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We propose and demonstrate a new approach for realizing spin-orbit coupling with ultracold atoms.
We use orbital levels in a double-well potential as pseudospin states. Two-photon Raman transitions
between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light,
features adjustable interactions by shaping the double-well potential, and does not depend on special
properties of the atoms. A pseudospinor Bose-Einstein condensate spontaneously acquires an antiferro-
magnetic pseudospin texture, which breaks the lattice symmetry similar to a supersolid.
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Spin-orbit coupling is the mechanism for many in-
triguing phenomena, including Z2 topological insulators,
the spin quantum Hall effect [1,2], Majorana fermions [3],
and spintronics devices [4]. Realizing controllable spin-
orbit coupling with ultracold atoms should make it feasible
to explore fundamental aspects of topology in physics and
applications in quantum computing [5].
Spin-orbit coupling requires the atom’s motion to be

dependent on its spin state. Spin-orbit coupling without
spin flips is possible for schemes that are diagonal in the
spin component σz. Such spin-dependent vector potentials,
which are sufficient for realizing quantum spin Hall physics
and topological insulators, can be engineered using far-
detuned laser beams to completely suppress spontaneous
emission [6,7].
However, spin flips (i.e., spin-orbit coupling terms

involving σx or σy operators) are necessary for Rashba
[8] and Dresselhaus [9] spin-orbit coupling [10].
Experiments with ultracold atoms couple pseudospin states
using optical dipole transitions, which couple only to the
orbital angular momentum of the atom. Most realizations,
including the first demonstration [11], use hyperfine states
of an alkali atom as pseudospins. In this case, the coupling
of the two states occurs due to internal spin-orbit coupling
in the excited state of the atom, which causes the fine-
structure splitting between the D1 and D2 lines. The
optimum detuning of the lasers is comparable to this
splitting, leading to heating. Special atomic species with
orbital angular momentum in the ground state can avoid
this problem, as recently realized with dysprosium [12].
Here, we present a new method that can be applied to any
atomic species, using an external orbital degree of freedom
as the pseudospin to avoid the need for near-resonant light.
An external degree of freedom as the pseudospin could

be realized for a two-dimensional system by using the
ground and first excited states of the confinement along
the third dimension as pseudospin states. However, the

excited state would rapidly relax due to elastic collisions,
typically on a millisecond time scale [13]. This is also the
case for the recent implementation of spin-orbit coupling
(SOC) with hybrid s-p Floquet bands in a one-dimensional
optical lattice [14]. To solve this issue, we choose an
asymmetric double-well potential (Fig. 1). Pseudospins up
and down are realized as the two lowest eigenstates of the
double-well potential. For J=Δ ≪ 1, they can be expressed
by the tight-binding states jli and jri localized in the left
and right wells, respectively: j↓i ¼ jli þ ðJ=ΔÞjri and

FIG. 1. Realization of orbital pseudospins in a superlattice.
(a) The unit cell of the superlattice is a double well with offset Δ
and tunneling J. The two lowest eigenstates (pseudospin up and
down) are coupled via a two-photon Raman process. (b) Raman
process in the band structure of the superlattice. The ground state
with quasimomentum q ¼ 0 is coupled to the edge of the
Brillouin zone q ¼ ðπ=dÞ of the first excited band. (c) Top view
of the superlattice with period d ¼ λIR=2 ¼ 532 nm. Raman
coupling is implemented by two λIR beams: one along the
superlattice (z direction), the other along the x direction. SOC
(curved arrows) transfers transverse recoil in the x direction to the
atoms (dashed arrows).
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j↑i ¼ jri − ðJ=ΔÞjli. The tunneling J and offset Δ
between the two wells are used to adjust the overlap—
and therefore the interactions and the collisional relaxation
rate—between the two pseudospin states. We couple the
two states via a two-photon Raman transition with large
detunings to achieve SOC with spin flips. (For conven-
ience, we will refer to pseudospin as spin in this Letter.)
Recent work on two-leg ladders can be mapped to SOC
between the two legs of the ladder [15,16]. Our scheme is
qualitatively different from other realizations of orbital
pseudospin since it realizes spin-orbit coupling in free
space as compared to lattice models.
An intriguing prediction for spin-orbit coupled Bose-

Einstein condensates (BECs) is the existence of a stripe
phase [17–19], a spontaneous density modulation that
realizes a supersolid [20]. However, when the interspin
(g↑↓) and intraspin (g↑↑, g↓↓) interaction strengths are the
same, the increased interaction energy of the density
modulation drives spatial phase separation, eliminating
the stripes. The system can be kept in the miscible phase
when interspin interactions are weaker than intraspin
interactions, g2↑↓ < g↑↑g↓↓ [19]. In our realization, g↑↓ is
proportional to the overlap squared of the wave functions
on the two sides of the double well. An analogous scheme
can be realized with hyperfine pseudospins and spin-
dependent lattices [21], but requires near-resonant light.
Our scheme does not depend on specific atomic properties
and addresses three challenges to realizing the stripe phase:
(1) spin-orbit coupling without near resonant light, (2) a
miscible system with adjustable interspin interactions, (3) a
long lifetime against collisional relaxation.
Instead of one double-well system, we create a lattice of

double wells using an optical superlattice [Fig. 1(c)]. The
advantages of working with a stack of coherently coupled
double wells are twofold: the increased signal to noise ratio
and the use of interference between the double wells to
separately observe the two spin states. In the present work,
the degree of freedom along the superlattice direction is
purely an aid to observation [22].
Our main result is the observation of the momentum

structure of a BECmodified by a superlattice and spin-orbit
coupling. We first describe the effects of the superlattice
without adding SOC. A one-dimensional superlattice of
double wells was realized by combining lattices of λIR ¼
1064 nm light and λGr ¼ 532 nm light obtained by fre-
quency doubling the λIR ¼ 1064 nm light. The shape of the
double-well unit cell is determined by the relative strength
and spatial phase ϕSL between the two lattices. The phase is
controlled by a rotatable dispersive glass plate and an
acousto-optical modulator for rapidly switching the IR
lattice frequency.
The experiment starts with a BEC of ∼3 × 105 23Na

atoms in the jF ¼ 1; mF ¼ −1i state in a crossed optical
dipole trap. The superlattice is adiabatically ramped up
within 250 ms. For an offset Δ ≫ J, all the atoms

equilibrate at the band minimum q ¼ 0 of the lowest
superlattice band, putting 100% of the population in the
j↓i state. The relative population of the two spin states can
be controlled by first adjusting Δ for the loading stage to
achieve a desired state population and then rapidly lifting
one well up to the final offset [23]. The upper well
corresponds to the first excited band, which has its
minimum energy at quasimomentum q ¼ π=d with d ¼
λIR=2 [Figs. 2(a) and 2(b)]. Since the lowest energy j↑i and
j↓i states have different quasimomenta and experience
different transverse confinement, they can be separately
observed in ballistic expansion images without the band-
mapping techniques [23].
The π=d quasimomentum difference also leads to an

interesting spin texture for an equal population of the j↑i
and j↓i states. For this, atoms are prepared in both bands
with q ¼ 0 [Fig. 2(c)], corresponding to a wave function
periodicity of 532 nm, i.e., the lattice constant. However,
after relaxation, the periodicity has doubled to 1064 nm, as
indicated by the doubled number of momentum compo-
nents in ballistic expansion images [Fig. 2(d)]. Specifically,
the system was prepared in the symmetric stateP

nðj↓ni þ j↑niÞ, where n denotes the lattice site, which
is a ferromagnetic spin state in the x-y plane. After
relaxation into the state

P
n½j↓ni þ ð−1Þneiθe−iΔtj↑ni� an

antiferromagnetic spin texture has developed, which
reduces the translational symmetry of the lattice. This

FIG. 2. Spontaneous formation of an antiferromagnetic spin
texture. (a),(b) Time-of-flight (TOF) pattern of atoms in the
ground (first excited) band of the superlattice. After preparation
of the j↑i state with quasimomentum q ¼ 0, it relaxes to the
bottom of the band at q ¼ π=d. (c) An equal mixture of spin
states is prepared by rapidly switching the superlattice param-
eters. The two spin states can be separated in the TOF by a
pseudospin Stern-Gerlach effect [23]. The figure shows that both
spin states are in q ¼ 0 before the relaxation. (d) After relaxation,
spinor BECs with states j↓i, q ¼ 0 and j↑i, q ¼ π=d are
observed. The momentum pattern implies a periodic structure
at 2d, twice the lattice constant, indicating that an antiferromag-
netic spin structure with a doubled unit cell has formed. The plus
and minus signs indicate (one possible choice for) the phase of
the BEC wave function. n is the site index.
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system breaks both U(1) symmetry (the phase of the BEC)
and the translational symmetry of the superlattice. In
addition to the spin-density wave, it also has a density
wave with the same period due to the interference of the j↑i
and j↓i satellites. The position of the spin and density
modulations is determined by the spontaneous phase θ and
oscillates at frequency Δ [23]. It is a simple system
fulfilling one definition of supersolidity [25–27].
The small satellites allow spin-orbit coupling, but also

lead to the collisional decay of the j↑ > state. We observed
lifetimes on the order of 200 ms for both the j↑i and equally
mixed states at a density of n ≈ 2.5 × 1014 cm−3. The
similar lifetimes for both states and the sensitivity to daily
alignment indicate the lifetime being limited by technical
noise and the misalignment of the lattice rather than by
collisions. Collisions would lead to a shorter lifetime for the
mixed state by a factor of 4ðJ=ΔÞ2. Adding Raman beams
(with the parameters presented in Fig. 4) increases the loss
rate by ∼10=s, probably caused by technical issues. While
previous work with 87Rb reports a lifetime of seconds [11],
the Raman hyperfine spin flip scheme is not promising for
lighter atoms because of the substantially higher heating
rates compared with 87Rb, which are 103 (105) times higher
for 23Na (6Li) [28]. Even without major improvements, the
lifetimes achieved in our work are longer than any relevant
dynamic time scale and should be sufficient for further
studies, including the observation of the stripe phase [29].
Coupling between the two spin states is provided by two

λIR beams: one along the superlattice direction z, the other
orthogonal to it (along x). The frequency difference of the
two beams is close to the offset in the double well, allowing
near-resonant population transfer. The recoil kz along the
lattice is necessary to couple the two orthogonal spin states
in the double well, and was chosen to be kz ¼ π=d. The
recoil kick kx in the transverse plane provides the coupling
between the free-space motion in the transverse plane and
the spin. It has opposite signs for the transition j↓i to j↑i
and the reverse transition.
The Raman coupling can be described as a moving

potential VRaman ¼ Ω cosðkxxþ kzz − δtÞ, characterized by
a two-photon Rabi frequency Ω, a detuning of Raman
beams δ, and a wave vector ðkx; 0; kzÞ. We characterize the
states by their spin, quasimomentum q, and x momentum
kx (the y momentum is always zero).
If the system is initially prepared in the state

j↓; q ¼ 0; kx ¼ 0i, the adiabatically ramped Raman beams
will transfer it to a new eigenstate:

jΨ1i ¼ j↓;0;0iþK1e−iδtj↑;π=d;kxiþM1e−iδtj↓;π=d;kxi
þM1

0eiδtj↓;−π=d;−kxi: ð1Þ

If prepared in j↑; π=d; 0i, the new state will be

jΨ2i ¼ e−iΔtj↑; π=d; 0i þ K2eiðδ−ΔÞtj↓; 0;−kxi
þM2eiðδ−ΔÞtj↑; 0;−kxi
þM2

0e−iðδþΔÞtj↑; 0; kxi: ð2Þ

The amplitudes obtained from first order perturbation
theory appear in Table I. The spin-orbit coupling is
described by the second term in Eqs. (1) and (2). In
addition, the Raman beams act as a comoving lattice and (in
the limit δ ≫ Er) create a moving density modulation in the
two spin states, described by the third and fourth terms.
The spin-orbit coupling shows a resonant behavior for
δ ≈ Δ—the range of interest for SOC—where the moving
density modulation is nonresonant. Both contributions are
proportional to Ω=Δ. The off-resonant counterrotating spin
flip term is proportional to Δ−2 and has been neglected. For
δ ≫ Er, all off-resonant amplitudesMi,M0

i become ≈Ω=δ.
For δ ¼ Δ and both spin states populated, the spin-orbit
admixture of jΨ1i is expected to form a stationary inter-
ference pattern with jΨ2i along x with wave vector kx, and
vice versa, which constitutes the stripe phase of spin-orbit
coupled BECs in the perturbative limit. (In general, the
periodicity of the stripes depends on β and the atoms’
interactions [19].)
The resonant Raman coupling leads to the standard spin-

orbit Hamiltonian [23]:

ĤSOC ¼ ðp̂þ ασ̂zÞ2
2m

þ βσ̂x þ δ0σ̂z; ð3Þ

which can be considered as equal contributions of Rashba
and Dresselhaus interactions. The parameters α ¼ −kx=2,
β ¼ ð1= ffiffiffi

2
p ÞΩJ=Δ, and δ0 ¼ ðδ − ΔÞ=2 are independently

tunable in our experiment.
To characterize all the components of the wave functions

above, the Raman coupling was adiabatically switched on
by ramping up the intensity of the two Raman beams. The
momentum space wave function was observed by suddenly
switching off the lattice and trapping beams and measuring
the resulting density distribution with absorption imaging
after 10 ms of ballistic expansion (Fig. 3).

TABLE I. The amplitudes of the wave functions in Eqs. (1) and (2) obtained from first order perturbation theory (i ¼ 1, 2).

States Mi M0
i K

jΨ1i − 1
2
ðΩ=Er − δÞ − 1

2
ðΩ=Er þ δÞ −i½e−iðπ=4Þ= ffiffiffi

2
p �ðJ=ΔÞðΩ=Er þ Δ − δÞ

jΨ2i þ 1
2
ðΩ=Er þ δÞ − 1

2
ðΩ=Er − δÞ þi½eiðπ=4Þ= ffiffiffi

2
p �ðJ=ΔÞðΩ=Er − Δþ δÞ
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The momentum components created by the Raman
beams are displaced in the x direction by the recoil shift
ℏkIR. For off-resonant Raman beams, the pattern is sym-
metric for the þx and −x directions—signifying the
moving density modulation [see Eqs. (1) and (2)]. The
resonant spin-orbit coupling is one sided, with opposite
transfer of x momentum for the two spin states—as
observed in Fig. 3. We separate the momentum peaks
due to the moving density modulation from SOC by
evaluating the difference between the momentum peaks
along the þx and −x directions. Figure 4 shows the
resonance feature of the SOC when the Raman detuning
was varied. The resonances for the two processes j↓i → j↑i
and j↑i → j↓i should be separated by 2Er ≈ 15.3 kHz. The
observed discrepancy is consistent with mean field inter-
actions, which reduce the separation by ∼2μ ≈ 5 kHz,
where μ is the single site chemical potential. The observed
widths of the resonances are probably dominated by the
inhomogeneity ofΔ due to the Gaussian beam profile of the
IR lattice laser [23].

Having established spin-orbit coupling at the single-
particle level, the next step is to explore the phase diagram
of spin-orbit coupled Bose-Einstein condensates with
interactions [17,19,21], particularly the stripe phase. The
clear signature of the stripe phase is the stationary, periodic
density modulation on the BEC mentioned above. The
periodicity is tunable through the spin-orbit coupling
strength and can be directly observed via Bragg scattering
[30]. In contrast to experiments carried out with 87Rb,
which has similar inter- and intraspin scattering lengths,
our system has an adjustable interspin interaction
g↓↑ ≈ ðJ=ΔÞ2g↓↓ ¼ ðJ=ΔÞ2g↑↑. Small values of g↓↑=g↑↑
lead to a large window of β for observing the stripe phase
and enable higher contrast stripes [19]. Figure 3(i) shows
the momentum distribution of an equal spin mixture with
SOC. We observed an ∼40 ms lifetime for the parameters
presented in Fig. 4. After adding Bragg detection, the
observation of the stripe phase is in reach.
In conclusion, we proposed and demonstrated a new

scheme for realizing spin-orbit coupling using superlatti-
ces. An asymmetric double-well potential provides attrac-
tive features for pseudospins, including long lifetimes,
adjustable interactions, and easy detection. This scheme
can be applied to a wide range of atoms including lithium
and potassium, which suffer from strong heating when
hyperfine pseudospins are coupled. On the other hand, by

FIG. 3. Characterization of spinor BECs through their momen-
tum distributions. (a),(e) TOF images of the j↓i and j↑i states,
respectively. (b),(f) Schematics of the momentum peaks for j↓i
and j↑i with Raman coupling. Both the SOC (solid arrows) and
the density modulation (dashed arrows) are shown. The main
peak (filled circle) is equal to the quasimomentum of the state.
Extra peaks (open circles) appear due to the periodic potential.
(c),(d),(g),(h) Same as in (a) and (e), but now with Raman
coupling at different detunings δ. The momentum components
created by the Raman process are vertically shifted compared to
(a) and (e) due to the transverse momentum kick. The momentum
shift along the superlattice (z direction) reflects the π=d quasi-
momentum of the Raman lattice. The off-resonant density
modulation creates momentum peaks that are symmetric along
þx and −x [(c) and (g)], whereas resonant spin-orbit coupling
creates unidirectional momentum transfer resulting in asymmetry
[(d) and (h)]. (i) Spin-orbit coupled BEC with equal population in
the spin up and spin down states.

FIG. 4. Spin-orbit coupling resonances. Shown is the popula-
tion imbalance between the “þx” and “−x” momentum peaks
versus Raman detuning for the j↓i → j↑i (blue) and j↑i → j↓i
(red) processes. The two sets of data were measured for the same
superlattice parameters VIR ¼ 7.5ð2ÞEr, VGr ¼ 20ð2ÞEr, and
ϕSL ≈ 0.22ð1Þπ, which gives Δ ≈ 37ð1Þ kHz. The spin-orbit
coupling strength β was calculated to be 0.40(5) kHz. The solid
lines are Gaussian fits to the resonances centered at 32.2(3) and
43.2(3) kHz. The Gaussian profile of the IR lattice inhomoge-
neously broadens the resonances. The error bars represent 1σ
statistical uncertainty. Inset: resonance center frequencies versus
the IR lattice depth VIR for fixed ϕSL. The resonances are linear in
VIR with a constant split equal to twice the recoil energy.
The slope of the linear fit reveals ϕSL. The error bars are the
uncertainties of the fit.
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combining multiple hyperfine states with the orbital
degree of the double well, our scheme can realize two-
dimensional Rashba spin-orbit coupling [31] and sugges-
tions made for alkaline-earth atoms, for example, synthetic
non-Abelian gauge potentials [32,33], and Kondo lattice
models [34–36].
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