA to 50mM. Samples were electrophoresed on 0.9% High gelling temperature-agarose 

gel (Lonza) containing 10μg/mL BSA and 10μg/mL heparin. Gels were stained with SYBR 

Green I (Invitrogen) and visualized using a Typhoon imager (GE). Rates of disassembly 

were quantified using ImageQuant (GE) as previously described23. Briefly, for each time 

point, the DNA product band was calculated as a percent of the total pixels in the lane and 

normalized to the product band in the “+SDS lane”, which was used as the “100% 

disassembly” control.

Peptide-binding assay

Fluorescein-labeled peptides were incubated with increasing amounts of ClpX N-domain in 

PD50 buffer at 30°C, and fluorescence was measured using a Photon Technology 

International fluorimeter set up with two detectors (495nm excitation; 520nm emission). 

ClpX N-domain alone minimally scattered light. This background scatter was subtracted and 

G-factor was determined by the instrument. Anisotropy was calculated using the equation 

. The KD values were determined by fitting binding data to a hyperbolic 

equation.
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Highlights

• AAA+ unfoldases change the conformation of substrate proteins and protein 

complexes.

• How specific substrates are chosen with high priority at the proper time in a 

reaction pathway is being studied.

• The AAA+ unfoldase, ClpX specifically recognizes two classes of recognition 

tags in the MuA transposase.

• Specific features of these MuA tag classes direct ClpX to the biologically 

important reaction path.
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FIGURE 1. In vitro assays for MuA complex assembly and recognition by ClpX or ClpXP
A) MuA transposase monomers and host protein HU (not depicted for clarity) are incubated 

with a supercoiled plasmid substrate (1, “pMini-Mu”) containing left and right phage Mu 

attachment sites (L1, L2, R1, R2 are sites of stable association in the assembled complex; 

other sites utilized during assembly but not bound by MuA in the final STC were omitted for 

clarity). MuA catalyzes DNA cleavage and recombination with target DNA to form the STC 

transpososome (2), a stable complex. ClpX remodels the transpososome by unfolding a 

subunit bound to L1 or R1 attachment site to produce the fragile complex. Unlike the stable 

STC, the fragile complex falls apart during gel electrophoresis and liberates recombined 

DNA products (3).

B) On a native agarose gel, supercoiled pMiniMu runs as a band between the 2 and 3 kb 

linear DNA markers (1, black arrow). In the “+MuA” lane, the STC transpososome appears 

as a band (2, asterisk) that migrates more slowly than supercoiled plasmid alone. Addition of 

ClpX to reactions containing STCs produces a set of recombined topoisomers; the lowest 

band (3, white arrow) was quantified for disassembly rates.

C) A timecourse shows ClpX catalyzed disassembly of transposomes. Rates of MuA 

complex disassembly by ClpX were assayed by measuring the rate of appearance of the 

lowermost disassembly DNA product (3, white arrow). Addition of SDS to the reaction 

disrupts all inter-protein and protein-DNA interactions within the STC transpososomes and 

serves as the “100% disassembly” control. Other recombined DNA products are indicated 

by dash lines next to +SDS lane; details on these topoisomers are in Maxwell et al. PNAS 

1987.

D) A timecourse shows ClpXP catalyzed degradation of monomeric MuA. Rates of protein 

degradation were assayed by measuring the rate of disappearance of MuA on SDS-PAGE
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FIGURE 2. A sequence region Ile620-Ser624 forms a critical interaction between MuA complexes 
and ClpX
A) MuA transposase is a ~75kDa protein comprised of three domains. Domain III contains 

the C-terminal ClpX pore-binding tag, “C-tag”, which is comprised of the last six residues. 

Sequences that were mutated in this study are in bolded red or blue.

B) ClpX-catalyzed disassembly of complexes that were assembled from wild-type MuA and 

MuA “aspartate” variants. Initial transpososome concentration was 100nM. Quantification 

of appearance of the lowermost DNA disassembly product (white arrow) over time. Two 

representative native agarose gels of wild-type MuA complexes and MuA(P623D, S624D) 

mutant complexes are shown. The “+SDS” lane shows the pattern of topoisomer migration 

upon complete disassembly.

C) Degradation of wild-type MuA and MuA “aspartate” variants by ClpXP protease at 

subsaturating substrate concentrations (1uM). Inset shows a representative SDS-PAGE gel 

of wild-type MuA and MuA(P623D, S624D) monomers.

D) Quantification of differences in degradation and disassembly rates of MuA variants 

whose indicated sequences were mutated to alanine or aspartic acid relative to wild-type 

MuA. Reactions were performed in triplicate. Error bars are the standard error of the mean.
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FIGURE 3. Mutation of P623S624 leads to a 10-fold reduced apparent affinity between ClpX and 
transpososomes
A) Disassembly of wild-type MuA complexes by different concentrations of ClpX. 

Concentration of transpososomes was 100nM.

B) Half-maximal velocity determination for ClpX-mediated disassembly of wild-type 

complexes and MuA(P623D, S624D) mutant complexes. Curves were repeated in triplicate. 

Error bars are the standard deviation of the average. Errors of the appKM are standard 

deviation of average of three fits.
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FIGURE 4. Both E-tag and C-tag sequences bind weakly to ClpX
A) Solution binding of N-terminal Fluorescein-labeled peptides and purified N-domain of 

ClpX. A fixed amount (200nM) of Fluorescein-labeled peptides were incubated with 

increasing concentrations of purified N-domain. E-tag peptide is 

ESRIVGIFRPSGNTERVKNQ. A peptide from the ClpX adaptor, SspB, called the XB 

peptide, which is known to bind the ClpX N-domain was used as a positive control. Its 

sequence is RGGRPALRVVK. Mutated E-tag control peptide is 

ESRIVGIFDDDGNTERVKNQ. Errors represent the sample standard deviation where 

 and n ≥ 2
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B) Half-maximal velocity determination for degradation of λNcIc-tag by ClpXP. ClpX6 was 

0.3μM, ClpP14 was 0.8μM, protein substrate as indicated in figure. Negative control was 

λNcI without the C-tag. Errors represent standard deviation of the average.
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FIGURE 5. Design and construction of SinMu chimeric transpososomes
A) Crystal structure of STC transpososome on two “right-end” oligos (PDB 4FCY) with 

each subunit in a different color. Subdomains Iβ and Iγ are sequence-specific DNA-binding 

domains. Pink and purple subunits are bound to R2 sites; green ones to R1 sites. Target 

DNA is in grey.

B) Model of a chimeric transpososome containing SinMu protein and MuA on DNA 

fragments carrying the Mu-R1 sites and the Sin-R2 sites. Domain structure of the SinMu 

chimeric protein, which contains the DNA binding domain of Sin resolvase (147–200; from 

PDB 2r0q) followed by a linker and MuA domains II and III.

C) The altered- specificity plasmid substrate pSinRRSin has the MuA binding sites, L2 and 

R2, swapped out for Sin-specific DNA binding sites. This arrangement restricts SinMu 

protein to the class-2 structural subunits and MuA protein to the class-1 catalytic subunits.

D) Assembly of chimeric complexes on pSinRRSin plasmid requires the presence of both 

MuA and SinMu proteins. On a native agarose gel, lane 1 contains un-reacted pSinRRSin 

supercoiled plasmid (black arrow). The in vitro assembly reaction shows the band associated 

with assembled complexes (asterisk) in lane 6, but not in lanes 2 and 4 which each lack one 

species of protein. The characteristic pattern of recombined DNA disassembly products 

(white arrow) from a reaction identical to the one in lane 6 is seen after addition of SDS in 

lane 7.
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FIGURE 6. Efficient complex disassembly requires E-tags on both class-1 and class-2 subunits
A) Chimeric complex disassembly controls. Half-maximal velocity determination for native 

and chimeric complexes as indicated. Data for wild-type are superimposed from Figure 3B. 

Curves were repeated in triplicate. Error bars at each concentration point are the standard 

deviation of the average. Errors of the appKM are standard deviation of average of three fits.

B) Half-maximal velocity determination for chimeric complexes with different numbers of 

subunits carrying the mutated E-tag (P623D S624D). SinMu+MuA and SinMu+MuAΔc-tag 

curves are the same data from (A). Curves were repeated in triplicate. Error bars at each 

concentration point are the standard deviation of the average. Errors of the appKM are 

standard deviation of average of three fits.
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FIGURE 7. ClpX loses discrimination between monomers and transpososomes with a strong 
Ctag recognition signal
A) Diagram of MuAΔc-tagssrA zoomed in on domain IIIβ and corresponding sequence 

below. E-tag is in bold red. ssrA tag is in grey box.

B) Half-maximal velocity determination for disassembly of wild-type, MuA (PS/DD), 

MuAΔc-tagssrA, and MuAΔc-tagssrA (PS/DD) complexes by ClpX. Data for wild-type and 

MuA (PS/DD) are superimposed from Figure 2D. Reactions were repeated four times. Error 

bars at each concentration point are standard deviation of the average. Errors of the appKM 

are standard deviation of the average of four fits.

C) Half-maximal velocity determination for degradation of MuAΔc-tagssrA monomers by 

ClpXP. ClpX6 was 0.3μM, ClpP14 was 0.8μM. Error bars at each concentration point are 

standard deviation of the average. Error of the appKM is standard deviation of the average of 

three fits.

Ling et al. Page 27

J Mol Biol. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 8. Kinetic Model of monomer versus transpososome recognition by ClpX
A) λNcIc-tag monomer (purple sphere) binds weakly to the pore of ClpX (blue ring) and 

engagement is rare leading to weak apparent affinities. Engagement of the C-tag (depicted in 

an orange-glowing pore) leads to a transient enzyme-substrate complex (ES*). After 

engagement of the Ctag, ClpX processively translocates and unfolds the native protein.

B) Each N-domain dimer (turquoise) in ClpX can bind an E-tag in a wild-type MuA 

complex (colored as in Fig. 5, with cartooned extensions representing domain IIIβ, red boxes 

for E-tags and black boxes for C-tags). Binding of a C-tag to the pore of ClpX is enhanced 

because additional interactions between the E-tags and N-domains of ClpX raise the 

effective concentration of the C-tag near the pore by restricting the search volume needed 

for complex formation.

C) In the MuAΔc-tagssrA complex, binding of the ssrA tag to the pore of ClpX is strong. 

Engagement of the ssrA tag is strong and efficient and occurs similarly whether or not the E-

tag is bound to the N-domains of ClpX.
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FIGURE 9. Model of conformational changes in MuA complex during transposition
A) Structure-based cartoon of native STC (strand transfer complex); class-1 subunits in dark 

and light green (L1, R1), class-2 subunits in purple and pink (L2, R2), Mu DNA in black 

sticks, target DNA in grey sticks. Red dots indicate the C-terminal residue of domain IIIα. 

Side view on left and “bottom-up” view on right with target DNA coming out from page and 

Mu DNA facing into the page.

B) Diagram of “bottom-up” view of transpososome indicating proposed conformation 

changes to allow binding of target DNA. Color scheme same as in (A) with domain IIIα in 

solid colors and target DNA as gray tubes. After synapsing the left and right ends of the Mu 

genome, domain IIIa and IIIβ of both class-1 subunits must be in an “open” conformation to 

allow entry of target DNA brought by MuB. Then these domains swing into a “closed” 

conformation to trap the target DNA as observed in the crystal structure of the STC.
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