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Abstract

We present the Mind the Gap Model (MGM), an approach for interpretable fea-
ture extraction and selection. By placing interpretability criteria directly into the
model, we allow for the model to both optimize parameters related to interpretabil-
ity and to directly report a global set of distinguishable dimensions to assist with
further data exploration and hypothesis generation. MGM extracts distinguishing
features on real-world datasets of animal features, recipes ingredients, and dis-
ease co-occurrence. It also maintains or improves performance when compared
to related approaches. We perform a user study with domain experts to show the
MGM’s ability to help with dataset exploration.

1 Introduction

Not only are our data growing in volume and dimensionality, but the understanding that we wish to
gain from them is increasingly sophisticated. For example, an educator might wish to know what
features characterize different clusters of assignments to provide in-class feedback tailored to each
student’s needs. A clinical researcher might apply a clustering algorithm to his patient cohort, and
then wish to understand what sets of symptoms distinguish clusters to assist in performing a differen-
tial diagnosis. More broadly, researchers often perform clustering as a tool for data exploration and
hypothesis generation. In these situations, the domain expert’s goal is to understand what features
characterize a cluster, and what features distinguish between clusters.

Objectives such as data exploration present unique challenges and opportunities for problems in
unsupervised learning. While in more typical scenarios, the discovered latent structures are simply
required for some downstream task—such as features for a supervised prediction problem—in data
exploration, the model must provide information to a domain expert in a form that they can readily
interpret. It is not sufficient to simply list what observations are part of which cluster; one must also
be able to explain why the data partition in that particular way. These explanations must necessarily
be succinct, as people are limited in the number of cognitive entities that they can process at one
time [1].

The de-facto standard for summarizing clusters (and other latent factor representations) is to list the
most probable features of each factor. For example, top-N word lists are the de-facto standard for
presenting topics from topic models [2]; principle component vectors in PCA are usually described
by a list of dimensions with the largest magnitude values for the components with the largest mag-
nitude eigenvalues. Sparsity-inducing versions of these models [3, 4, 5, 6] make this goal more
explicit by trying to limit the number of non-zero values in each factor. Other works make these
descriptions more intuitive by deriving disjunctive normal form (DNF) expressions for each clus-
ter [7] or learning a set of important features and examples that characterizes each cluster [8]. While
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these approaches might effectively characterize each cluster, they do not provide information about
what distinguishes clusters from each other. Understanding these differences is important in many
situations—such when performing a differential diagnosis and computing relative risks [9, 10].

Techniques that combine variable selection and clustering assist in finding dimensions that
distinguish—rather than simply characterize—the clusters [11, 12]. Variable extraction methods,
such as PCA, project the data into a smaller number of dimensions and perform clustering there. In
contrast, variable selection methods choose a small number of dimensions to retain. Within vari-
able selection approaches, filter methods (e.g. [13, 14, 15]) first select important dimensions and
then cluster based on those. Wrapper methods (e.g. [16]) iterate between selecting dimensions and
clustering to maximize a clustering objective. Embedded methods (e.g. [17, 18, 19]) combine vari-
able selection and clustering into one objective. All of these approaches identify a small subset of
dimensions that can be used to form a clustering that is as good as (or better than) using all the
dimensions. A primary motivation for identifying this small subset is that one can then accurately
cluster future data with many fewer measurements per observation. However, identifying a minimal
set of distinguishing dimensions is the opposite of what is required in data exploration and hypothe-
sis generation tasks. Here, the researcher desires a comprehensive set of distinguishing dimensions
to better understand the important patterns in the data.

In this work, we present a generative approach for discovering a global set of distinguishable dimen-
sions when clustering high-dimensional data. Our goal is to find a comprehensive set of distinguish-
ing dimensions to assist with further data exploration and hypothesis generation, rather than a few
dimensions that will distinguish the clusters. We use an embedded approach that incorporates inter-
pretability criteria directly into the model. First, we use a logic-based feature extraction technique to
consolidate dimensions into easily-interpreted groups. Second, we define important groups as ones
having multi-modal parameter values—that is, groups that have gap in their parameter values across
clusters. By building these human-oriented interpretability criteria directly into the model, we can
easily report back what an extracted set of features means (by its logical formula) and what sets of
features distinguish one cluster from another without any ad-hoc post-hoc analysis.

2 Model

We consider a data-set {wnd} with N observations and D binary dimensions. Our goal is to decom-
pose these N observations into K clusters while simulateneously returning a comprehensive list of
what sets of dimensions d are important for distinguishing between the clusters.

MGM has two core elements which perform interpretable feature extraction and selection. At the
feature extraction stage, features are grouped together by logical formulas, which are easily inter-
preted by people [20, 21], allowing some dimensionality reduction while maintaining interpretabil-
ity. Next, we select features for which there is a large separation—or a gap—in parameter val-
ues. From personal communication with domain experts across several domains, we observed that
separation—rather than simply variation—is often as aspect of interest as it provides an unambigu-
ous way to discriminate between clusters.

We focus on binary-valued data. Our feature extraction step involves consolidating dimensions into
groups. We posit that there an infinite number of groups g, and a multinomial latent variable ld
that indicates the group to which dimension d belongs. Each group g is characterized by a latent
variable fg which contains the formula associated with the group g. In this work, we only consider
the formulas fg = or, fg = and and constrain each dimension to belong to only one group. Simple
Boolean operations like or and and are easy to interpret by people. Requiring each dimension to be
part of only one group avoid having to solve a (possibly NP-complete) satisfiability problem as part
of the generative procedure.

Feature selection is performed through a binary latent variable yg which indicates whether each
group g is important for distinguishing clusters. If a group is important (yg = 1), then the probability
βgk that group g is present in an observation from cluster k is drawn from a bi-modal distribution
(modeled as a mixture of Beta distributions). If the group is unimportant (yg = 0), the the probability
βgk is drawn from a uni-modal distribution. While a uni-modal distribution with high variance can
also produce both low and high values for the probability βgk, it will also produce intermediate
values. However, draws from the bi-modal distribution will have a clear gap between low and
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(a) Mind the gap graphical model

(b) Cartoon describing emissions from
important dimensions. In our case, we
define importance by separability—or
a gap—rather than simply variance.
Thus, we distinguish panel (1) from (2)
and (3), while [17] distinguishes be-
tween (2) and (3).

Figure 1: Graphical model of MGM, Cartoon of distinguishing dimensions.

high values. This definition of important distributions is distinct from the criterion in [17], where
parameters for important distributions were selected from a uni-modal distribution and parameters
for unimportant dimensions were shared across all clusters. Figure 1b illustrates this difference.

Generative Model The graphical model for MGM is shown in Figure 1. We assume that there are an
infinite number of possible groups g, each with an associated formula fg . Each dimension d belongs
to a group g, as indicated by ld. We also posit that there are a set of latent clusters k, each with
emission characteristics described below. The latent variable βgk corresponds to the probability that
group g is present in the data, and is drawn with a uni-modal or bi-modal distribution governed by
the parameters {γg, yg, tgk}. Each observation n belongs to exactly one latent cluster k, indicated
by zn. The binary variable ing indicates whether group g is present in observation n. Finally, the
probability of some observation wnd = 1 depends on whether its associated group g (indicated by
ld) is present in the data (indicated by ing) and the associated formula fg .

The complete generative process first involves assigning dimensions d to groups, choosing the for-
mula fg associated with each group, and deciding whether each group g is important:

πl ∼ DP(αl) πf ∼ Dirichlet(αf ) ld ∼ Multinomial(πl)

yg ∼ Bernoulli(πg) γg ∼ Beta(σ1, σ2) fg ∼ Multinomial(πf )

where DP is the Dirichlet process. Thus, there are an infinite number of potential groups; however,
given a finite number of dimensions, only a finite number of groups can be present in the data. Next,
emission parameters are selected for each cluster k:

If(yg = 0) βgk ∼ Beta(αu, βu)

Else : tgk ∼ Bernoulli(γg) If : tgk = 0 : βgk ∼ Beta(αb, βb)

Else : βgk ∼ Beta(αt, βt)

Finally, observations wnd are generated:

πz ∼ Dirichlet(αz) zn ∼ Multinomial(πz) ing ∼ Bernoulli(βgk)

If : ing = 0 : {wnd|ld = g} = 0 Else : {wnd|ld = g} ∼ Formulafg

The above equations indicate that if ing = 0, that is, group g is not present in the observation, then
in that observation, all wnd such that ld = g are also absent (i.e. wnd = 0). If the group g is present
(ing = 1) and the group formula fg = and, then all the dimensions associated with that dimension
are present (i.e. wnd = 1). Finally, if the group g is present (ing = 1) and the group formula
fg = or, then we sample the associated wnd from all possible configurations of wnd such that at
least one wnd = 1.
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Figure 2: Motivating examples with cartoons from three clusters (vacation, student, winter) and the
distinguishable dimensions discovered by the MGM.

Let θ = {yg, γg, tgk, βgk, ld, fg, zn, ing} be the set of variables in the MGM. Given a set of obser-
vations {wnd}, the posterior over θ factors as

Pr({yg, γg, tgk, βgk, ld, fg, zn, ing}|{wnd}) =
G∏
g

p(yg|ρ)p(γg|σ)p(fg|α)·

[

K∏
k

p(tgk|γg)p(βgk|tgk, yg)]p(κ|α)
D∏
d

p(ld|κ)p(π|α)
N∏
n

p(zn|π)

N∏
n

G∏
g

p(ing|β, zn)
N∏
n

D∏
d

p(wnd|ing, f, ld)] (1)

Most of these terms are straight-forward to compute given the generative model. The likelihood
term p(wnd|ing, f, ld) can be expanded as

p(wn·|ing, f, ld) =
∏
d,g

[(0)1(ing=1)(1−SAT(g;wn·,fg,ld))(1)1(ing=1)SAT(g;wn·,fg,ld)

(0)1(ing=0)1(ld=g)1(wnd=1)(1)1(ing=0)1(ld=g)1(wnd=0) (2)

where we use wn· to indicate the vector of measurements associated with observation n. The func-
tion SAT(g;wn·, fg, ld) indicates whether the associated formula, fg is satisfied, where fg involves
d dimensions of wn· that belong to group ld.

Motivating Example Here we provide an example to illustrate the properties of MGM on a synthetic
data-set of 400 cartoon faces. Each cartoon face can be described by eight features: earmuffs, scarf,
hat, sunglasses, pencil, silly glasses, face color, mouth shape (see Figure 2). The cartoon faces
belong to three clusters. Winter faces tend to have earmuffs and scarves. Student faces tend to
have silly glasses and pencils. Vacation faces tend to have hats and sunglasses. Face color does not
distinguish between the different clusters.

The MGM discovers four distinguishing sets of features: the vacation cluster has hat or sunglasses,
the winter cluster has earmuffs or scarfs or smile, and the student cluster has silly glasses as well as
pencils. Face color does not appear because it does not distinguish between the groups. However,
we do identify both hats and sunglasses as important, even though only one of those two features
is important for distinguishing the vacation cluster from the other clusters: our model aims to find
a comprehensive list the distinguishing features for a human expert to later review for interesting
patterns, not a minimal subset for classification. By consolidating features—such as (sunglasses or
hat)—we still provide a compact summary of the ways in which the clusters can be distinguished.
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3 Inference

Solving Equation 1 is computationally intractable. We use variational approach to approximate the
true posterior distribution p(yg, γg, tgk, βgk, ld, fg, zn, ing|{wnd}) with a factored distribution:

qηg (yg) ∼ Bernoulli(ηg) qλgk
(tgk) ∼ Bernoulli(λgk)

q`g (γg) ∼ Beta(`g1, `g2) qφgk
(βgk) ∼ Beta(φgk1, φgk2)

qτn(π) ∼ Dirichlet(τ) qνn(zn) ∼ Multinomial(νn) qing (ing) ∼ Bernoulli(ong)

qcd(ld) ∼ Multinomial(cd) qeg (fg) ∼ Bernoulli(eg)

where in addition we use a weak-limit approximation to the Dirichlet process to approximate the dis-
tribution over group assignments ld. Minimizing the Kullback-Leibler divergence between the true
posterior p(θ|{wnd}) and the variational distribution q(θ) corresponds to maximizing the evidence
lower bound (the ELBO) Eq[log p(θ|{wnd})]−H(q) where H(q) is the entropy.

Because of the conjugate exponential family terms, most of the expressions in the ELBO are straight-
forward to compute. The most challenging part is determining how to optimize the variational
terms q(ld), q(ing), and q(fg) that are involved in the likelihood in Equation 2. Here, we first relax
our generative process of or to have it correspond to independently sampling each wnd with some
probability s. Thus, Equation 2 becomes

p(wn·|ing, fg, ld) =
∏
d,g

[(0)1(fg=and)1(ld=g)1(ing=1)1(wnd=0)(1)1(fg=and)1(ld=g)1(ing=1)1(wnd=1)

(1− s)1(fg=or)1(ld=g)1(ing=1)1(wnd=0)(s)1(fg=or)1(ld=g)1(ing=1)1(wnd=1)

(0)1(ing=0)1(ld=g)1(wnd=1)(1)1(ing=0)1(ld=g)1(wnd=0) (3)

With this relaxation, the expression for the entire evidence lower bound is straight-forward to com-
pute. (The full derivations are given in the supplementary materials.)

However, the logical formulas in Equation 3 still impose hard, combinatorial constraints on settings
of the variables {ing, fg, ld} that are associated with the logical formulas. Specifically, if the values
for the formula choice {fg} and group assignments {ld} are fixed, then the value of ing is also fixed
because the feature extraction step is deterministic. Once ing is fixed, however, the relationships
between all the other variables are conjugate in the exponential family. Therefore, we alternate our
inference between the extraction-related variables {ing, fg, ld} and the selection-related variables
{yg, γg, tgk, βgk, zn}.
Feature Extraction We consider only degenerate distributions q(ing), q(fg), q(ld) that put mass on
only one setting of the variables. Note that this is still a valid setting for the variational inference
as fixing values for ing , fg , and ld, which corresponds to a degenerate Beta or Dirichlet prior, only
means that we are further limiting our set of variational distributions. Not fully optimizing a lower
bound due to this constraint can only lower the lower bound.

We perform an agglomerative procedure for assigning dimensions to groups. We begin our search
with each dimension d assigned to its own formula ld = d, fd = or. Merges of groups are explored
using a combination of data-driven and random proposals, in which we also explore changing the
formula assignment of the group. For the data-driven proposals, we use an initial run of a vanilla
k-means clustering algorithm to test whether combining two more groups results in an extracted
feature that has high variance. At each iteration, we compute the ELBO for non-overlapping subsets
of these proposals and choose the agglomeration with the highest ELBO.

Feature Selection Given a particular setting of the extraction variables {ing, fg, ld}, the remain-
ing variables {yg, γg, tgk, βgk, zn} are all in the exponential family. The corresponding posterior
distributions q(yg), q(γg), q(tgk), q(βgk), and q(zn) can be optimized via coordinate ascent [22].

4 Results

We applied our MGM to both standard benchmark and more interesting data sets. In all cases, we
ran 5 restarts of the MGM. Inference was run for 40 iterations or until the ELBO improved by less
than 0.1 relative to the previous iteration. Twenty possible merges were explored in each iteration;
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MGM Kmeans HFS(G) Law DPM HFS(L) Cc
Faces 0.59 (13) 0.46 (4) 0.627 (16) 0.454 (4) 0.481 (12) 0.569 (12) 0.547 (4)
Digits 0.53 (13) 0.45 (13) 0.258 (13) 0.254 (6) 0.176 (5) 0.354 (11) 0.364 (10)

Table 1: Mutual information and number of clusters (in parentheses) for UCI benchmarks. The
mutual information is with respect to the true class labels (higher is better). Performance values for
HFS(G), Law, DPM, HFS(L), and CC are taken from [17].

Figure 3: Results on real-world datasets: animal dataset (left), recipe dataset (middle) and disease
dataset (right). Each row represents an important feature. Lighter boxes indicate that the feature is
likely to be present in the cluster, while darker boxes are unlikely to be present.

each merge exploration involved combining two existing groups into a new group. If we failed
to accept our data-driven candidate merge proposals more than three times within an iteration, we
switched to random proposals for the remaining proposals. We swept over the number of clusters
from K=4 to K=16 and reported the results with the highest ELBO.

4.1 Benchmark Problems: MGM discriminates classes

We compared the classification performance of our clustering algorithms on several UCI benchmark
problems [23]. The digits data set consists of 11000 16×16 grayscale images, 1100 for each digit.
The faces data set consists of 640 32×30 images of 20 people, with 32 images of each person from
various angles. In both cases, we binarized the images, setting the value to 0 if the value was less
than 128, 1 if the value was greater than 128. These two data-sets are chosen as they are discrete
and we have the same versions for comparison to results cited in [17].

The mutual information between our discovered clusters and the true classes in the data sets is
shown in Table 1. A higher mutual information between our clustering and known labels is one
way to objectively show that our clusters correspond to groups that humans find interesting (i.e. the
human-provided classification labels). MGM is second only to HFS(G) in the Faces dataset (second
only to HFS(G)) and the highest scoring model in the Digits dataset. It always outperforms k-means.

4.2 Demonstrating Interpretability: Real-world Applications

Our quantitative results on the benchmark datasets show that the structure recovered by our approach
is consistent with classes defined by human labelers better than or at the level of other clustering ap-
proaches. However, the dimensions in the image benchmarks do not have much associated meaning,
and the our approach was designed for clustering, not classification. Here, we demonstrate the qual-
itative advantages of our approach on three more interesting datasets.

Animals The animals data set [24] consists of 21 biological and ecological properties of 101 animals
(such as “has wings” or “has teeth”). We are also provided class labels such as insects, mammals,
and birds. The result of our MGM is shown in Figure 3. Each row is a distinguishable feature; each
column is a cluster. Lighter color boxes in Figure 3 indicate that the feature is likely to be present in
the cluster, while darker color boxes indicate that the feature is unlikely to be present in the cluster.
Below each cluster, a few animals that belong to that cluster are listed.

6



We first note that, as desired, our model selects features that have large variation in their probabilities
across the clusters (rows in Figure 3). Thus, it is straight-forward to read what makes each column
different from the others: the mammals in the third column do not lay eggs; the insects in the fifth
column are toothless and invertebrates (and therefore have no tails). They are also rarely predators.
Unlike the land animals, many of the water animals in columns one and two do not breathe.

Recipes The recipes data set consists of ingredients from recipes taken from the computer cooking
contest1. There are 56 recipes, with 147 total ingredients. The recipes fall into four categories: pasta,
chili, brownies or punch. We seek to find ingredients and groups of ingredients that can distinguish
different types of recipes. Note: The names for each cluster have been filled in after the analysis,
based on the class label of the majority of the observations that were grouped into that cluster.

The MGM distills the 147 ingredients into only 3 important features. The first extracted feature
contains several spices, which are present in pasta, brownies, and chili but not in punch. Punch
is also distinguished from the other clusters by its lack of basic spices such as salt and pepper
(the second extracted feature). The third extracted feature contains a number of savory cooking
ingredients such as oil, garlic, and shallots. These are common in the pasta and chili clusters but
uncommon in the punch and brownie clusters.

Diseases Finally, we consider a data set of patients with autism spectrum disorder (ASD) accumu-
lated over the first 15 years of life [25]. ASDs are a complex disease that is often associated with
co-occurring conditions such as seizures and developmental delays. As most patients have very
few diagnoses, we limited our analysis to the 184 patients with at least 200 diagnoses and the 58
diagnoses that occurred in at least 5% of the patients. We binarized the count data to 0-1 values.

Our model reduces these 58 dimensions to 9 important sets of features. The extracted features had
many more dimensions than in the examples, so we only list two features from each group and
provide the total number in parenthesis. Several of the groups of the extracted variables—which did
not use any auxiliary information—are similar to those from [25]. In particular, [25] report clusters
of patients with epilepsy and cerebral palsy, patients with psychiatric disorders, and patients with
gastrointestinal disorders. Using our representation, we can easily see that there appears to be one
group of sick patients (cluster 1) for whom all features are likely. We can also see what features
distinguish clusters 0, 2, and 3 from each other by which ones are unlikely to be present.

4.3 Verifying interpretability: Human subject experiment

We conducted a pilot study to gather more qualitative evaluation of the MGM. We first divided the
ASD data into three datasets with random disjoint subsets of approximately 20 dimensions each. For
each of these subsets, we prepared the data in three formats: raw patient data (a list of symptoms),
clustered results (centroids) from K-means, and clustered results with the MGM with distinguishable
sets of features. Both the clustered results were presented as figures such as figure 3 and the raw
data were presented in a spreadsheet. Three domain experts were then tasked to explore the different
data subsets in each format (so each participant saw all formats and all data subsets) and produce a
2-3 sentence executive summary of each. The different conditions serve as reference points for the
subjects to give more qualitative feedback about the MGM.

All subjects reported that the raw data—even with a “small” number of 20 dimensions—was im-
possible to summarize in a 5 minute period. Subjects also reported that the aggregation of states in
the MGM helped them summarize the data faster rather than having to aggregate manually. While
none of them explicitly indicated they noticed that all the rows of the MGM were relevant, they did
report that it was easier to find the differences. One strictly preferred the MGM over the options,
while another found the MGM easier for making up a narrative but was overall satisfied with both
the MGM and the K-means clustering. One subject appreciated the succinctness of the MGM but
was concerned that “it may lose some information”. This final comment motivates future work on
structured priors for on what logical formulas should be allowed or likely; future user studies should
study the effects of the feature extraction and selection separately. Finally, a qualitative review of
the summaries produced found similar but slightly more compact organization of notes in the MGM
compared to the K-means model.

1Computer Cooking Contest: http://liris.cnrs.fr/ccc/ccc2014/doku.php
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5 Discussion and Related Work

MGM combines extractive and selective approaches for finding a small set of distinguishable di-
mensions when performing unsupervised learning on high-dimensional data sets. Rather than rely
on criteria that use statistical measures of variation, and then performing additional post-processing
to interpret the results, we build interpretable criteria directly into the model. Our logic-based fea-
ture extraction step allows us to find natural groupings of dimensions such as (backbone or tail
or toothless) in the animal data and (salt or pepper or cream) in the recipe data. Defining an in-
teresting dimension as one whose parameters are drawn from a multi-modal distribution helps us
recover groups like pasta and punch. Providing such comprehensive lists of distinguishing dimen-
sions assists in the data exploration and hypothesis generation process. Similarly, providing lists of
dimensions that have been consolidated in one extraction aids the human discovery process of why
those dimensions might be a meaningful group.

Closest to our work are feature selection approaches such as [17, 18, 19], which also use a mixture
of beta-distributions to identify feature types. In particular, [17] uses a similar hierarchy of Beta
and Bernoulli priors to identify important dimensions. They carefully choose the priors so that
some dimensions can be globally important, while other dimensions can be locally important. The
parameters for important dimensions are chosen IID from a Gaussian distribution, while values for
all unimportant dimensions come from the same background distribution.

Our approach draws parameters for important dimensions from distributions with multiple modes—
while unimportant dimensions are drawn from a uni-modal distribution. Thus, our model is more
expressive than approaches in which all unimportant dimension values are drawn from the same
distribution. It captures the idea that not all variation is important; clusters can vary in their emission
parameters for a particular dimension and that variation still might not be interesting. Specifically,
an important dimension is one where there is a gap between parameter values. Our logic-based
feature extraction step collapses the dimensionality further while retaining interpretability.

More broadly, there are many other lines of work that focus on creating latent variable models
based on diversity or differences. Methods for inducing diversity, such as determinantal point pro-
cesses [26], have been used to find diverse solutions on applications ranging from detecting objects
in videos [27], topic modeling [28], and variable selection [29]. In these cases, the goal is to avoid
finding multiple very similar optima; while the generated solutions are different, the model itself
does not provide descriptions of what distinguishes one solution from the rest. Moreover, there may
be situations in which forcing solutions to be very different might not make sense: for example,
when clustering recipes, it may be very sensible for the ingredient “salt” to be a common feature of
all clusters; likewise when clustering patients from an autism cohort, one would expect all patients
to have some kind of developmental disorder.

Finally, other approaches focus on building models in which factors describe what distinguishes
them from some baseline. For example, [30] builds a topic model in which each topic is described
by the difference from some baseline distribution. Contrastive learning [31] focuses on finding the
directions that are most distinguish background data from foreground data. Max-margin approaches
to topic models [32] try to find topics that can best assist in distinguishing between classes, but are
not necessarily readily interpretable themselves.

6 Conclusions and Future Work

We presented MGM, an approach for interpretable feature extraction and selection. By incorpo-
rating interpretability-based criteria directly into the model design, we found key dimensions that
distinguished clusters of animals, recipes, and patients. While this work focused on the clustering of
binary data, these ideas could also be applied to mixed and multiple membership models. Similarly,
notions of interestingness based on a gap could be applied to categorical and continuous data. It also
would be interesting to consider more expressive extracted features, such as more complex logical
formulas. Finally, while we learned feature extractions in a completely unsupervised fashion, our
generative approach also allows one to flexibly incorporate domain knowledge about possible group
memberships into the priors.
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