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Abstract
Rapid accumulation and availability of gene expression datasets in public repositories have

enabled large-scale meta-analyses of combined data. The richness of cross-experiment

data has provided new biological insights, including identification of new cancer genes. In

this study, we compiled a human gene expression dataset from*40,000 publicly available

Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data

was quantified in an expression matrix of*20,000 genes and*28,000 samples. To enable

different ways of sample grouping, existing annotations where subjected to systematic

ontology assisted categorisation and manual curation. Groups like normal tissues, neoplas-

mic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created.

Unsupervised analysis of the data confirmed global structure of expression consistent with

earlier analysis but with more details revealed due to increased resolution. A suitable

mixed-effects linear model was used to further investigate gene expression in solid tissue

tumours, and to compare these with the respective healthy solid tissues. The analysis iden-

tified 1,285 genes with systematic expression change in cancer. The list is significantly

enriched with known cancer genes from large, public, peer-reviewed databases, whereas

the remaining ones are proposed as new cancer gene candidates. The compiled dataset is

publicly available in the ArrayExpress Archive. It contains the most diverse collection of bio-

logical samples, making it the largest systematically annotated gene expression dataset of

its kind in the public domain.

Introduction
Discovery and cataloguing of gene expression in normal and disease conditions has been facili-
tated by generation of large gene expression datasets. Many of these sets have been deposited in
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public databases such as GEO [1] or ArrayExpress [2]. Combining different expression datasets
has enabled studies of expression for tissues and cell types outside single experiment, has made
possible addressing questions different to those posed in the original studies and has led to new
biological insights that otherwise could not have been obtained [3]. One of the first examples of
combination of large collections of human gene expression data was reported in [4]. The
authors conducted an analysis of gene co-expression from*4,000 human microarray samples,
followed by the assessment of the functional relevance and reproducibility of the detected pat-
terns. Later, [5] constructed a database of*10,000 samples from normal and pathological
human tissues, using five different Affymetrix platforms, with the aim to provide an integrated
view of expression variance across hundreds of different tissue and disease types. Before these
studies, most human microarray datasets, with exceptions such as [6], were commonly focusing
on experiments comparing expression from only a small number of different samples. Also, [7]
built a global gene expression map by integrating data from*5,000 human samples from a sin-
gle microarray platform (Affymetrix HG-U133A). To span the full variety of expression, sam-
ples frommany different cell and tissue types, disease states and cell lines, all data available at
the time, were included. Six differentiated, major ‘continents’ of expression were revealed by the
data: cell lines, hematopoietic system, incompletely differentiated tissues, brain, muscle and
other solid tissues. More recently, [8] collected a heterogeneous dataset of*20,000 gene expres-
sion profiles from a variety of human samples and experimental conditions. The authors
inferred a consensus transcriptional gene network based on mutual information and demon-
strated its use to elucidate the function of disease genes. Moving to more recent microarray plat-
forms (Affymetrix HG-U133 Plus 2.0), [9] set up a database of*3,000 gene expression samples
from various tissues and disease states to associate expression patterns to phenotypes, in order
to select phenotypically meaningful gene signatures. One of the largest datasets ever reported
contained*78,000 samples from three species (human, mouse and rat) and four Affymetrix
platforms, each representing different tissue types, disease states and cellular contexts [10]. The
focus of the study was to investigate the extent of global gene dosage sensitivity, to infer the
likely biological function of candidate genes on the basis of gene co-regulation and to identify
recurrently disrupted human genes in genomically unstable cancers. More specifically focused
on cancer, [11] performed an integrative analysis of five genome-wide platforms and one prote-
omic platform on*3,500 specimens from 12 cancer types to provide information for predic-
tion of clinical outcomes. Most recently, [12] presented PRECOG, a pan-cancer resource of
expression signatures that integrated gene expression from a diverse set of microarray platforms
and RNA-seq. The data was collected from*18,000 human tumours across 39 malignancies
for identification of predictors of overall patient survival.

The identification of genes associated with the development and progression of cancer and
other genetic diseases has been the central goal of hundreds of microarray data projects. Most
studies have addressed the analysis of differentially expressed genes, often involving one cancer
type and/or several cancer subtypes. However, the sets of differentially expressed genes yielded
by different studies of the same cancer have been reported to show little overlap [13, 14].
Rather than comparing the results of individual studies, it may thus be a better strategy to iden-
tify (larger and more robust) sets of genes by first integrating individual studies. An illustration
of this scheme is given in [15], where the authors fitted a probeset-level mixed-effects linear
model to a dataset which combined data from two different chip platforms, to identify genes
differentially expressed in oral tongue squamous cell carcinomas. The result was compared to
the one obtained for each study analysed separately. A substantial increase of the statistical
power was observed in the meta-analysis scenario.

Mixed-effects linear models have been frequently used in microarray data studies [16–21].
These statistical models contain fixed effects for which inferences cannot be generalised to
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levels outside the design. Further, random effects they include are drawn from a population
with a certain probability distribution. Compared to models considering only fixed effects, the
inclusion of random effects allows a more precise estimation of sources of variability. This is
particularly crucial in the detection of differentially expressed genes [22], for instance in case of
cancer.

This work builds on the vast amount of raw microarray data available in ArrayExpress [2],
containing both the data originally submitted to ArrayExpress as well as the data submitted to
GEO [1] and automatically mirrored by ArrayExpress. We focused on a single array platform,
the Affymetrix HG-U133Plus2 chip, integrating data from all experimental conditions, varying
disease states, independent tissue types and different laboratories. All of the data, more than
40,000 samples were collected, pre-processed, filtered for quality control and curated, and pro-
duced a single dataset of*28,000 samples. This collection includes normal and diseased
hematopoietic and solid tissues and cell lines, and provides a new, updated illustrative global
map of human gene expression.

Unsupervised analyses of the dataset, such as dimension reduction by principal component
analysis (PCA) and hierarchical clustering, yield results largely consistent with those obtained
in [7], but provide a finer detail of the components discovered in the data. We then focused on
a subset of samples consisting of solid tumours and the respective normal tissues with the aim
to identify, with high statistical power, candidate genes that are involved in cancer. We propose
a probeset-level mixed-effects linear model for the observed gene expression, which accounts
for the variability due to several effects, such as the effect of the tissue of origin and the experi-
ment where the sample was recorded. The latter partially reflects the laboratory-related effects
which are known to be strong [23].

The main benefit of our model is that it allows evaluation of the significance of the (fixed)
disease status effect. We use the corresponding corrected p-values to designate the probesets of
a significant effect as candidates related to cancer processes, regardless of the tissue type.
Applying the model to a subset of 5,938 solid tissue samples, we identified 1,285 potential can-
cer related genes. Gene set enrichment analysis reveals significant pathways deeply connected
to the progression of cancer. The comparison of this set of genes to two human curated sets of
known cancer genes shows significant overlaps (135 and 210, respectively). We propose the
remaining genes in our list to be potentially novel cancer genes.

Materials and Methods

Gene expression dataset
Raw Affymetrix HG-U133Plus2 platform expression data was identified and downloaded from
ArrayExpress data archive [2]. The initial dataset consisted of 40,871 CEL files from 1,768
experiments and included samples from a variety of normal and non-healthy cell and tissue
types, as well as from cell lines. Replicated data files were identified by comparison of file sizes
and MD5 check sums and removed. The remaining chips were tested for the quality using the
Bioconductor package simpleaffy (see S1 Appendix for details). The number of samples
taken forward to pre-processing and normalisation by frozen Robust Multiarray Average
(fRMA) [24] was 30,899. After further quality control, based on the pre-processed data, the col-
lection was frozen to 27,887 arrays and combined into a final gene expression data matrix.

For annotation consistency, original sample annotations were automatically re-annotated
using Experimental Factor Ontology (EFO) [25]. EFO is a purpose-built ontology for system-
atic description of experimental variables used in high-throughput functional genomics data-
sets. The ontology builds on and combines parts of several other biological ontologies,
including ontologies for anatomy, disease and chemical compounds. The content of
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ArrayExpress sdrf and idf files capturing the sample meta-data were scanned for all EFO terms
followed by manual curation. The number of unique biological groups identified was 2,969. Of
these, more than 1,000 contained only one sample, including single observations of more than
800 distinct cell lines (S1 Table).

Principal Components Analysis
Principal Components Analysis was run on the final gene expression data matrix with probe-
sets as variables and samples as statistical units. Similarly to and for comparison with [7], we
focused on the first three principal components. For better handling of the size of the data
matrix, we used Lapack C library compiled in 64-bit mode and distributed the computation
using hadoop. Hadoop allows distributed processing of large datasets across clusters of com-
puters using local computation and storage, helping to circumvent restricted memory prob-
lems of other standard software.

Clustering
For further exploratory analysis, we first considered the clustering of biological groups, i.e., the
sets of samples labelled with the same annotation. We reduced the dimension of the data, from
samples to biological groups, in the following way. First, for each pair of samples we computed
the correlation between their expression levels across the probesets. Next, for each pair of bio-
logical groups Gm and Gn, we assessed their similarity by the average of the correlations
between each sample from the first group and each sample from the second group:

similarityðGm;GnÞ ¼
X

smi
2Gm

X
snj2Gn

corðsmi
; snjÞ

jGmj jGnj
: ð1Þ

Additionally, we considered the following dimension-reduced expression matrix Y = (Ymn)
for the biclustering of probesets versus biological groups. For each probeset pm and each bio-
logical group Gn, we computed the average expression level of pm across all samples in Gn:

Ymn ¼ �ynðpmÞ ¼
X
sl2Gn

yml

jGnj
; ð2Þ

where yml represents the expression level of probeset pm in sample sl 2 Gn. The corresponding
heatmaps were computed using the R package gplots.

Gene enrichment analysis
Gene over/under representation was performed by Gene Trail [26]; p-values were adjusted
with the Benjamini-Hochberg method, and results were deemed significant at p< 0.05.

Fitting a mixed-effects linear model
To assess the differences in a collection of G biological groups, we considered the between-
group variance (BGV) for each particular probeset p:

BGVðpÞ ¼
XG

n¼1

Nn ð�ynðpÞ � �yðpÞÞ2
G� 1

;

where Nn (n = 1, . . ., G) is the group size, �ynðpÞ is the mean expression level of probeset p across

samples in the n-th group, and �y ðpÞ is the probeset grand (overall) mean. It is well known that

for most genes, the variability of gene expression across samples is small. Nevertheless, in
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many cases we found that even with little global variability, slight differences between sample
groups are detectable. For example, with respect to tissue of origin as shown further in Results.

This suggests that even for genes whose expression level is almost constant across most tis-
sue types, there might be some tissues, not all necessarily represented in our dataset, for which
there is a statistically significant change in their expression level. Furthermore, if we focus on
tumour versus normal tissues, and if a single tissue type is considered, small changes across the
two disease statuses can be neglected when compared to genes whose change is larger in magni-
tude (see, for example [15]). In studies with the aim of finding reliable and well distinguishing
marker genes, these subtle but firm changes are brushed on the side and commonly labelled as
results significant statistically but not necessarily biologically.

As our dataset benefits from higher statistical power, we set to identify genes whose expres-
sion level changes depend on the disease status across many tissues of origin. If the change
exists across different tissues, it will be detected even if the number of samples for some tissues
would be too limited to be uncovered when analysed separately.

To that end, we propose to evaluate the effect of the disease status in the expression level of
each probeset while accounting for the tissue type effect, using the following probeset-level
mixed-effects linear model (i.e., incorporating both fixed and random effects):

yijk ¼ di þ tj þ tij þ ek þ eik þ �ijk : ð3Þ

The response variable yijk represents here the expression level of the given probeset and is
modelled as the addition of the fixed effect of the i-th disease status δi, plus the partially-crossed
random-effects factors tissue type, tj, and experiment in which it was obtained, ek, plus the inter-
actions between the disease and the tissue type, tij, and between the disease and the experiment,
eik. The term �ijk is the random error. The assumptions of the model are that the random vari-
ables tj, ek and �ijk are independent and normally distributed. Note that the fixed effect term
can be recoded as the average expression level of the gene, μ, plus the difference between cancer
and normal tissues effect, β, which is our parameter of interest in this study.

For unbalanced designs (with different sizes across the different groups, as is our case), cal-
culating a p-value for testing the null hypothesis H0: β = 0 versus the alternative H1: β 6¼ 0 is
not straight forward, as the distribution of the desired test statistic under H0 is not known.
Therefore, for each probeset we tested the significance of the fixed-effects term by computing

the ratio of its estimate b̂ to the corresponding standard error, and considering an approxi-
mated t-distribution for this ratio. The degrees of freedom used in our computations are calcu-
lated as an upper bound given by the number of observations minus the number of fixed-
effects parameters. This number leads to p-values that are anti-conservative for small samples
[27] but to overcome this issue we considered classes with at least 20 replicates. Note that this
is a general model that can be used on datasets with paired (normal vs cancer) samples of even
larger dimensions.

To fit model (3) to each probeset, we used the R package lme4. The approximated p-values
were corrected for multiple comparisons using the Benjamini-Hochberg method, which con-
trols the false discovery rate (FDR). In addition, a restrictive test size of 0.01 was chosen. Fur-
ther evaluation was carried out by performing a permutation test, where the empirical
distribution was constructed by randomly permuting the disease status labels within each tissue
type B = 10,000 times. Permutation p-values were calculated as fraction of permutation values
that were at least as extreme as the original statistic. P-values were adjusted according to Benja-
mini-Hochberg to control for FDR and compared to those derived from non-permuted data.
The same process allowed estimation of FDR using a standard permutation plug-in estimator.
We used p-value cut point 0.01. F was the estimated expected number of false positives. We
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counted the number of significant tests in each permutation and computed F as the average of
the number of probesets called significant from all B permutations. S denoted the number of
probesets called significant using the correct labelling of the dataset. p0 was the estimated pro-
portion of probesets that are truly null, and was computed as described in [28], with λ = 0.5.
Then, the FDR was estimated as

dFDR ¼ p0 F
S

:

Results
After collection, quality control, cautious ontology annotation and normalization we obtained
a gene expression matrix of 54,675 probesets (mapping to 23,437 genes) and 27,887 samples,
consistently annotated by EFO [25]. Unsupervised analysis of the matrix revealed a structure
compatible with earlier observations on a smaller dataset of around 15,000 genes and 5,000
samples [7]. However, the larger amount of probesets and variety of samples allows higher res-
olution, such as identification of smaller subgroups within some regions of the map. Also, tis-
sue types not included in previous dataset can be properly located.

PCA to identify major ‘continents’
An inspection of the PCA plots (see Fig 1) reveals that the first principal component clearly
bisects non-solid and solid tissues. The segregation occurs also among cell lines which other-
wise tend to cluster among each other, as opposed to clustering close to the tissue of origin. An
elongated cluster of induced pluripotent stem cells, mesenchymal stem cells, progenitor cells
and other incompletely differentiated tissues emerges within the solid section. In the non-solid
region, also hematopoietic precursors and plasmablast cells cluster together. This axis also sep-
arates leukaemias from myelomas and lymphomas (see the bottom panel of Fig 1). This result
is a major improvement over the lower resolution global map reported by [7] where only leu-
kaemic and non-leukaemic tissues were displayed. Moreover, the map presented here includes
an experiment of bone samples (annotated as “bone;trans-iliacal bone;menopausia;”) located
closer to the non-solid area than to the solid one, suggesting high levels of hematopoietic mate-
rial present in the sample. The first principal component accounts for a 16.72% of the total var-
iance in the dataset.

The second principal component, accounting for 9.57% of the variance, locates cell lines
and non-neoplastic diseases at opposite extremes of the plot, with neoplasias spreading
between both. Normal tissues are distributed all along the axis. The third principal component
(4.97% of the variance) detaches healthy brain and spinal cord from central nervous system
malignancies in the solid cluster, and lymphomas from myelomas in the non-solid cluster.

Note that these results coincide with those obtained in [7], but provide a finer detail. We
can thus identify the first principal component with their hematopoietic axis, the second one
with their malignancy axis, and the third one with their neurological axis.

Clustering identifies finer details in the map
Hematopoietic tissues, cell lines and solid tissues. For the cluster analysis, in order to

guarantee statistical significance, we only considered the 287 biological groups with at least 20
samples. The filtering decreased the number of samples to 18,106, of which 2,830 were cell
lines, 7,013 were hematopoietic tissues, and 8,263 were solid tissues. Similarity measure Eq (1)
used for clustering of the biological groups was in the range of (0.6317, 0.9953). The resulting
heatmap is found in S1 Fig. To allow a better separation among groups, as reflected in the
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wider ranges of measure Eq (1), we additionally reduced the dimension of the biological groups
by selecting the nmost variable probesets, with n = 20,000, 10,000, 5,000, 1,000 and 500 (see
S2, S3, S4, S5 and S6 Figs). Despite progressive reduction of the number of probesets the hierar-
chical structure between biological groups remained the same. As shown in Fig 2a), the

Fig 1. Principal components.On top, the first two principal components. The panel on the left illustrates the clear separation along the X-axis of the
hematopoietic and non-hematopoietic material containing samples from both tissues and cell lines. The non-solid region includes blood, bone marrow,
lymph nodes, tonsil, osteoclasts, spleen, sputum, thymus gland, bronchoalveolar lavage cells and derived cell lines. An elongated cluster including
incompletely differentiated cells is also found. In the right panel, the Y-axis separates cell lines (top), neoplasias (middle) and non-neoplastic diseases
(bottom), whereas normal tissues overlap with all three. The panel in the bottom shows the data for the first (X-axis) and third components (Y-axis). The
hematopoietic axis (X-axis) allows detaching leukaemias from other blood neoplasias. Cell lines derived from brain tumours can be distinguished from
their tissues of origin along this axis as well. The Y-axis detaches non-neoplastic central nervous system samples from tumoral ones, and separates
myelomas from lymphomas.

doi:10.1371/journal.pone.0157484.g001
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hierarchical tree clearly distinguishes between solid and non-solid samples, correspondent to
the two largest clusters, as expected from the PCA, and contains an outstanding solid cluster
formed by non-neoplastic brain. In the non-solid region, hematopoietic-derived cell lines
appear together, as expected. We find smaller clusters of different neoplastic diseases: lympho-
mas, myelomas and leukaemias, separating AML, CLL and ALL. Also, dendritic cells, macro-
phages, and non-leukaemic peripheral blood form clear groups in the tree. Again, the
biological group annotated as “bone;trans-iliacal bone;menopausia;”, which contains samples
from a single experiment, emerges on the hematopoietic side. On the non-hematopoietic side,
solid cell lines also tend to cluster together, irrespectively of their tissue of origin and similarly
to the results obtained in [7]. There are also small clusters of specific tumours (brain, colon and
soft tissues) and a broad group of diverse tumours. Within the non-neoplastic solid tissues, we
identify several groups such as adipose tissue, endothelial cells, airway epithelial cells or gastro-
intestinal tissues. Interestingly, neoplastic and non-neoplastic gastrointestinal tissues are posi-
tioned together in the dendrogram to form a larger group.

Non-cell lines, non-hematopoietic tissues. Given the distinct behaviour of cell lines and
known separation of solid and hematopoietic samples, we next focused on the non-hematopoi-
etic samples. After discarding 59 and 96 biological groups comprising, respectively, all cell lines
and hematopoietic tissues, the dataset was reduced to 8,263 samples from 132 biological groups
of at least 20 replicates.

A separate hierarchical analysis of the solid tissues, analogous to that of the previous section,
led to the heatmaps in S7, S8, S9, S10, S11 and S12 Figs, where we considered all or a reduced
set of probesets. By visual inspection, several of the observed clusters are in agreement with ear-
lier results in [7]. Notably, a collection of gastrointestinal tissues forms a large and compact
group, that is, irrespective of the disease status. Similarly, tight groups are observed for samples
of prostate, myometrium and liver. Although brain samples cluster together, the cluster is fur-
ther subdivided to neoplastic and non-neoplastic branches. On the contrary, breast cancer and
normal breast are markedly separated, as well as cancerous and non-cancerous lung, skin or
pancreas, the latter examplifying a tissue not included in [7]. Other apparent solid regions
include endothelial cells, airway epithelial cells, adipose tissue, sarcomas, incompletely differen-
tiated cells, kidney, skeletal muscle and endometrium.

In summary, the benefit of integration of vast amounts of tissue types is best demonstrated
in the analysis of clustering results. Compared to previous results in [7], greater numbers of
samples have a strong effect for the resolution of ‘continents’ and ‘continental’ features of the
human expression map. Separation of different types of leukaemias is revealed. Some tissues,
such as liver or colon, have respective expressions similar to the associated tumours. In con-
trast, other cancers, such as lung or brain, have the expression patterns of tumours and corre-
sponding normal samples clearly separated.

Clustering genes across non-cell lines, non-hematopoietic tissues. In addition to the
previous analysis, we constructed a heatmap for the 1,000 most variable probesets and plotted
these against the biological groups using a reduced expression matrix computed as described in
Eq 2 (see S13 Fig). The leaves in the dendrogram on top correspond to the biological groups.
The branch ordering was fixed to be the same as in S11 Fig. The labels in the right margin
include the genes the probesets are mapping to, identified at the NetAffx Analysis Center [29]
provided by Affymetrix. As expected, probesets targeting the same gene tend to cluster
together. By visual inspection, we identified 44 clusters, many of which include genes that are
overexpressed in one or more tissues of origin. Gene enrichment, calculated with Gene Trail
[26], discloses a large agreement between gene profiles and Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) categories. Fig 2b) includes some illustrative
examples. In particular, Cluster C.18, where probesets show a higher activity in brain samples,

A Human Global Map to Identify Cancer Genes

PLOS ONE | DOI:10.1371/journal.pone.0157484 June 20, 2016 8 / 20



has an overrepresentation of genes related to ‘nervous system development’, or ‘neuron differ-
entiation’. Genes in cluster C.8, whose activity is increased in adipose tissues, are involved in
categories such as ‘PPAR signaling pathway’ or ‘lipid metabolic process’. Genes exhibiting a
high activity in liver (cluster C.14) have overrepresented functions such as ‘hemostasis’,

Fig 2. Clustering of biological groups with at least 20 observations. a) Clustering of biological groups using average correlations. Only the 20,000
most variable probesets are accounted for. The groups are recoded by colours to display the largest clusters in the dendrogram. The colour labels on the
right hand side specify groups of healthy, cancerous or diseased tissues or cell lines. Illustrative groups of tissues are also highlighted. b) Clustering of
biological groups of solid tissues against the 1,000 most variable probesets. Many clusters, identified by visual inspection, include genes overexpressed
in one or more tissues of origin. From top to bottom, clusters C.8, C14, C.18 and C.29 display probesets with high activity in adipose tissue, liver, brain
and skeletal muscle and heart, respectively.

doi:10.1371/journal.pone.0157484.g002
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‘vitamin transport’ or ‘cellular amino acid and derivative metabolic process’. Also, probesets
highly expressed in skeletal muscle and heart samples (cluster C.29), have significance in cate-
gories such as ‘muscle structure development’ or ‘heart contraction’.

Identification of cancer genes using mixed-effects linear model
Paired cancer/normal data to identify significant cancer-related effects. To discover

genes with largest expression difference between normal and corresponding tumorigenic tis-
sues, which may not be detectable in smaller datasets due to lower statistical power, we selected
tissues with at least 20 samples in both normal and corresponding non-metastatic tumour tis-
sues. This resulted in 15 pairs of biological groups, spanning 5,938 samples (Table 1).

Only 5,934 (10.85%) probesets have a drastically large BGV, i.e., are outliers (see S14 Fig).
However, most of the remaining probesets exhibit a noticeable change in their expression level
across some of the conditions. For illustration, we first show the expression levels of two probe-
sets exhibiting characteristic, distinc behaviours, across the 5,938 samples, where samples are
ordered to show correspondent cancerous and normal tissues consecutively (Fig 3). Probeset
expression levels are depicted in gray; the grand mean �y ðpÞ is represented by a green, dashed

line, and the cancerous and normal group means �ynðpÞ by blue and red, solid lines, respectively.

To visualise the variability within groups, we computed the group variances, s2
nðpÞ, and drew the

lines corresponding to �ynðpÞ � snðpÞ, for cancerous and normal groups in cyan and pink, respec-

tively. We first considered the probeset with largest BGV (202286_s_at), which according to
Affymetrix annotations maps to gene TACSTD2. The gene is involved in biological processes
such as ‘re-entry into mitotic cell cycle’ or ‘positive regulation of stem cell differentiation’. It is
apparent (Fig 3, top panel) that the probeset has a different behaviour depending on the
tissue type, and in some cases, depending on the disease status. We then selected probeset
217398_x_at, annotated as well known housekeeping gene GAPDH, to represent probesets
with low variability. Evidently, the gene has noticeable expression differences between the

Table 1. Group sizes in paired tissues.

Tissue type Cancer Normal

airways and lung 309 447

bone 37 23

brain 330 474

breast 926 222

colon 575 168

fat 72 448

gastro-intestinal 293 79

head and neck 96 84

kidney 44 269

mesenchymal 129 54

pancreas 73 48

prostate 88 21

skin 61 148

smooth muscle 73 123

uterus 79 145

Sizes of the biological groups with at least 20 replicates for which both normal and cancer samples are

available.

doi:10.1371/journal.pone.0157484.t001
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groups, either due to the disease status or to the tissue type (Fig 3, bottom panel). This is not
entirely surprising as some housekeeping genes are known to exhibit alterations in levels of
expression even in normal tissues, let alone in tumorigenesis.

Between these two diametric cases, with respect to the tissue of origin or to the disease sta-
tus, it is possible to detect evident expression changes of most of the probesets. More precisely,
we computed for each probeset the number of groups for which either �ynðpÞ � snðpÞ > �y ðpÞ or

�ynðpÞ þ snðpÞ < �y ðpÞ. The distribution of these counts is displayed on Fig 4. Only 4,942 probesets

out of the 54,675 (9.04%) do not show such variability across any of the 30 conditions.
Thus, we fitted model (3) with 2 disease statuses, 15 tissue types and 212 experiments, and

considered an approximated t distribution with degrees of freedom equal to 5,936 for the ratio

of the parameter of interest b̂ to its standard error. After multiple comparison correction, 1,835
probesets were identified with significant effect of the disease status (p-values smaller than
0.01). The results were further validated by a permutation test (see the QQ-plot in S15a Fig).
The empirical p-values are smaller than those obtained from the model fit except for values in
the tails. However, there is a large agreement between both tests as the number of probesets
found significant with the permutation procedure at level 0.01 was 2,542, with an overlap of
1,743 probesets of the original list (*94.99%). Also, the FDR estimation from the permutation
scheme supports the validity of our list of significant probesets. The average number of signifi-
cant probesets after random relabelling and multiple comparison correction (false positive

Fig 3. Extreme expression level profiles. Expression levels of the most variable probeset (202286_s_at), on top, and a low-variability probeset
corresponding to housekeeping gene GAPDH (217398_x_at), at the bottom, across all tissues for which there are at least 20 replicates of untreated,
normal and cancerous samples. Samples from the same tissue of origin are displayed together, grouped by disease status. The green dashed line
represents the overall mean; blue and red solid lines show the mean of cancerous and normal groups, respectively, whereas cyan and pink solid lines
describe their respective dispersion, given by the within group standard deviation.

doi:10.1371/journal.pone.0157484.g003
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estimate) was 0.0019. Thus the FDR estimate was 1.035422 × 10−6. The QQ-plot in S15b Fig
compares adjusted p-values from the original data to those obtained after one random permu-
tation of the disease status labels where none of the probesets were found to be significant.

Significant probesets were mapped to the corresponding genes by NetAffx Analysis Center
[29] (S2 Table). Of these, 137 probesets did not match any gene. The remaining mapped to
1,285 unique genes and 97 had multiple matchings. The 1,835 probesets were ranked according
to their p-values and, for illustration purposes, the top 100 for which the effect of the disease
was most significant were dissected further. The p-values for the top 100 were less than
3.632501 × 10−6. Six of them were not mapped to any gene, whereas the remaining 94 corre-
sponded to one of 84 unique genes or 7 multiple matching genes (Table 2).

Additionally, the effect sizes of the selected probesets are identified on a volcano plot of dis-
ease effect versus negative log10-transformed p-values (see S16 Fig). The overall disease effect
sizes appear modest, even for probesets with considerably small p-values. This is not unex-
pected, as the power of the dataset is substantial and allows identifying significant effects of
small size. Also, it supports the idea that most of the genes associated to cancer will have a
small overall, tissue-independent, disease effect, while the interaction between disease and tis-
sue type plays an ultimate role in expression levels.

Gene enrichment analysis. Gene over/under representation for this list of candidate pro-
besets reveals many significant KEGG and GO pathways categories related to cancer. In
particular, KEGG categories are: ‘Cell cycle’, ‘DNA replication’, ‘Olfactory transduction’, ‘Spli-
ceosome’, ‘Homologous recombination’, ‘Pyrimidine metabolism’, ‘Oocyte meiosis’, ‘Base
excision repair’ and ‘Mismatch repair’, whereas GO categories include ‘DNA repair’, ‘cell pro-
liferation’, ‘G-protein coupled receptor protein signaling pathway’ or ‘positive regulation of
mitotic cell cycle’.

An illustrative example of the utility of our method is given by well-known genes BRCA1
and BRCA2, ranked 502-nd and 597-th, respectively. Though the relation of these genes to can-
cer has not been established on the basis of gene expression changes, our method identifies
both of them. They appear in significant GO pathways such as ‘regulation of cell cycle’, ‘DNA

Fig 4. Expression level changes across tissue types and disease status.Distribution of the number of groups for which there is a clear change
in the expression level of the probeset. The values are quantified by having either the group mean minus the group standard deviation above the
overall mean or the group mean plus the group standard deviation below the overall mean.

doi:10.1371/journal.pone.0157484.g004

A Human Global Map to Identify Cancer Genes

PLOS ONE | DOI:10.1371/journal.pone.0157484 June 20, 2016 12 / 20



repair’, ‘response to DNA damage stimulus’, ‘cell proliferation’ or ‘double-strand break repair
via homologous recombination’, in which they are known to play essential roles. It is worth
noting that the 63 genes predicted to be co-regulated with BRCA1 and BRCA2 by [10], overlap
with 39 genes from our collection of candidate genes.

Interestingly, the significant KEGG and GO pathways categories corresponding to the top
100 probesets include ‘TGF-beta signaling pathway’, ‘Cell cycle’, ‘DNA repair’, ‘mitotic cell
cycle’, ‘response to DNA damage stimulus’, ‘positive regulation of cell proliferation’ and ‘cell
division’.

Table 2. Genesmapping to the top 100 probesets.

AATF (*) AK056098 ANAPC7 (**) ANXA11 (**)

ARNTL (**) ASPN (**) BLM (*) C1orf21 (**)

CASK (**) CBFA2T2 (**) CBX2 (**) CD80 (**)

CDCA4 (**) CHP1 (**) CHTOP (**) CPSF1[1]

CSE1L (*) CXCL10 (*) CYB5D2 DCAF13 (**)

DDX11 (**) DLEU2[2] DNMT1 (*) DUSP5P1 (**)

EMR2 FAM122B (**) FANCA (*) FCGR1A[3]

FCGR1B (**) FDX1 (**) FLJ41455 GABBR1[4]

GINS4 (**) GMPS (*) HAUS3 (**) HAUS8 (**)

HCG18 HELLS (*) LEF1 (**) LOC100506639[5]

LPCAT1 (**) MAP3K12 (**) MATR3[6] MIR1204[7]

MMP24-AS1 MMP9 (*) MTBP (**) NCOA6 (**)

NCOR1 (**) NR2C1 (**) NR2C2AP (**) NR3C2 (*)

NSMCE2 (**) NSUN2 (**) NUDT1 (**) PARP9 (**)

PDS5A (**) POLQ (**) PPP2CB (**) PRDM13 (**)

PTP4A3 (**) RBL1 (**) RFX5 RGS1 (**)

RGS16 (**) RNPS1 (**) RP11-353N14.2 RP11-932O9.10

RPS15A (**) RPS6KB1 (**) S100PBP (*) SALL4 (**)

SMOC2 (**) SNORA72 (**) STX12 (**) TDO2 (**)

THOC2 (**) TIAL1 (**) TMEM194A (**) TMEM246 (**)

TREM2 (**) U2SURP (**) USP32 (*) VPS13D

VWA1 (**) ZDHHC2 (**) ZHX1-C8orf76 ZNF174 (**)

ZNF680 ZNF692 (**) ZNF7 (**)

[1] CPSF1 (**) /// MIR1234 (**) /// MIR6849 /// MIR939 (**)
[2] DLEU2 (**) /// MIR15A (**)
[3] FCGR1A (**) /// FCGR1B (**) /// FCGR1C
[4] GABBR1 (**) /// UBD (*)
[5] LOC100506639 /// ZNF131 (**)
[6] MATR3 (**) /// SNHG4 (**)
[7] MIR1204 /// PVT1 (*)

List of genes mapped to by the top 100 probesets, proposed as candidates to be connected to cancer processes, irrespectively of the tissue type.

Probesets 216677_at, 229948_at, 235229_at, 235363_at, 241569_at and 243379_at, are not mapped to any gene. Entries mapped by more than one

probeset are displayed in italic; multiple matchings are shown with a superindex. One, two and no asterisks correspond to genes which have been found

in the Atlas of Genetics and Cytogenetics in Oncology and Haematology database [33] to be related, possibly related or not related to cancer processes,

respectively. Genes in bold-face have been identified in [34] as overexpressed in cancer. Gene CASK and multiple matching LOC100506639 /// ZNF131,

in italic, are mapped to by two and three probesets, respectively. Additionally, genes (in multiple matchings) PVT1 and UBD and CPSF1, MIR1234,

MIR939, DLEU2, MIR15A, FCGR1A, FCGR1B, GABBR1, ZNF131, MATR3 and SNHG4 are identified to be related and possibly related to cancer,

respectively.

doi:10.1371/journal.pone.0157484.t002
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List validation. Next, we searched for independent evidence of a connection of these
genes to cancerous processes. Several cancer databases (see for example [30–33]) include lists
of genes that have been related to the disease, based on different aspects such as methylation in
various cancer types, somatic mutations or evidences of tumour suppressing activity. There are
also previous initiatives enumerating genes overexpressed in different cancer types compared
to their normal tissue of origin; see e.g. [34, 35]. However, the overlap among these lists is
small, and is so also with our panel of genes.

Our first benchmark for validating our list of cancer genes was against the Atlas of Genetics
and Cytogenetics in Oncology and Haematology [33], a large peer-reviewed database based on
genetics abnormalities and focused on protein coding and non-coding genes implicated in can-
cer. The Atlas provides a list of 1,432 cancer related genes, the largest of such collections to the
best of our knowledge. For the sake of clarity, we will refer to the Atlas list as L1. After discard-
ing multiple matchings, we observed 135 of 1,285 genes in our candidates in L1. Of these, 12
were among the top 84 unique genes of our top 100 probesets (Table 2, indicated with an
asterisk).

To assess the statistical significance of the counts, we used a hypergeometric test, in which
the ‘gene universe’ is the collection of 23,437 genes which, conforming to Affymetrix NetAffx
Analysis Center, the 54,675 probesets present on the used array platform are mapping to. Note
that the entire collection of genes includes 1,367 genes from L1. According to the test, the prob-
ability of randomly drawing a list of 1,285 (84) genes with an overlap with L1 equal to or larger
than 135 (12) is 1.393924 × 10−11 (0.00339165).

Next, we studied the relation of each of these 135 genes with the cancer processes reported
in the Atlas. For 9, such relation is simply cancer predisposition. Additional 22 genes are con-
nected to only one type of cancer. The rest include genes connected to many types of cancer,
such as the tumour suppressor genes AXIN1 (9 types), BRCA1 (7), BRCA2 (12), MMP11 (11)
and SOCS1 (13), or the oncogenes CSE1L (9), DNMT3A(6), EZH2 (13), FGFR2 (7) and
PTTG1 (7). There are also 4 genes connected to more than 15 different types of cancer (S3
Table). Moreover, a pathway analysis of these genes reveals 21 significant KEGG categories, 12
of which correspond to some type of cancer.

The Atlas also provides a second list of other 27,411 genes possibly related to cancer, but for
which no evidence has yet been found. We refer to this second collection of genes as L2.
Though this is not a validated list, we compared, for completeness, our list to the set of 13,174
genes from L2 included in the HG-U133Plus2. We found an overlap of 944 genes between lists,
and an overlap of 60 for the top 84 (Table 2, indicated with double asterisks). The p-values cor-
responding to the hypergeometric test for these counts are 1.394372 × 10−39 and 0.002936396,
respectively. The significant KEGG categories revealed in gene over/under representation for
these 944 genes involve transcription, replication and repair pathways, such as ‘DNA replica-
tion’, ‘Spliceosome’, ‘Cell cycle’, ‘Homologous recombination’, ‘Mismatch repair’, ‘Base exci-
sion repair’ and ‘MAPK signaling pathway’, and also ‘Pathways in cancer’.

The significant pathways reported for the 206 genes that do not appear in either L1 or L2
include ‘Replisome’, ‘Replication fork’ and ‘DNA replication, synthesis of RNA primer’.

We then analysed the overlap of our candidate list with an assembly of genes overexpressed
in cancer with respect to the tissue from which this originated. This second benchmark,
referred here as collection L3, contains 2,929 probesets mapped to 2,397 genes, which are
described as overexpressed in different types of cancer after pairwise comparison [34]. We
found 210 unique genes (247 probesets) in common with L3, 16 of which are among the top
84 genes (Table 2, indicated in bold-face, more details available in S4 Table). The p-values
for the hypergeometric test for the whole list and for the top 84 genes are 2.358516 × 10−12

and 0.01041105, respectively. The significant KEGG pathways include ‘Cell cycle’, ‘DNA
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replication’ and ‘Non-homologous end-joining’, related to replication and repair and cell
growth and death.

It is worth mentioning that the intersection with L3 comprises 154 genes not included in L1,
whereas 59 additional candidate genes are found in alternative databases [30–32, 35].

In summary, these results serve as validation for the proposed model (3) and support the
hypothesis that our collection of genes may effectively include many novel cancer genes.

Discussion
The identification of genes related to cancer processes is one of the central goals in genome-
wide experiments; however, different studies on the same cancer type often lead to results with
little overlap [13, 14]. Thus, the use of meta-analysis to integrate diverse datasets and to benefit
from a higher statistical power has revealed as a better strategy.

In this work, we have combined data from hundreds of publicly available experiments that
use the Affymetrix HG-U133Plus2 array, jointly comprising tens of thousands individual
assays. The annotation of such dataset allows delineation of a human gene expression map
which is in agreement with that in [7], but more diverse. In particular, the PCA of the full data
and the hierarchical clustering of the biological groups with at least 20 replicates enable, for
instance, to discriminate different types of leukaemia, or to observe that for some tissue types,
expression levels of normal and cancer states are more similar while for others, the tissue of ori-
gin is less similar to the related tumour than to some other tissue. Also, focusing on the most
variable probesets allows finding meaningful clusters of genes that are highly expressed in
some tissue types and, correspondingly, have an overrepresentation in pathways related to
these tissues.

To benefit from the statistical power of this large dataset, we have proposed a probeset-level
mixed-effects linear model for the observed expression. Our model accounts for random effects
such as the experiment and the tissue of origin, and also for a fixed effect, the one of interest,
given by the disease status (normal vs cancer). The inclusion of the tissue type as a random fac-
tor allows our results to be generalised to tissue types other than the ones included in our data-
set, whereas no inference can be done to other diseases. For paired groups, we retained only
tissues with at least 20 untreated normal and 20 untreated tumour samples. The fitting of the
model to the subset of paired data allowed the identification, after appropriate correction for
multiple comparisons, of a collection of 1,835 probesets (mapping to 1,285 unique genes) for
which the disease status carries small but significant effect.

Gene enrichment analyses revealed significant categories related to cell division, DNA
repair or G-protein coupled receptor protein signaling pathway, deeply connected to the pro-
gression of cancer. This supports the hypothesis that our list may include novel cancer genes.

Further independent validation was obtained by means of external, large databases that pro-
vide lists of cancer related genes. Several oncogenes, tumour suppressor genes and cancer pre-
disposition genes emerge from comparisons to these lists. Overlaps larger than expected by
chance have been shown. Also, the gene enrichment analysis for this subset of genes revealed
several tissue-specific cancer pathways. It is worth noting that our proposed list of genes,
which was obtained exclusively by identification of differential expression, includes genes
whose connection to cancer processes has been previously established by other means than
gene expression, for instance, on the basis of somatic mutations (e.g. the genes BRCA1,
BRCA2). The genes that are not present in the external databases are proposed as new candi-
date cancer genes. We expect that our findings will help provide further fundamental insights
in the regulatory pathways involved in cancer processes and that future research will support
them.
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Supporting Information
S1 Appendix. Data pre-processing and quality control.Description of the pre-processing
and quality control steps and parameters.
(PDF)

S1 Table. Samples and Biological groups. Collection of 27,887 annotated samples retrieved
from ArrayExpress along with the biological group; the original experiments and assay names
are given in the format ‘Experiment_CELfile’.
(XLS)

S1 Fig. Heatmap; all biological groups and all probesets.Heatmaps for the average pairwise
correlations between samples from any two biological groups with at least 20 observations.
All probesets are accounted for in the computation of the correlations. The range for the simi-
larity measure is (0.6317, 0.9953). The colour labels display smaller clusters in the hierarchical
tree.
(PDF)

S2 Fig. Heatmap; all biological groups and 20,000 most variable probesets.Heatmap for the
average pairwise correlations between samples from any two biological groups with at least 20
observations. Only the 20,000 most variable probesets are accounted for in the computation of
the correlations. The range for the similarity measure is (0.3012, 0.9946). The colour labels dis-
play smaller clusters in the hierarchical tree.
(PDF)

S3 Fig. Heatmap; all biological groups and 10,000 most variable probesets.Heatmap for the
average pairwise correlations between samples from any two biological groups with at least 20
observations. Only the 10,000 most variable probesets are accounted for in the computation of
the correlations. The range for the similarity measure is (0.1352, 0.9938). The colour labels dis-
play smaller clusters in the hierarchical tree.
(PDF)

S4 Fig. Heatmap; all biological groups and 5,000 most variable probesets.Heatmap for the
average pairwise correlations between samples from any two biological groups with at least 20
observations. Only the 5,000 most variable probesets are accounted for in the computation of
the correlations. The range for the similarity measure is (−0.0288, 0.9940). The colour labels
display smaller clusters in the hierarchical tree.
(PDF)

S5 Fig. Heatmap; all biological groups and 1,000 most variable probesets.Heatmap for the
average pairwise correlations between samples from any two biological groups with at least 20
observations. Only the 1,000 most variable probesets are accounted for in the computation of
the correlations. The range for the similarity measure is (−0.3591, 0.9960). The colour labels
display smaller clusters in the hierarchical tree.
(PDF)

S6 Fig. Heatmap; all biological groups and 500 most variable probesets.Heatmap for the
average pairwise correlations between samples from any two biological groups with at least 20
observations. Only the 500 most variable probesets are accounted for in the computation of the
correlations. The range for the similarity measure is (−0.4359, 0.9965). The colour labels dis-
play smaller clusters in the hierarchical tree.
(PDF)

A Human Global Map to Identify Cancer Genes

PLOS ONE | DOI:10.1371/journal.pone.0157484 June 20, 2016 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157484.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157484.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157484.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157484.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157484.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157484.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157484.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157484.s008


S7 Fig. Heatmap; solid groups and all probesets.Heatmap for the average pairwise correla-
tions between samples from any two solid groups with at least 20 observations, accounting for
all the probesets in the computation of the correlations. The range for the similarity measure is
(0.7164, 0.9920). The colour labels display smaller clusters in the hierarchical tree.
(PDF)

S8 Fig. Heatmap; solid groups and 20,000 most variable probesets.Heatmap for the average
pairwise correlations between samples from any two solid groups with at least 20 observations,
accounting for the 20,000 most variable probesets in the computation of the correlations. The
range for the similarity measure is (0.3869, 0.9907). The colour labels display smaller clusters
in the hierarchical tree.
(PDF)

S9 Fig. Heatmap; solid groups and 10,000 most variable probesets.Heatmap for the average
pairwise correlations between samples from any two solid groups with at least 20 observations,
accounting for the 10,000 most variable probesets in the computation of the correlations. The
range for the similarity measure is (0.1704, 0.9896). The colour labels display smaller clusters
in the hierarchical tree.
(PDF)

S10 Fig. Heatmap; solid groups and 5,000 most variable probesets.Heatmap for the average
pairwise correlations between samples from any two solid groups with at least 20 observations,
accounting for the 5,000 most variable probesets in the computation of the correlations. The
range for the similarity measure is (0.0247, 0.9893). The colour labels display smaller clusters
in the hierarchical tree.
(PDF)

S11 Fig. Heatmap; solid groups and 1,000 most variable probesets.Heatmap for the average
pairwise correlations between samples from any two solid groups with at least 20 observations,
accounting for the 1,000 most variable probesets in the computation of the correlations. The
range for the similarity measure is (−0.1312, 0.9938). The colour labels display smaller clusters
in the hierarchical tree.
(PDF)

S12 Fig. Heatmap; solid groups and 500 most variable probesets.Heatmap for the average
pairwise correlations between samples from any two solid groups with at least 20 observations,
accounting for the 500 most variable probesets in the computation of the correlations. The
range for the similarity measure is (−0.2424, 0.9955). The colour labels display smaller clusters
in the hierarchical tree.
(PDF)

S13 Fig. Heatmap; solid groups vs 1,000 most variable probesets.Heatmap for the expression
level of the 1,000 most variable probesets averaged over the samples included in each biological
group with at least 20 observations. The range for this similarity measure is (2.6984, 14.4581). The
colour labels display the same clusters as those in S11 Fig. The probeset labels report the name of
the genes they are mapping to. Probesets mapping to the same gene are clustered together.
(PDF)

S14 Fig. BGV for all probesets across paired tissues. The BGV ranges from 0.051 to
2,047.575, but only 10.85% of the probesets show a BGV really high (greater than 128.1, the
‘maximum’ whisker).
(PDF)
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S15 Fig. a) Permutation test QQ-plot. Quantiles of the adjusted permutation and observed
p-values in log10 scale. Except for very extreme results observed due to resolution of attainable
p-values in the permutation test, the observed p-values are larger than those obtained with the
permutation test. b) QQ-plot of correct vs shuffled disease labels. After random permutation
of the disease labels within each tissue type and multiple testing correction, none of the probe-
sets are called significant.
(PDF)

S16 Fig. Disease effect volcano plot. Plot of the disease effect, irrespective of the tissue type,
versus the negative log 10-transformed p-values.
(PDF)

S2 Table. Significant probesets. The list of 1,835 significant probes, for which there is a signif-
icant effect of the disease status, along with the corrected p-values, and the genes or set of genes
they are mapping to. They are ordered according to increasing p-values. There are 1,285
unique genes and 97 multiple matchings.
(TXT)

S3 Table. Genes found in the Atlas. The 135 unique genes found in the list L1 from the Atlas
of Genetics and Cytogenetics in Oncology and Haematology are alphabetically ordered and
displayed in bold-face. The types of cancer they have been related to are also shown.
(XLS)

S4 Table. Genes overexpressed in cancer. The 210 unique genes found in the list L3 identified
in [34] are alphabetically ordered and displayed in bold-face. The types of cancer they have
been related to are also shown.
(XLS)
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