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Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous
Users

Krishna Jagannathan, Sem Borst, Phil Whiting and Eytan Modiano

Abstract—We consider a two transmit antenna broadcast The above capacity results rely on the assumption that
system with heterogeneous users, and tackle the problem perfect channel state information is available at the trans-
of maximizing a weighted sum rate. We establish a novel \jtter \which may involve a significant amount of feedback

upper bound for the weighted sum capacity, which we then - . . . .
use to show that the maximum expected weighted sum rate overhead. In addition, DPC is quite a sophisticated technique

can be asymptotically achieved by transmitting to a suitably and challenging to implement in an actual system. Motivated
selected subset of at mosRC users, where C denotes the by these issues, extensive efforts have been made to devise
number of distinct user classes. Numerical experiments indicate practical transmission and coding schemes and find ways to
that the asymptotic results are remarkably accurate and that o4y ce the amount of channel feedback information required.
the proposed schemes operate close to absolute performanceH hwald et al. [41. I5] d ib lgorithm b d
bounds, even for a moderate number of users. oc Wa_ e g. [4], [5] describe an algorithm based on
channel inversion and sphere encoding, and demonstrate that
|. INTRODUCTION it closely approaches the sum capacity while being simpler
. i _to operate than DPC. Jindal [9] considers a multi-antenna BC
_In the present paper we consider the downlink transmiggith jimited channel feedback information, and shows that
sion from a single base station equipped with transmit e 1| sum capacity gain at high SNR values is achievable

antennas td independent users each with a single receivgg |ong as the number of feedback bits grows linearly with
antenna. In information-theoretic terms, this may be modye gNR (in dB).

eled as a multi-antenna Broadcast Channel (BC). Caire & _ . .

Shamai [1] were the first to obtain the sum capacity expres- S mentioned above, multiple transmit antennas can po-
sion for the Gaussian BC with two receivers, and to sugge@ntially vield an M-fold increase in the sum capacity.
the use of Dirty Paper Coding (DPC) [2] for transmittingHOWeVer, it is necessary that at leat users are served
over this channel. Viswanath & Tse [24] and Vishwanattsimultaneously in order to reap the full beneﬁt_s. Transmitting
et al. [23] extended the result for the sum capacity to afC fewer than)/ users falls short of the maximum rate as
arbitrary number of users and receive antennas by exploitirig @ils t© fully exploit the available degrees of freedom.
a powerful duality relation with the multi-access channeffansmitting to more thanl/ users may be necessary to
which was further explored in Jindat al. [12]. Recently, 2chieve the sum capacity in general, but the upper bound
Weingartenet al. [28] showed that DPC in fact achieves the'l [10] suggests that transmitting to a suitably selected subset

full capacity region of the multi-antenna Gaussian BC, thuSf M near-orthogonal users is close to optimal. When the

providing a characterization of the entire capacity region. total number of users to choose from is sufficiently large,

uch a subset exists with high probability [19], [20].
Various researchers have investigated the sum capausty anp y [19]. 20]

gains achievable in the above-described system by simul-Clearly, the above principle allows for a reduction of the
taneously transmitting to several users. In particular, Jind@mount of channel feedback and coding complexity. In par-
& Goldsmith [10] show that the sum capacity gain oveficular, it suggests beam-forming schemes which construct
a TDMA strategy is approximatelynin{}, K}, i.e., the M (random) orthogonal beams and serve the users with the
minimum of the number of transmit antennas and the numb&Hgest channel gains on each of them with equal power.
of users. Jindal [8] demonstrates that the sum capacity gro§2nsmission schemes along these lines are presented in
with the SNR at ratenin{ A, K'}. In other words, multiple Viswanath et al. [25], Sharif & Hassibi [15], and Vakili

transmit antennas can potentially provide &ffold gain in &t &l [22]. Viswanathan & Kumaran [26] proposed fixed-
the sum capacity. beams and adaptive steerable-beams schemes grounded on

that principle as well. Further related results may be found
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then selects a second user from the next1 strongest ones m

}
to form the best possible pair with it, taking channel orien- —'®—'y1 X3 —-
tations into account as well. We showed that the expected

rate gap converges t/(L — 1) nats/symbol when the total ey

number of userd( tends to infinity. AllowingL to increase a®4y2 x;,a n
with K, we concluded that the gap asymptotically vanishes, L/ ] N /
and that the sum capacity is achievable by transmitting to a |-|I| X : : @
properly chosen pair of users. \ /

~ YMAC I.ELJ

ng
In the present paper, we generalize the above results to ¢ d ‘
. ! o . hy |~ (+)~ ~|hi
system with heterogeneous user characteristics. In this case @ YK K
the sum capacity is no longer an appropriate performance (2] Broadcast Channel b] Multiple Access Channel

measure, because it does not reflect the potential fairness

|ssges that arise. Hence, we will focu.s on maximizing ig. 1. The multi-antenna BC (left) and the MAC (right) have the same
weightedsum rate, where the users with weaker channelg,city region.

would typically be assigned higher weights. Leaving fairness

considerations aside, maximizing a weighted sum rate is also

of critical importance in so-called queue-based scheduling

strategies where the user weights are taken to be functionstéfmark that even though this paper only treats the case of
the respective queue lengths. Queue-based scheduling strée transmit antennas in detail, the results extend naturally to
gies are particularly attractive because under mild assum@n arbitrary number of antennas. Specifically, we can show
tions they are known to achieve stability whenever feasibiéhat in aM -antenna system witli' user classes, the weighted
without explicit knowledge of the system parameters, see f&m capacity can be asymptotically attained by transmitting
instance [14], [18], [21]. to a suitably chosen set dff C' users. See [6] for details.

Although the sum rate expression for the multi-antenna The remainder of the paper is organized as follows. In
Gaussian BC and associated bounds have been thorougBhction 1l we present a detailed model description and
investigated, the problem of maximizing a general functiomeview some relevant results for the capacity region of the
over the capacity region has not attracted nearly as muéaussian multi-antenna BC. In Section Il we briefly review
attention. To the best of our knowledge, Viswanathetn our results for a homogeneous system. Section IV addresses
al. [27] are among the few authors who consider the probleithe weighted sum rate maximization problem in a scenario
of attaining more general points on the boundary of thwith heterogeneous users. In Section V we discuss the
capacity region. In particular, they present an algorithm fonumerical experiments we conducted, which indicate that the
finding the power allocation to achieve any weighted surasymptotics are surprisingly accurate, even for a moderate
rate maximizing point. However, the optimization procedur@umber of users. Throughout the paper, we omit most of the
is computationally demanding, especially for large numbengroofs due to length constraints.
of users, and requires perfect channel state information. Lee
& Jindal [13] study the problem of obtaining the symmetric
capacity, i.e., the maximum rate that can be provided to each
of the users simultaneously. A. Model description

In the present paper, we consider a two-antenna broadcast
system with a user population that consists®fdistinct We consider a broadcast channel (BC) with> 1 trans-
classes, where each class is assigned a non-negative weight.antennas and receivers each with a single antenna, as
We derive a generic upper bound for the weighted surschematically represented in Figure 1(a).

capacity, which includes as a special case the sum capacityj gt x ¢ CMx1 pe the transmitted vector signal and let
bound in [10]. We then proceed to show that the upp&f, c c1*M be the channel gain vector of tieth receiver.
bound is in fact attained for_a particular ‘ideal’ configurationyanote byH = [h{h; . _,h}{]T the concatenated channel
of 2C" channel vectors. Finally, we prove that a nearlynatrix of all K receivers. For now, the matrii is arbitrary
ideal configuration of such channel vectors exists with higRyt fixed. We assume that the transmitter has perfect channel
probability, and that the maximum expected weighted sukate information, i.e., exact knowledge of the matrix
rate can thus be asymptotically achieved, when the totghe circularly symmetric complex Gaussian noise at/the
number of users grows large. th receiver isn;, € C wheren,, is distributed according
The above results, as well as their homogeneous coute- CA/(0,1). Thus the received signal at theth receiver
terparts in [7] have significant ramifications for the desigiis y, = hipX 4+ ng. The covariance matrix of the transmitted
of channel feedback mechanisms and scheduling strategisignal is¥, = E [xxf]. The transmitter is subject to a power
Since the proposed schemes only transmit to a small fracti@onstraintP, which impliesTr(3,) < P. (HereTr denotes
of the users, they provide significant scope for reducing thie trace operator, which is the sum of the diagonal elements
feedback overhead and operational complexity. We furtherf a square matrix.)

Il. MODEL DESCRIPTION AND KNOWN RESULTS
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Bo(H, P) = max wi R, = max max Wr (k) log
Re€sc P T e Tr(Sk)<P ; 1+ hﬂ'(k)(zl<k 27T(l))h;rr(k)

B. Known information-theoretic results 1. HOMOGENEOUS USERS
Let n(k), k = 1,...,K, be a permutation ofc = In this section, we take a synoptic look at the problem
L K As shown in [23], the following rate vector Of Maximizing the sum rate in a system with two transmit
is’ achievable using Dirty Paper Coding (DPC), for= antennas and statistically homogeneous user population. A
1. K ' more detailed treatment of this problem can be found in [7].
The sum capacity is a key metric of interest for the
T+ heey Qi< Zw(l))hjr(k) BC as it measures the maximum achievable total rate.
Ry = log (> = S )hT Since it only considers the aggregate throughput, it does
m(k)\ i<k “m()) 7 (k)

not reflect potential fairness issues that arise when users
: . ' with widely disparate channel characteristics obtain vastly
Th_e DPC region is defined as the convex hyll of th_%ifferentthroughput portions. In the present section, however,
union of all such rate vectors, over all positive semiwe focus on the case of statistically identical users, which by
definite covariance matrices that satisfy the power constraigfmmetry will obtain equal long-term throughput shares, so
>k Tr(Sx) < P, and over all possible permutationsk).  that fairness is not a major issue. In the next section, we will
As shown in [1], [28], DPC in fact achieves the entireaqdress the problem of maximizingveeightedsum rate in

capacity region denoted a8 The weighted sum capacity 5 system where the users may have different characteristics.
%c(H, P) for any weight vectomw € R can therefore be

written as in equation (1). We will show that the sum capacity can be closely

approached by transmitting to a suitably selected pair of users
Unfortunately, the maximization in (1) involves a non-as the total number of users grows large. In preparation for

concave function of the covariance matrices, which makqﬁat, we first present some useful lower and upper bounds
it hard to deal with analytically as well as numerically.for the sum capacity.
However, in [23], [24], a duality is shown to exist between
the BC and the Gaussian multiple-access channel (MAC)- Bounds for the sum capacity
with a sum-power constrait. That is, the dual MAC which  Denote byh;) the channel vector of the receiver with the
is formed by reversing the roles of transmitters and receivers;th largest norm, i.ellh)|[? > [|h) ]| > - > [|h |
as represented in Figure 1(b), has the same capacity regibhe next upper bound for the sum capacity is established
as the BC. Note that¥.(H,P) = Y i, AwySy, with in [10]:
Sy, := Y1, R, the partial sum rate of the firét users and P
Awy, = wyp — w1, With the convention thatvgx ; = 0. Ce'(H, P) < Mlog (1 + Mlh(1)||2> . 4)
Without loss of generality we may assume that> wo >

> wg. Using the duality result, the weighted sumObserve that the above bound can be achieved when there

capacity (1) of the BC can thus be expressed in terms @fe M receivers with orthogonal channel vectors tied for

the dual MAC weighted sum rate as the maximum nornﬂh(l)HQ. For a two-antenna system, the
above bound becomes
P
K k CHE(H, P) <2log ( 1+ —||h 2). 5
Cho(H,P)=  max > Awglogdet [ Iy + > Phfh; |, se'(H,P) < g( 5 ol ®)
Si, PRsP k=1 =1

(2 Taking P, = P; = P/2 and P, = 0 for all k& # 4,75 in
where P, > 0 denotes the power allocated to tiieth Equation (3), we obtain a simple lower bound for the sum
receiver. As a special case of (2) with = 1, k = 1,..., K, Ccapacity

the sum capacity is obtained as P
CHE(H, P) > C(h;,hy, P) := log det (12 + E(hjhi + hjhj)) ,

K which corresponds to transmitting to usérand j at e (Sz);ll
CHE(H,P)= max logdet [ Iy + > Phihe]. (@) P 9 Jateq
Til PesP et power.
[<g,h>?

) ) . . For any two vectorgy,h € C2, let U(g, h) := TIQTETIRE
Sincelog det(-) is a concave function on the set of positive-,q the squared normalized inner product. By expanding the
definite matrices, the problems in (2) and (3) only involveleterminant in (6), we obtain
maximizing a concave objective function subject to convex P ) .. P2 ) )
constraints. Specialized algorithms have been developed &gh:,h;, P) = log (1 + 5 (hall™ 11 1) + == [1ha 7l hy | %j) ,
solve these problems [11], [27]. )



with V;; = 1 — U(h;, h;). Theorem 3.2:For any fixed valud and sequencé (K)

The lower bound expression (7) reflects the fact that th\’(\a/Ith limn e o0 L(K) — o0,

sum rate for two users critically depends on the norms of t {10 (1 n th H2>} _E {
respective channel vectors and their degree of orthogonality. 2 W k=1
In particular, the sum rate is large when the channel Vectorgg p- ., o

are nearly orthogonal and have large norms. Indeed, the ) . )
lower bound coincides with the upper bound (5) when users The next corollaries follow as immediate consequences
and j are orthogonal and tied for the maximum norm, i.e.fom Theorems 3.1 and 3.2.
|[hi]|> = |Ih;]]? = ||h@)|[? and < h;, h; >= 0. Corollary 3.1: For any fixed value of., | < L,

C(hwy,hy,P)| — 0

sum 1

B. Large& asymptotics ElCsc'(H, P —E |, _ max,  Clho,hew, P)| = 7=

The lower and upper bounds for the sum capacity in thédS K — oc.
previous subsection hold for any arbitrary but fixed set of The above corollary shows that the asymptotic perfor-
channel vectors. In order to derive meaningful asymptotidance gap of scheme Il decayslg$L — 1), which suggests
results, we will in the remainder of the section assume thi@at a relatively moderate value @ may be adequate for
channel vectors to be random and focus on éxpected Mmost practical purposes.
sum rate. We will adhere to the common assumption that the Corollary 3.2: For any fixed valué and sequencé (K)
components of the channel vectors of the various users asith limg_,o L(K) = oo,
independent and distributed according4/(0,1), which
corresponds to independent Rayleigh fading. As it turns out, E[C5&'(H, P)] — E max C(hgy,hgy, P)| — 0
this specific assumption is actually not essential for most FEbe LU
of the results to hold. We will not pursue this thread inas K — oo.
any detail here, but revisit the issue when we later consider The above corollary shows that scheme Il is asymptotically
heterogeneous user scenarios. optimal when sufficiently many users are considered, and
rTt|1us implies that the dominating scheme Il is asymptotically

As mentioned earlier, the upper bound in (5) for the sum ™
capacity can be achieved when there is a pair of orthogon%@ﬂrr?;l (g)s ivsvigy?nsp?ott)ii/: a?llr;/)?:é]%tt we conclude that the upper

users tied for the maximum channel noffin ;,||* by grant-
ing equal power to each of them. Intuitively, when the total Corollary 3.3:

numper of users i; large, there exists with high probability E[CHE (H, P)] — E [C(hay, h@), P)] — 1

a pair of users which are nearly orthogonal and have norms

close to the maximum. This suggests that the sum capaci§s X — occ.

can be closely approached by transmitting to such a pair of This corollary corresponds to a special case of scheme |
users and allocating equal power to each of them. with L = 2, and shows that simply selecting the two

We are now ready to formalize the above assertion. V\Fetrongest us?rs leaves a performance gap of 1 nat/symbo-l.
will consider three heuristic selection schemes for scheduling In conclusion, the above results show that scheme II is

a pair of users with equa| power. Scheme | picks tw@Symptouca”y Optlmal in the sense that the absolute gap to
arbitrary users among thestrongest ones. Scheme Il selectdhe sum capacity vanishes to zero providefx) — oo

an arbitrary user among the strongest ones, and a second®S K — oco. Thus, transmitting to a suitably selected pair
one from the same group to form the best pair, i.e., the pa@f users is asymptotically optimal, where one of them may
that maximizes the sum rate. Scheme Il picks the best pdit fact be arbitrarily chosen from a fixed short list. The
among thel strongest users, i.e., the pair that maximizes th@ain from considering all pairs of users, as in scheme III,
sum rate. Note that scheme Il dominates scheme | and tHatasymptotically negligible. However, picking an arbitrary

scheme 11l in turn dominates scheme II, and that all threBair of users, as in scheme I, is not optimal even when the
schemes coincide wheh = 2. users are the two strongest ones.

Our main theorems in this section consider the asymptotic IV. HETEROGENEOUS USERS
gap between the upper bound in (5) and the sum rate

achievable by scheme II. In this section, we extend our results in [7] to a system

in which the user channels are not identically distributed.
Theorem 3.1:For any fixed value ofL > 2, I < L, the In particular, we turn our attention to a system where users
difference may have different statistical characteristics, and focus on
P the problem of maximizing aveightedsum rate expression.
E {2 log (1 + §||h(1)\|2)} —-E |:k—1maz(k¢l C(huy,hy, P) We will demonstrate that transmitting to a properly selected
""" ’ group of users asymptotically achieves the maximum ex-
pected weighted sum rate, although scheduling just two users

converges ta /(L — 1) as K — oc. , o
will no longer be sufficient in general.



A. Bounds for the weighted sum rate

sum rate for an arbitrary number &f transmit antennas. Let

We first establish a generic upper bound for the weighted A
|

wy, be the weight associated with theh user. For notational :
|

|

|

|

|

|

|

convenience, definAwy, := wy, — w1 With the convention —— Clasg |
that w1 = 0. Without loss of generality, we assume that e Clase
the users are indexed such that > wy > --- > wg.
Theorem 4.1:For any given set of channel vectors,
L —
Cpc(H,P) < max Aw; log(l—l—PthlH?) - 5
YK | P.<P -
+ M Z Awy, log <1 + Z —||h;|\ > Fig. 2. The optimal channel configuration for two user classes.
Proof )
Equation (2) yields that¥ (H,P) = Zle AwySp, Corollary 4.2: For any given set of channel vectors,
with c (d)
k
wT. < M max Aw:log | 1+ Py||h .
Sy = logdet | Ips —|—ZPlh2th . ; v, PC<P/MZ ( E (1>
=1 (12)
Clearly,

) Note that when all weights are taken equal to one, the
S1 = log(1 + Pif[ha 7). ©) upper bound in (11) reduces to that in Equation (4) for
Using Hadamard’s inequality for Hermitian positive semithe sum rate. Recall that the upper bound in (4) is tight
definite matrices [3], p. 502, and the concavity of the logn the sense that it can actually be achieved when there
function, we obtain are M users with orthogonal channel vectors tied for the
maximum norm. Likewise, the upper bound in (12) can be
Sy < Z log <1 +Zplhlmhlm> < log <1 + Z —||h I > attained for a particular configuration of channel vectors.
m=1 = 1=1 (10) Specifically, assume that there dVéunit orthogonal vectors
Un € CM, m = 1,....M, ie., |lu,]| = 1 for all m,
< Upm,U, >=0,m ;A n andMC users,M from each class,
with channel vectorhum, c=1,....,C,m=1,..., M, that
satisfy the following two properues
(1) within each class allM/ users are tied for the maximum

forall k=2,... K.
Substltutlng mequalltles (9) and (10), the statement of the
theorem follows.

The next upper bound follows as a straightforward corollar%Orm ie., HhumHQ _ Hh C)HQ forallc=1,...C m=
of Theorem 4.1. 1 M-
Corollary 4.1: For any given set of channel vectors, (i) the channel vector of one of the users of each class
is parallel tou,,, and thus orthogonal tao,,, m # n, i.e.,
CUe(H,P) <M  max ZAwklog +ZHth|| < Un,h'9 >= [|n2|| and < u,,h{) >= 0 for all
SE PL<P/M % c=1 C ‘ ‘
) ..., C. o
The second property implies that all thg,-users are
d
In order to develop a suitable asymptotic framework, wé&rthogonal to all theu,-users, i.e.,< huil,h( ) >= 0
assume that there a@classes of users, W|tK the number for all e,d = 1,...,C, m # n. For brevity, ‘the above-

of classe users anqzc K.=K. Let h ) be the channel described constellatlon of channel vectors will be referred to
vector of thek-th classe user. With minor abuse of notation, &s the optimal configuration. Figure 2 provides a pictorial
we letw, be the weight associated with classand define representation of the optimal configuration for the case of
Aw, = w, — wey1, With the convention thatvcq = 0 C = 2 user classes an#tf = 2 transmit antennas.

as before. Lefl,, be the total rate received by classThus Let Pf(K),..., PA(K) be the optimizing power levels
the weighted sum rate 8 := Zle w.T.. Without loss of of the upper bound in (12) for given values \ME%HQ, c=
generality, we assume that the classes are indexed such that ., C, i.e.,

wy > wy > --- > we. Let hE?) be the channel vector of

. e PUE) = (PI(),... Po(K))
the classs user with thek-th largest norm, i.e.||h/{|* > o
J— d
1RGP = -+ = I I = r%a’ép/MZAMg (1S
The next corollary specializes the upper bound in (11) to ,
a class-based system. Now, by assigning poweP; (K) to all M classe users in

the optimal configuration, and arranging the users in order



of increasing class index in the DPC sequence, we can shavith channel vectors close to the optimal configuration in the

that the upper bound in (12) is indeed achievable. heterogeneous case when the total number of users is large.
From now on, we focus on the case bf = 2 transmit Thus, we will show that selecting such a group26t users
antennas. The upper bound in (12) then becomes: and allocating powel; to both class: users, where
5 () C c
. c 2. Pp—
chTG < Ulwes ||h(1)H i P) = P = (Pf,...,P5):=arg max Z Aw, log Z P53
c=1 ZS:l Pe<P/2 c=1 d=1

C c . . .
9 max Z Aw. log <1 n Z Pd|h§f§|2) . (13) asymptotically achieves the upper bound in (13). We remark
d=1

SO, Pe<P/24o that the power levelgpPy, ..., P&) are the limiting values of
the sequence of random variablgs (K), ..., P&(K)) when

The next lemma provides a lower bound. Consider the norms||h§3\|2 grow large. It may in fact be shown that
scheme that assigns powRt to classe usersu. andv, with  (Py(K),..., P4 (K)) converge ta Py, ..., Pz) in probability,
channel vectorb!® andh{®), respectivelyc = 1,...,C,and ask — oc.
arranges users in order of increasing class index in the DPCye will now prove that transmitting to a carefully se-
sequence. Lef. and S, := >7;_, 7. be the resulting total |ected subset 02C' users asymptotically achieves the upper
rate received by classand the partial sum rate of the first ,5nd (13) and thus maximizes the expected weighted sum
c classes, respectively. rate. Motivated by the knowledge of the optimal channel con-

Lemma 4.l:Let V. = minger .V, with figuration, we will consider the following two user selection
VD9 = 1 - U(h), hiY). Then S, w.Te = ¥, AweS.,  schemes which will be referred to as the ‘list’ scheme and
with the ‘cone’ scheme, respectively.

S. > log <1+ZP;||h5f>|2) List scheme
d—1 The ‘list’ scheme first identifies for each class the users

1

) ° PHRD 2 4 log(V, with norms close to the maximum, and then selects a
+ g 1+;1 al [ )+ log(Ve). nearly orthogonal pair of users among these. Specifically,
B the list scheme first selects the class-1 user with the largest

Note that the above lower bound coincides with the uppdrorm IIhEBIIQ. Let the channel vector of this user bg} =

bound in (13) ifh{?,h{’), ¢ = 1,...,C, form the optimal h}). It then considers the class-1 users with the next
configuration of channel vectors, i.¢|h{”||> = ||h{?||> = Jargest norms, and selects the user whose channel vector
IIhEﬂHQ forallc=1,...,C, and< h{? h{" =0, so that is most orthogonal tdqgg, i.e., the user that minimizes
Vd© =1forallde=1,...,C. U(h{), h(})). Let the channel vector of this user be),

B. Random channel vectors and U; := U(h,gll),hgg). Next, it identifies the class-

The lower and upper bounds for the weighted sum rafe USers with the2L. largest norms and divides these in

in the previous subsection hold for any arbitrary but fixe@.?hgrotﬁpsfpf tS'ZeLC ea}t(:h, lsax 0?: ones anr(]j evenhones.l
set of channel vectors. In order to derive asymptotic result ,' n . e nrs groltljpl, ;n(ls)e _eC S h € userhw ose .C .anne
we will as before assume the channel vectors to be rando\fﬁthir IS moTt parallel to ), 1.e., the user that maximizes
and focus on thexpectedweighted sum rate. Within each U(thL,l), h§1§>- Let the channel vector of this user b,
class we assume the channel vectors to be independent apg v, .— 1 — U(h(B, th)). Finally, it selects within the
identically distributed, i.e.n{”’,h{”, ... are i.i.d. copies of second group of classusers the user whose channel vector
some random vectdn'® e C2. Among the various classes, js most orthogonal tdqgg, i.e., the user that minimizes
the chanr_1e|_ vectors may hqwever have different staﬂstm@l(h(é?C ah(i))- Let the channel vector of this user héc)
characteristics. To be specific, we assume that each elass-' (2+)’ (1) M e
channel is Rayleigh faded with parameter In other words, andUc :=U(hj,hy7).

h© = g.h, ¢ = 1,...,C, where the components ¢f are  cone scheme

independent and distributed according’th/’(0,1) as in the  The ‘cone’ scheme first identifies users that are close to

homogeneous case. The numbers of users of the variayshogonal, and then selects the ones with the largest norms
classes are assumed to grow large in fixed proportiongmong these. Specifically, it first picks two orthogonal vec-

le., K. = ack for fixed coefficientsay,...,ac With  torsy,v € €2, ie., < u,v >= 0 and some small tolerance
Do G = 1. margind > 0. Then it finds the class-user with the largest
C. Large& asymptotics norm among those with (u, h;cc)) >1—94. Let the channel

We now proceed to show that the upper bound in (13 ector of this user bh,;’. Similarly, it selects the classuser

i (c)
is asymptotically achievable by transmitting to a judiciousiyVith the largest norm among those wil;f(w hy") = 1-34.
chosen subset GfC' users. Analogous to the homogeneouset the channel vector of this user bé.
case, there exists with high probability a group2éf users After selecting the users in the above-described fashion,



both the list and the cone schemes allocate poierto  the asymptotically optimal power values afg = 1/3,
both classe users. Definel, as the rate received by class P; = 1/6, scaling outP, which is varied in most of the
under the list scheme, i.e., the sum rate of the two classesults below. We will state its value when necessary.

c users selected, and denote By:= >, w.T, the total e now describe the schemes themselves. As far as the
weighted sum rate. The next two theorems show that the ligét and cone schemes are concerned, these are detailed in the
scheme achieves a finite rate gap that vanishes to zeroagt. Throughout, the asymptotically optimal power settings
the list size grows large, and thus asymptotically maximizegi|| be used, no power optimization is being employed. We
the expected weighted sum rate. In a similar fashion, it cagj|| also consider TDMA, by which we mean the scheme
be shown that the cone scheme asymptotically achieves gyt picks the user which has the maximum weighted rate

maximum weighted sum rate. when assigned full power, over all the users. Thus, it selects
Theorem 4.2:Assume thatL.(K) is such thatL, < the k-th classe user which maximizes
L.(K) < o(K?) for anyd > 0. Then max_welog(1+ P||h()|2).
c=1,...,C ¢ (1)

limsupE [U(wes | |0(5)|% P)| — B 7] < D(),

o 1) Finally, we consider two beamforming (BF) versions. The

, . first version (referred to as BeamForm 2 in the figure)
with L := min{Ly,..., Lo}, schedules one user in each beam, with the powers equally
D(L) := 4w C? [2L‘“+01(A(1—A/4))2(L‘1)+02e—AL1’“] 7 split and the user with the maximum weighted rate as
determined by the SINR being the one selected for each
A = min{A;, A2}, « > 0, and C1,C> > 0 constants beam. The second version (referred to as BeamForm 4)

independent of4, ..., L¢. schedules one user from each class in each of the beams.
The next result follows by letting, — oc in Theorem 4.2 In this case each user is assigned half its classes asymptotic
and observing thalim,, ... D(L) =0 for any a € (0,1). power. The latter scheme is not expected to perform well as

) the interference between users on the same beam cannot be
Theorem 4.3:Assume  that L.(K) is such that yegolved except by using DPC or some equivalent approach.
limg oo Le(K) = 00 and L.(K) < o(K?) as K — oo for
any > 0. Then B. Graphs for basic schemes
Figure 3(a) shows results for all the main schemes as well
as the upper bound and the average maximum weighted

The above theorem shows that scheduling a suitabffPacity limit. L = 5 was set for the list scheme and
selected group dfC users asymptotically achieves the uppef = 0.2 for the cone scheme. (Further numerlcal experiments
bound (13) and thus maximizes the expected weighted sUpflicated that the performance of the list scheme is quite
rate. In fact, it shows that scheduling two users of each ¢PPUSt with respect to the list sizg, so that the exact value

the classes € C* is sufficient to asymptotically achieve the 'S Not that critical.) As expected, the upper bound (13) is
maximum expected weighted sum rate, whéte := {c : loose and the list and cone schemes perform well at high
P >0} ’ SNR values. For low SNR values, TDMA outperforms these

. chemes. The BF schemes fall off at very high SNR as the
While we have focused only on the case of two transmﬁ y g

) L : gure shows. All rates are given in nats.
antennas, it can be shown along similar lines that in genera )
the upper bound (12) is asymptotically achievable by trans- As far as the list and cone schemes are concerned, good

mitting to a suitably selected subset bfC' users. See [6] Performance at high SNR is expected. However, at low
for a treatment of the general-transmit antenna case. ~ SNR TDMA is close to optimal. (This latter conclusion
follows from the linearity of the log.) Thus for low to

V. NUMERICAL RESULTS moderate SNR’s one could make up for the loss of rate in

In this section, we discuss the numerical experiments th§t€ list scheme by optimizing the powers. Similarly, the cone
we conducted for a two transmit antenna broadcast systeteme does well at high SNR but not at low SNR. This
with a heterogeneous user population. These simulatiol®$S in performance can also be addressed by assigning the
indicate that our asymptotic results tend to be remarkabRPWers optimally. This is a concave optimization in three
accurate, even for moderate population sizes. Similar resulfideépendent variables, and is therefore potentially a time-
for the homogeneous case were presented in [7]. consuming (_:alculatlon,_ since we have no explicit formula

for determining the optimal powers.
A. Background for the numerical results Figure 3(b) shows the same results, but gives the ratio

The simulation results which are provided below are foto TDMA. Note that unlike the homogeneous case [15],
a two-class system. The weights are taken touhe= 2, BF is not asymptotically optimal as the number of users is
wy = 1 (although we equivalently normalized these to sunincreased at fixed SNR. However, at low SNR'’s (below 0 dB)
to 1 over the users), and the coefficiepis= 0.5, 5, = 1.0 BeamForm 2 does better than cone or list. Figure 3(b) shows
determine the mean SNRs. The two populations of users afet BeamForm 2 performs consistently worse than TDMA,
of equal size,K; = K> = 10. Under these circumstances,which was also observed in the homogeneous example in

dim E [Uws; |0 1% P)| - E[T] =o.



[7] where we had a similar number of users. The resultgs]
for BeamForm 4 are worse than those for BeamForm 2 as
expected. 7]

C. Additional compound schemes o
We now look at simpler enhancements to avoid power[ ]
optimization. One such enhancement to the list scheme ¥l
to identify the best possible pair among the already selected
four users. Consider the two-user weighted sum rates ohe]
tained by scheduling all possible pairs of these users. The
power is split equally while scheduling two users of the samg
class, but when scheduling one user from each class, we
allocate them power8P; and 2P; respectively. The two-
user scheme picks the pair that corresponds to the highélszg
weighted sum rate among the six possible pairs.
[13]

We thus arrive at the following heuristic schemes. Com-
pound scheme | selects the better among TDMA and th4]
list schemes. Compound scheme Il goes further and selects
the best among TDMA, the two-user scheme above, angk;
the original list scheme. A three-user heuristic scheme was
also considered, but since it did not provide any appreciabile6
improvement, it has been omitted from the results. ]

In Figure 4 we compare the list scheme with the twiﬂ]
heuristic schemes, Compound | and Compound Il. These
results are more clearly seen as a ratio to TDMA rather
than the absolute rates which are difficult to distinguisH2é!
Since Compound | takes the best of TDMA and the list
scheme, it cannot do worse than TDMA at any point an@9]
list at any point. Hence, it does well at low SNRs and at
high SNRs. There is nevertheless a significant rate gap for
this scheme for moderate SNR’s, roughly in the range 0f0]
5dB. Here TDMA falls off, but the list scheme is not yet in
its most advantageous range. However, Compound Il closps;
most of this gap as can be seen. The results in Figures 3
and 4 were averaged over 50 channel realizations. [22]
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Fig. 3.

Average Weighted Rates

Average Weighted Rate/TDMA

(a) Absolute weighted rates for various schemes and upper bound (b) Ratio to TDMA for various schemes.
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