
1

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

Systems-theoretic Safety Assessment of
Robotic Telesurgical Systems

Homa Alemzadeh1, Daniel Chen1, Andrew Lewis2, Zbigniew Kalbarczyk1,
Jaishankar Raman3, Nancy Leveson4, and Ravishankar Iyer1

1 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{alemzad1,dchen8,kalbarcz,rkiyer}@illinois.edu

2 Applied Dexterity, Seattle, WA 98195, USA
andrew@applieddexterity.com

3 Rush University Medical Center, Chicago, IL 60612, USA
jai_raman@rush.edu

4 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
leveson@mit.edu

Abstract. Robotic surgical systems are among the most complex medical cyber-
physical systems on the market. Despite significant improvements in design of
those systems through the years, there have been ongoing occurrences of safety
incidents that negatively impact patients during procedures. This paper presents
an approach for systems-theoretic safety assessment of robotic telesurgical sys-
tems using software-implemented fault-injection. We used a systems-theoretic
hazard analysis technique (STPA) to identify the potential safety hazard scenar-
ios and their contributing causes in RAVEN II, an open-source telerobotic surgi-
cal platform. We integrated the robot control software with a software-imple-
mented fault-injection engine that measures the resilience of system to the iden-
tified hazard scenarios by automatically inserting faults into different parts of the
software. Representative hazard scenarios from real robotic surgery incidents re-
ported to the U.S. Food and Drug Administration (FDA) MAUDE database were
used to demonstrate the feasibility of the proposed approach for safety-based de-
sign of robotic telesurgical systems.

Keywords: Hazard Analysis, System Safety, STAMP, STPA, Fault Injection,
Robotic Surgery, Telerobotics, FDA MAUDE Database.

1 Introduction

In an analysis of over 10,000 adverse events related to robotic surgical systems, re-
ported between 2000–2013 to the U.S. FDA MAUDE database [1], we showed that
9,382 (88.3%) of the reported events involved device and instrument malfunctions.
Those events had significant negative patient impacts, occasionally leading to deaths
and injuries or causing procedure interruptions to troubleshoot system problems. In
particular, out of 536 system errors detected during procedures, 488 (91%) led the sur-
gical teams to manually restart the system (43% of 488), convert the procedure (61.5%),

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83229414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

or reschedule it to a later date (24.8%). (Note that these categories are not mutually
exclusive. In some cases after several system resets, the procedure was converted or
rescheduled.) [2]. This data shows the importance of designing robust safety features
in robotic surgical systems and verifying the effectiveness of detection and recovery
mechanisms in order to prevent similar safety hazards in the future.

The international safety standards (e.g. ISO 14971 for medical devices and ISO
26262 for automobiles) recommend identifying potential safety hazards and defining
safety requirements to implement mechanisms that can detect and mitigate hazards. The
standards also emphasize the importance of fault-injection testing as a means to validate
the robustness of safety mechanisms in presence of faults and abnormal conditions [3].

 However, traditional hazard analysis techniques primarily focus on the failures of
individual components or human errors in the system. Other potential causal factors,
such as complex software errors and unsafe component interactions, are often not thor-
oughly considered during the analysis. Systems-theoretic hazard analysis techniques
such as STPA (Systems-Theoretic Process Analysis) [4] overcome this limitation by
modeling accidents as complex dynamic processes resulting from inadequate control
mechanisms that violate safety constraints. It is shown that STPA can identify addi-
tional causes for accidents that are not detected by FTA and FMEA techniques [4, 5].

Software implemented fault injection (SWIFI) [6, 7] is a common technique for val-
idating the effectiveness of fault-tolerance mechanisms by studying the behavior of the
system in presence of faults. The effects of software or hardware faults are emulated by
randomly changing code or data at different software locations. However, with the in-
creasing size of software in today’s complex systems, it is a challenging task to define
specific fault types and locations that can effectively emulate realistic fault scenarios.

In this work, we took a systems-theoretic approach to empirically validate the ro-
bustness of safety mechanisms in robotic telesurgical systems by identifying the critical
locations within the system to target software fault-injection. More specifically, we
used the potential causes of safety violations identified by STPA to define types and
locations of faults to be injected in robot control software in order to evaluate the system
under realistic hazard scenarios. As a case study, we used RAVEN II robot, an open-
source platform for research in telerobotic surgery [8]. We developed a software fault-
injection framework that mimics the control flaws identified during hazard analysis by
automatically injecting faults into robot control software modules. We evaluated the
feasibility of the proposed approach using examples of real adverse events from the
FDA MAUDE database, which resemble the hazard scenarios identified in our analysis.

2 Background

2.1 RAVEN II Robotic Surgical Platform

The RAVEN II robot is an open-source platform for research in tele-operative robotic
surgery [8]. Fig. 1 depicts a typical configuration of a robotic telesurgery system, com-
posed of a master console, communication channel, and a RAVEN II surgical robot,
including software and hardware components. The master console provides the means

3

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

for the surgeon to issue commands to the robot using foot pedals and master tool ma-
nipulators. The desired position and orientation of robotic arms, foot pedal status, and
robot control mode are transferred between the master and slave robot over the network
using the Interoperable Teleoperation Protocol (ITP), a protocol based on the UDP
packet structure [9]. RAVEN II control software receives the user command packets,
translates them into motor commands, and sends them to the control hardware, which
enables the movement of robotic arms and instruments.

Master Console

Tool
Manipulators

Foot pedals

2D/3D
Display

Raven II Surgical Robot

‐ Foot pedal status
‐ Desired Position
‐ Desired Orientation

Robotic Control
Software and Hardware Robotic Arms and Instrument

Motor
control

commands

Motor
encoder
feedback

Instruments

DC Motors
Robotic
ArmsRobot status feedback

User Commands

Network Communication

Fig. 1. Robotic Telesurgery using RAVEN II Surgical Platform (modified from [10, 11])

Fig. 2 shows the main hardware and software modules in the RAVEN II control
system. The control software runs on top of the Robotic Operating System (ROS) mid-
dleware and real-time (RT-Preempt) Linux kernel and communicates with the motor
controllers and a Programmable Logic Controller (PLC) through custom USB interface
boards. The PLC controls the brakes. The motor controllers send movement commands
to the motors. There are three main threads running in parallel in the RAVEN control
software: 1) the network layer thread which receives the command packets from the
master controller over network; 2) the control thread where the robot’s kinematics and
control computations are performed; and 3) the console thread which provides an in-
terface for setting the control modes and displaying robot’s status to user.

Both the control software and the PLC operate in a state machine that consists of
four states: a) emergency stop (“E-STOP”), b) initialization (“Init”), c) foot pedal re-
leased (“Pedal Up”), and d) foot pedal pressed (“Pedal Down”), as shown in the Fig.
2.b. The control software’s state is synced with the PLC state every 1 milliseconds
through the USB interface boards. At power-up, both software and PLC are at “E-
STOP” state, the motor brakes are engaged, and motor-controllers are stopped. As a
safety mechanism, the robot has a physical start button which should be pressed in order
to start the robot initialization (homing) process and make it ready for manual teleoper-
ation. The initialization state takes each robotic arm from its resting position and moves
it into the surgical field. Once the homing process is done the system automatically
transitions into the “Pedal Up” state where the brakes are engaged and robot does not
move. The “Pedal Down” state is initiated when the human operator pushes the foot
pedal down. In this state the brakes are released, allowing the master console to directly
control the robot. When the human operator lifts their foot from the pedal, the system
re-enters “Pedal Up” state, disengaging the master console from the robot. There is an
emergency stop button that immediately stops the robot by putting the PLC safety pro-
cessor and the control software into “E-STOP” state [12].

4

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

(a) (b)

Fig. 2. RAVEN II control system: (a) Software and hardware modules [8, 11], (b) Computation
steps in the control thread when in the Cartesian space mode and the safety state machine [11]

The control software detects and corrects any unsafe motor commands (e.g., electri-
cal currents directed to the motor controllers exceeding a safe limit) using overdrive-
Detect function. During normal operation, the software continuously sends a square-
wave watchdog signal to the PLC through the USB boards. Upon detecting an instant
over-current command by overdriveDetect function, the control software stops sending
the watchdog signal. The watchdog timer implemented in the PLC safety processor
monitors the periodic watchdog signal from the software and upon loss of the signal
immediately puts the system into the emergency stop (“E-STOP”) state.

2.2 Systems-theoretic Hazard Analysis Using STPA

STPA is a hazard analysis technique based on STAMP (Systems-Theoretic Accident
Model and Processes) accident causality model which is driven by concepts in systems
and control theories [4]. STAMP models the systems as hierarchical control structures,
where the components at each level of the hierarchy impose safety constraints on the
activity of the levels below, and communicate their conditions and behavior to the lev-
els above. The interactions among system components and operators are modeled as
control loops composed of the actions or commands (e.g., motor commands) that a
controller (e.g., software controller) takes/sends to a controlled process (e.g. the robotic
arms/instruments) and the response or feedback (e.g., joint positions) that the controller
receives from the controlled process (see Figure 3.a). The layers of the control structure
could span from the physical components to human operators, up to even higher levels
in manufacturing, management, and regulation. In every control loop, the controller
uses an algorithm to generate the control actions based on a model of the current state
of the process it is controlling (see Fig. 3.b). The control actions taken by the controller
change the state of the controlled process (e.g., the instrument will be engaged). The
feedback (e.g., motor encoder values) sent back from the controlled process (e.g., motor
controllers) update the process model used (e.g. current joint status) by the controller.

STPA starts by defining the accidents to be considered, the hazards associated with
those accidents, and the safety requirements (constraints) for the system. Then unsafe

5

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

control actions in each loop of control structure are identified and the potential causes
for unsafe controls are determined by considering any potential flaws in the inputs,
control algorithm, process model, outputs, or feedback received by the controller [4].

3 Systems-theoretic Safety Validation Using Fault Injection

We used systems-theoretic hazard analysis using STPA to identify the safety hazards
of a typical robotic telesurgical system and the potential causal factors that might lead
to safety violation in RAVEN II system. Then we validated the robustness of the safety
mechanisms of RAVEN II to the safety hazard scenarios identified using STPA by
simulating their causal factors using software-implemented fault-injection.

3.1 Safety Hazards and Unsafe Control Actions

First, based on the review of almost 1,500 accident reports from the FDA MAUDE
database and specification of RAVEN II system functionality, we classified the acci-
dents in robotic surgical systems into three types: patient deaths (A-1); patient injuries
during procedure or serious complications experienced after procedure (A-2); and
costly damage to surgical system or instruments (A-3). We also identified three main
system hazards or set of system conditions that could lead to these accidents (Table 1).

Table 1. Accidents and safety hazards in robotic surgical systems
Accidents
A-1. Patient expires during or after the procedure.
A-2. Patient is injured during procedure or experiences complications after the procedure.
A-3. Surgical system or instruments are damaged or lost.

System Hazards
H-1. Robot arms/instruments move to an unintended location (H1-1), or with an unintended
velocity (H1-2), or at unintended time (H1-3).
H-2. Robotic arms or instruments are subjected to collision or unintended stress.
H-3. Robotic system becomes unavailable or unresponsive during procedure.

Fig. 3. a) Hierarchical control structure of RAVEN II system, b) Software and hardware control
loops, including control algorithms, process models, control actions, and feedback.

6

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

We then modeled the hierarchical safety control structure of the system, as shown in
Figure 3. Software and hardware control loops (outlined by dashed lines in Fig. 3.a) are
further refined in Fig. 3.b to illustrate details of the interactions among the software and
hardware controllers. Next, we identified the set of system conditions under which the
control actions could possibly be unsafe and lead to hazardous system states. The fol-
lowing unsafe scenarios were specifically considered: i) a required control action was
not performed, ii) a control action was performed in a wrong state, leading to a hazard,
iii) a control action was performed at an incorrect time, iv) a control action was per-
formed for an incorrect duration, v) a control action was provided, but not followed by
the controlled process [4]. For example, in software control loop shown in Fig. 3.b any
flaws (marked with) in the master console inputs, the incorrect feedback from the
motor controllers or hardware control, and the flaws in the process model of software
or output generated by the control algorithm can be considered as a potential causal
factor. Table 2 shows the potentially unsafe control actions and their corresponding
possible causal factors for the software and hardware control loops.

As shown in the next section, the identified causal factors in combination with the
knowledge of software structure provide the scope for performing directed fault-injec-
tion experiments. They can define the location within each software module to inject,
the variables within each function to target, and the conditions to trigger the injections.

Table 2. Potential unsafe control actions and causal factors for safety hazards in RAVEN II

C
on

tr
ol

 Potentially Unsafe Control Actions
Possible

Causal Factors
Control
Action
(Type)

Context
(System Condition) S

af
et

y

H
az

ar
ds

So
ft

w
ar

e
C

on
tr

ol

Motor
command
(provided)

User desired joint position does not match
user desired position

H1-1 - Incorrect console inputs
- Faulty control algorithm
- Incorrect process model (desired
positions, joint positions, runlevel)
- Faulty USB communication
- Arms/Instruments malfunctions

User desired joint position is at a large
distance from the current joint position
(unintended jump)

H1-2

Left and right arm end-effector positions are
very close (unintended collision)

H2

Software State = E-STOP or
Software State = Pedal Up,
PLC State = Pedal Down

H1
H2

- Missing/incorrect input from PLC
- Faulty control algorithm
- Incorrect process model (desired
positions, joint positions, runlevel)
- Missing/incorrect watchdog signal
or output to PLC
- Faulty USB communication

Software State = Pedal Down,
PLC State = Pedal Up or
PLC State = Init

H3

Software State = Not E-STOP,
PLC State = E-STOP

H3

Motor
command

(not followed)

Software State = Pedal Down or
Software State = Init

H3
- Faulty USB communication
- Mechanical malfunctions (e.g.
broken instruments or cables)

H
ar

dw
ar

e
C

on
tr

ol

Brake
(provided)

Stop not pressed and
Software not stopped/pedal up

H3 - Missing/incorrect watchdog signal
or output from software
- Faulty USB communication Brake

(not provided) Stop pressed or
Software is stopped

H1
H2

Brake
(not followed)

H1
H2

- Mechanical malfunctions (e.g.
broken instruments or cables)

7

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

3.2 Safety Hazard Injection Framework

To evaluate the safety mechanisms of robotic surgical system, we developed a Safety
Hazard Injection Framework, which consists of seven modules for retrieving hazard
scenarios, generating fault injection campaign, selecting fault injection strategy, con-
ducting fault injection experiment, and collecting data, all in an automated fashion. Fig.
4 shows the overall architecture of these modules and how they interface with each
other and with the RAVEN II control software and hardware. A detailed description of
each module is provided below.

Injection Controller. The Injection Controller is responsible for starting, stopping and
automating the fault injection campaign. It communicates with other modules in the
Safety Hazard Injection Framework through sockets or by direct invocation. In a nor-
mal campaign execution, it first accesses the Safety Hazard Scenario Library to retrieve
the list of hazard scenarios. Second, the controller calls the Fault-Injection Strategies to
generate the fault injection parameters that could cause each hazard scenario. Next, it
runs the user input generator module and calls the appropriate Fault-Injector and robotic
software to conduct a fault injection experiment. At the end of each injection run, the
injection parameters and data are collected and written to the Data Collector.

Raven II

Safety Hazard Injection Framework

Safety Hazard
Scenario Library

Injection
Controller

Safety hazard
scenarios

Fault‐Injection
Strategies

‐ Locations
‐ Targets
‐ Triggers

‐ Functions
‐ Variables

Run‐time or Compile‐
time Fault Injector

Safety Hazard Analysis using STPA
Unsafe Control Actions and Causal Factors

Data Collector

Data Analytics

Statists
Analysis

Graphic
Simulation

Motor Controllers

Motor
commands

Encoders
feedback

USB Interface Boards

Master
Control
Inputs

Brakes

Start/Stop
Controller
(Arduino)

Start, E‐Stop

Console
Outputs

Control Hardware

User Input
Generator

Control Software

Fig. 4. Safety Hazard Injection Framework integrated with the RAVEN II Surgical Platform

Safety Hazard Scenario Library. The safety Hazard Scenario Library contains the
safety hazard scenarios identified during the hazard analysis using STPA. Each hazard
scenario includes a possible unsafe control action that might happen in the system and
a list of potential causal factors. An example unsafe control action would be a motor
command is provided by the control software when there is a mismatch between the
software state and hardware state of the robot (rows 4-6 in Table 2). Faulty USB com-
munication is an example causal factor that might lead to such unsafe control action.

Fault-Injection Strategies. Based on the causal factors involved in each safety hazard
scenario, the analysis of RAVEN source code, and software/hardware architecture, the

8

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

Fault-Injection Strategies module retrieves information on software functions which
can most likely result in the hazard scenario, as well as the key variables in those func-
tions and their normal operating ranges. This information is translated to the parameters
to be used by the fault-injection engine for simulating potential causal factors and val-
idating whether they lead to the unsafe control or the safety hazards in the system. The
fault injection parameters include the location in the software function, the trigger or
condition under which the fault should be injected and the target variables to be modi-
fied by the injection.

User Input Generator. User input generator emulates master console functionality by
generating input packets based on a previously collected trajectory of robotic move-
ments made by a human operator and sends them to the RAVEN II control software.

Fault Injectors. The Fault Injectors perform the fault injection during robot operation.
We developed both compile-time and run-time fault injectors with minimum changes
to the RAVEN software and hardware. Run-time fault injector is implemented by ex-
tending the functionality of GDB (GNU Project Debugger for Linux). More specifi-
cally, we extend the breakpoint feature in GDB to perform fault injection when the
desired trigger condition is met and then resume the execution of the target program.
Run-time fault-injector launches the RAVEN ROS node with GDB Server attached to
it, then the extended GDB is run from a remote process and after connecting to the
RAVEN node, performs the fault injections. Run-time fault injector has the advantage
of performing injections on run-time generated data; however the delay introduced by
the run-time breakpoints is not acceptable for modules that have hard real-time require-
ments. For example, the RAVEN control thread has the hard real-time requirement of
one millisecond to perform kinematics calculations and communication with the USB
boards [11]. Run-time fault-injection to the control thread introduces small delays, lead-
ing to violation of the real-time constraint and failure of kinematics calculations, result-
ing in unintended robotic instrument vibrations and movements. Compile-time fault
injector is implemented as a module that modifies and recompiles the fault injection
conditions into the source code. The main advantage is negligible timing overhead
(small compile and build times), which is acceptable for modules with hard real-time
requirements. We use compile-time injector to inject faults into the control thread.

Start/Stop Controller. To perform automated fault-injection experiments without
manual user intervention, we added a hardware mechanism to automatically start and
stop the RAVEN system. We connected the start input of the PLC to the output of a
relay switch controlled by an Arduino microcontroller (http://www.arduino.cc/) which
receives start signals from the Injection Controller. After each injection, the controller
stops the system by shutting down the RAVEN ROS node. The next injection gets
started by automatically launching the software and sending the start signal to the Ar-
duino relay controller to start the PLC and homing process.

Data Collection and Analysis. For each fault injection run, the fault injection param-
eters, surgical robot’s trajectory, and detected errors are collected and sent to a MySQL
server on a remote machine (Data Collector). These data are later queried for statistical
analysis or graphics simulation.

9

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

4 Experimental Results

In our experiments, we simulated 45 scenarios (corresponding to the causal factors
shown in Table 2) by injecting faults into 25 locations within 13 software functions of
the network and control threads of RAVEN II robot, while running a pre-collected tra-
jectory of a surgical movement. We ran a total of 2,146 fault-injection experiments on
the RAVEN robot. However, the majority of the faults (e.g., injected values within the
range of variables) were not manifested in the system, or their effect was not logged
completely by the data collection process due to system hangs/crashes (e.g., hardware
“E-STOP”) caused by the faults. Table 3 shows examples of scenarios where the faults
were manifested in the system. For each scenario, we conducted multiple runs (in total
368 fault injections) to get confidence in reproducibility of the manifested/observed
system behavior and manually collected the results. In each case we analyzed the sys-
tem behavior both during the homing process (which system is being initialized and
user manipulation has not started yet) and after the homing. The third column in the
table shows the number of experiments done for each scenario and the last column
corresponds to the scenario ID. A complete list of causal scenarios is available at [13].

In this section, we discuss our findings from the conducted fault injection experi-
ments, including the causes for undetected hazards and the hazard scenarios that were
mitigated by the safety mechanisms. Next section shows representative incident reports
from the MAUDE database, which resemble the safety hazard scenarios identified here.

4.1 Undetected Safety Hazards

In what follows we describe the scenarios in which the injected faults led to hazards
that were not detected or mitigated by the safety mechanisms in the system.

Unintended Robotic Movement (H1). We found a total of six scenarios where the
faults in the console inputs, control algorithm, or the communication between the con-
trol software and hardware led to robotic arms/instruments making movements to an
unintended position (H1-1) or with an unintended velocity (H1-2).
i. Out of range values injected permanently into the position, orientation, and foot

pedal status inputs received from the master console (in network_process function)
did not have any impact on the system during the homing process. However, after
homing and in “Pedal Down” state, these injections led to kinematics calculations
failures, small jumps, or stopping the robot. If the injected values passed the safe
limits, movement was stopped by the overdrive detector and E-STOP was raised.

ii. Intermittent injection of out-of-range values into the master console inputs occa-
sionally caused small instrument jumps or stopping the PLC when the faults were
injected at very high frequency (e.g., at every other cycle).

iii. Injecting a random constant torque value to the joints current commands sent from
the control software to the motor controllers (in TorqueToDAC function) caused
very abrupt jumps of robotic arms, which resulted in the breakage of cables on the
arms.

iv. Faulty estimation of motor velocities by the control algorithm (in stateEstimate
function) caused unintended rotation and movement of instruments. In one case,

10

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

upon intermittent injection of zero velocity, the instruments unexpectedly overshot
the home position and collided with the surgical field floor during homing process.

v. Intermittent faulty packets received by the USB interface function (getUSBPacket)
from the PLC caused the software control to assume that PLC is in “E-STOP” state,
while PLC was in “Init” state. During homing process, this fault led the software
and PLC to switch back and forth from “Init” to “E-STOP” state, causing failure
of synchronization between left and right arms. Therefore, the robotic system got
stuck in the initialization process and never moved to “Pedal Up”. After homing,
depending on the frequency of the intermittent faults, either the robot completely
stopped or PLC applied brakes repeatedly to the motors.

vi. Injecting faults into the packets sent to the motor controllers through the USB in-
terface function (putUSBPacket) did not impact the behavior of the system during
the homing process, but led to abrupt jumps of robotic arms, resulting in cable
breaks. A video recording of this scenario is available at [13].

Unintended Collision or Mechanical Stress (H2). The last four scenarios discussed
above (iii - vi) also involved mechanical stress on the robot due to hanging in the hom-
ing process, repeating initialization steps, applying brakes over and over again, abrupt
jumps of robotic arms, colliding with the surgical field floor, or breaking cables. The
robotic system also became unresponsive or unavailable (H3) for almost an hour while
repairing each broken cable. Due to the risk of damage to the robot, we repeated these
specific injections only a few times.

Unresponsive Robotic System (H3). The majority of undetected safety hazards were
due to faults injected in the USB communication or communication between software
and PLC (17 scenarios [13]), leading the robotic system to not start the homing process,
stop movement, become unresponsive to the received console packets, or become una-
vailable due to mechanical issues. Table 3 shows examples of these scenarios (vii, viii).

In case of transient or intermittent faults (e.g., in input console packets or USB pack-
ets), restarting the system can resolve the E-STOP conditions. However, permanent
faults (e.g., a loose or disconnected USB cable causing incorrect information sent from
PLC to software, or a DAC malfunction causing incorrect values sent to the motors,
simulated as stuck at software faults here) cannot be recovered from even after multiple
restarts and by hanging in E-STOP state the robotic system becomes unavailable (H3).

4.2 Mitigated Safety Hazards

Out of 23 scenarios related to corruption of the console inputs and the control algorithm,
only 6 caused the unintended movements (depending on the robot configuration), col-
lision, or cable damage. All these cases where related to intermittent faults (out of range
absolute values) injected into the console inputs (tool positions and orientation or foot
pedal) in a periodic manner or to applying constant velocity/torque values to the motors.
All other scenarios either did not have any impact (3 cases), were detected by the over-
driveDetect function and mitigated by forcing a hardware “E-STOP” (9 cases) (see sce-
nario ix in Table 3), or only caused the system to hang in “Pedal Up” or “E-STOP” with
no potential harm (4 cases).

11

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

Table 3. Example scenarios simulated by fault injection and the observed system behavior

Potential
Causal
Factor

Injected Software Fault
Target Function: Variables

[Fault Type, Values]
No. Observed System Behavior

H
az

ar
d

ID

Incorrect

console in-

puts

network_process:

Position and Orientations

[Stuck At Out of Range]

20

During Homing: No impact

After Homing in Pedal Down: IK-failure, small

jumps, no movements with no E-STOP, E-STOP H1

H3
i

network_process:

Foot Pedal Status

[Stuck At 0, StuckAt 1]

20

During Homing: No impact

After Homing: Does not start movement if Stuck

At 0, No impact if Stuck at 1.

network_process:

Position and Orientations

[Intermittent Out of Range

every10, 100, 500 packets]

40

Homing: No impact

After Homing in Pedal Down: IK-failure, No

movement, small jumps with no E-STOP, or E-

STOP depending on robot configuration H1

H3
ii

network_process:

Foot Pedal Status

[Intermittent 0/1 Flip every

30,100,3000 cycles]

20

Pedal Down: Movement stops or small jumps

PLC stops at very high flipping rate (e.g. every

other cycle)

Faulty

control

algorithm

TorqueToDAC:

Joints Current Commands

[Stuck At -1000]

1

Abrupt jump of both robotic arms,

Cables on both left and right arms broke

H1

H2

H3

iii

stateEstimate: Motor Velocity

[Stuck At 0, -1, 1000]
5

During Homing: Unintended rotation, E-STOP

After Homing: No Impact
H2

iv stateEstimate: Motor Velocity

[Intermittent 0 injection every

100, 3000 cycles]

5

During Homing: Unintended tool movement,

hard collision of instrument to the floor

After Homing in Pedal Down: No impact

H1

H2

H3

stateEstimate: Motor Position

[Stuck At or Intermittent]
10

Detected and mitigated by (overdriveDetect)

Raised E-STOP Error and Stopped
NA ix

Faulty

USB

communi-

cation

getUSBPacket:

PLC State

[Stuck At 0]

12

Homing: Does not start initialization, software as-

sumes hardware is in E-STOP

After Homing: E-STOP, software assumes hard-

ware is in E-STOP, goes to E-STOP, stops send-

ing watchdog, causing hardware to really stop.

H3 vii

getUSBPacket:

PLC State

[Intermittent 0 injection]

10

Homing: Repeats the homing process over and

over again due to synchronization failure between

two arms.

After Homing: Hardware completely stops or

brakes are engaged/disengaged repeatedly

H2

H3
v

putUSBPacket:

Joints Current Commands

[Stuck At Random Value]

5

During Homing: No Impact.

After Homing: Abrupt jump of robotic arms and

cable breaks, Software E-STOP

H1

H2

H3

vi

Incorrect

output to

PLC

updateAtmelOutputs:

Output to PLC

[Stuck At 0, 1, 3]

16

Does not start the initialization process or stops

after homing because hardware goes to E-STOP

and gets stuck there

H3 viii

12

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

5 Discussion

5.1 Related Safety Incidents from FDA MAUDE Database

Table 4 shows representative incident reports from the FDA MAUDE database, related
to the da Vinci surgical system (the only surgical robot for minimally invasive surgery
available on the market) [14]. In these examples, similar hazard scenarios studied in
this paper (including master console malfunctions and communication failures between
the controller and robotic parts) occurred during real robotic procedures. These failures
led either to non-intuitive movement of instruments or system errors that could not be
cleared even by multiple system restarts.

Table 4. Relevant incident reports on da Vinci surgical system from FDA MAUDE database

Report #
(Year)

Summary Event Description from the Report
Potential

Causal Factors
(ID in Table 3)

Observed
Behavior
(Hazard)

Patient
Impact

2120175
(2011)

During a hysterectomy procedure, the left master control-
ler did not have full control of the maryland bipolar for-
ceps instrument, resulting in non-intuitive motion and
causing a small bleed on the patient's uterine tube.

Master console
calibration issue

(i)

Non-
intuitive

movement
(H2)

Small bleed
on patient's
uterine tube

2663924
(2012)

2589307
(2012)

Approximately 3.5 hours into a pancreatectomy proce-
dure, multiple instances of non-recoverable system error
code #23 was experienced and the surgeon was unable to
control the patient side manipulator (psm) arms.

Communication
failure between
master console
and robot (i)

Non-
recovera-
ble system

error
(H3)

Converted
to open
surgery
after 3.5

hours

In cases of instruments moving of their own accord or getting stuck due to malfunc-
tions, the consequences may range from minor, where there are just short delays or
system resets for troubleshooting the problem, to major, where the instruments may
impale or impinge on a bodily structure, causing perforation or bleeding. Tearing or
perforation of tissues can cause long term complications and even death. Conversion of
procedure to non-robotic approaches is a recovery mechanism to ensure survival of the
patients. However, lack of tactile feedback can be a major issue in extracting malfunc-
tioning instruments safely from patient’s body.

This study demonstrated the value of software-implemented fault injection for sim-
ulation of safety hazard scenarios, which might help surgeons recognize complications
and act promptly to prevent similar incidents in the future.

5.2 Vulnerabilities in Safety Mechanisms and Mitigation of Safety Hazards.

We discovered the following vulnerabilities in the safety mechanisms of RAVEN II
robot which contributed to the simulated safety hazards:

a) Lack of monitoring mechanisms for the initialization (homing) process.
b) No safety mechanisms for monitoring the USB board communications.
c) No hardware detection mechanisms for monitoring unsafe motor commands.
d) No feedback from the motor controllers and brakes to the PLC
The initial specifications of the RAVEN robot [12] included the requirements for the

PLC to monitor the robotic hardware through feedback received from the motors and
brakes. However, we found that those monitoring mechanisms are not included in the

13

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

current implementation of the robot. Also, separate software and hardware mechanisms
for monitoring the activities of USB interface boards are needed in the future.

The following robust safety mechanisms had a major role in mitigating safety haz-
ards in RAVEN II, by preventing unintended movements and possible system damage:

a) Robot movements cannot start without a start signal provided by the user.
b) PLC engages the brakes upon loss of watchdog (“E-STOP”) or foot pedal sig-

nals from software (“Pedal Up”); and software only sends the pedal signal to
the PLC when the foot pedal is pressed and it is not in “E-STOP” or “Init” state.

c) Software checks the status of PLC on every cycle (1 millisecond interval) to
immediately follow the state transitions of the robotic hardware.

6 Related Work

Software implemented fault injection (SWIFI) [6, 7] has been used for evaluating the
dependability of different computing systems, including operating systems [15], smart
power grids [16], and SaS cloud platforms [17]. International safety standards, such as
NASA Software Safety Guidebook and functional safety standard for automobiles (ISO
26262), recommend using fault-injection for validation of safety-critical software [3].
However, medical devices safety standard (ISO 14971) do not consider fault-injection
testing for validation of medical software [18]. Only one study showed the use of soft-
ware simulation fault injection for testing the UML model of software for a pacemaker
[19]. In this work, we developed a software fault injection framework that targets the
critical locations in a real medical cyber-physical system to validate the robustness of
the system safety mechanisms during design and implementation phases.

STPA was previously used for hazard analysis and safety-based design in safety-
critical domains such as aviation [20], medical devices [5, 21], and automotive systems.
Most previous studies used STPA only to derive the high-level safety constraints and
identify the unsafe interactions that should be eliminated or controlled during the design
process. However, here we further used the causal factors identified by the STPA anal-
ysis to identify the types and locations of faults to be injected into software to empiri-
cally assess the system’s safety under realistic hazard scenarios.

7 Conclusions

This paper presents a framework for validating the robustness of safety mechanisms in
robotic telesurgical systems. A systems-theoretic hazard analysis technique, STPA, was
used to determine the safety hazard scenarios and their potential causes, in robotic sur-
gical systems. A software-implemented fault injection framework was developed to
simulate hazard scenarios by emulating the impact of intermittent and permanent faults
in the robotic control software and hardware of the RAVEN II robot.

Software-implemented fault injection directed by the systems theoretic hazard anal-
ysis enables us to: (i) identify the safety hazard scenarios and determine their potential
causes; (ii) trace propagation of faults in the system and discover the vulnerabilities in
system safety mechanisms; (iii) determine strategic placement of new detectors that can
mitigate the propagation of causal factors into safety hazards; (iv) provide useful feed-
back to the system developers on how to improve the safety mechanisms in the next-
generation of devices. In particular, the identified hazard scenarios and the propagation

14

To appear in the International Conference on Computer Safety, Reliability, and Security (SAFECOMP)
Copyright © 2015: Authors.

paths from causal factors to safety hazards can be used for design of hazard prediction
and mitigation mechanisms in the system. The proposed software fault-injection frame-
work can be also used for simulating realistic safety-hazard scenarios experienced in
the field during robotic surgical training.

Acknowledgements. A non-restricted grant from Infosys and a faculty award from
IBM partially supported this work. Our special thanks to Blake Hannaford and
researchers at the University of Washington Biorobotics Lab for access to a RAVEN II
robot. We also thank Frances Baker and Carol Bosley for their editing of the paper.

References
1. MAUDE: Manufacturer and User Facility Device Experience, U.S. Food and Drug Administration,

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/search.CFM
2. Alemzadeh, H., et al.: Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA

Data. Technical Report (2015), http://web.engr.illinois.edu/~alemzad1/papers/daVinciMAUDE_14.pdf
3. Cotroneo, D., Natella R.: Fault injection for software certification. IEEE Security & Privacy 11(4), 38-

45 (2013)
4. Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press (2011)
5. Balgos, V.: A Systems Theoretic Application to Design for the Safety of Medical Devices. SDM Mas-

ter’s Thesis, Engineering Systems Division, MIT, Cambridge (2012)
6. Hsueh M. C., Tsai, T. K., Iyer, R. K: Fault injection techniques and tools. Computer 30(4), 75-82 (1997)
7. Arlat, J., et al.: Fault injection for dependability validation: A methodology and some applications. IEEE

Transactions on Software Engineering 16(2), 166-182 (1990)
8. Hannaford, B., et al.: RAVEN-II: an open platform for surgical robotics research. IEEE Transactions

on Biomedical Engineering 60(4) (2013)
9. King, H. H., et al: Plugfest 2009: Global interoperability in telerobotics and telemedicine. In: IEEE

International Conference on Robotic Automation (ICRA), pp. 1733–1738. IEEE Press (2010)
10. Robotic Surgery Simulator (RoSS), Simulated Surgical Systems, http://www.simulatedsurgicals.com/.
11. RAVEN II Source Code, University of Washington, http://brl.ee.washington.edu/RAVEN2docs/
12. Lum, E., et al.: The RAVEN: Design and validation of a telesurgery system. The International Journal

of Robotics Research 28(9), 1183-1197 (2009)

13. Safety Assessment of RAVEN II Robot, http://web.engr.illinois.edu/~alemzad1/papers/RAVEN.html.
14. The da Vinci® Surgical System, http://www.intuitivesurgical.com/products/davinci_surgical_system/
15. Chen, D., et al.: Error Behavior Comparison of Multiple Computing Systems: A Case Study Using

Linux on Pentium, Solaris on SPARC, and AIX on POWER. In: 14th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC '08). IEEE Press (2008)

16. Faza, A., Sedigh, S., McMillin, B.: Integrated Cyber-physical Fault Injection for Reliability Analysis of
the Smart Grid. In: 29th International Conference on Computer Safety, Reliability, and Security
(SAFECOMP), pp. 277-90. Springer Berlin Heidelberg (2010)

17. Di Martino, C., et al.: Analysis and Diagnosis of SLA Violations in a Production SaaS Cloud. In: 25th
International Symposium on Software Reliability Engineering (ISSRE), pp.178-188. IEEE Press (2014)

18. Park, J. D., et al.: Method of fault injection for medical device based on ISO 26262. In: 18th IEEE
International Symposium on Consumer Electronics (ISCE 2014), pp. 1-2. IEEE Press (2014)

19. Majikes, J. J., et al.: Literature Review of Testing Techniques for Medical Device Software. In: 4th
Medical Cyber-Physical Systems Workshop (MCPS 2013). ACM Press (2013)

20. Ishimatsu, T., et al: Hazard analysis of complex spacecraft using systems-theoretic process analy-
sis. Journal of Spacecraft and Rockets 51.2, 509-522 (2014)

21. Antoine, B.: Systems Theoretic Hazard Analysis (STPA) applied to the risk review of complex systems:
an example from the medical device industry. PhD diss., Massachusetts Institute of Technology (2013)

