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ABSTRACT: Air pollution is now recognized as the world’s
single largest environmental and human health threat. Indeed,
a large number of environmental epidemiological studies have
quantified the health impacts of population exposure to
pollution. In previous studies, exposure estimates at the
population level have not considered spatially- and temporally
varying populations present in study regions. Therefore, in the
first study of it is kind, we use measured population activity
patterns representing several million people to evaluate
population-weighted exposure to air pollution on a city-wide
scale. Mobile and wireless devices yield information about
where and when people are present, thus collective activity
patterns were determined using counts of connections to the cellular network. Population-weighted exposure to PM2.5 in New
York City (NYC), herein termed “Active Population Exposure” was evaluated using population activity patterns and
spatiotemporal PM2.5 concentration levels, and compared to “Home Population Exposure”, which assumed a static population
distribution as per Census data. Areas of relatively higher population-weighted exposures were concentrated in different districts
within NYC in both scenarios. These were more centralized for the “Active Population Exposure” scenario. Population-weighted
exposure computed in each district of NYC for the “Active” scenario were found to be statistically significantly (p < 0.05)
different to the “Home” scenario for most districts. In investigating the temporal variability of the “Active” population-weighted
exposures determined in districts, these were found to be significantly different (p < 0.05) during the daytime and the nighttime.
Evaluating population exposure to air pollution using spatiotemporal population mobility patterns warrants consideration in
future environmental epidemiological studies linking air quality and human health.

1. INTRODUCTION

A large number of epidemiological studies have been
conducted, which quantify the health effects of population air
pollution exposure. The negative human health effects
associated with air pollution exposure are therefore widely
documented in the literature.1−7 According to the World
Health Organization, ambient air pollution contributes to
approximately 3.7 million premature deaths annually, with
particulate matter (PM) being of considerable concern.8

Among the different size classes of PM, PM2.5 (aerodynamic
diameter < 2.5 μm) shows the strongest and most consistent
association with adverse health effects.3,9 There is considerable
epidemiological evidence to suggest a relationship between
acute exposure to PM2.5 and increases in all-cause mortal-
ity,10−19 cardiovascular mortality,12,14,15,17,20−22 and respiratory-
related mortality.12,15,17,20,21,23 Chronic exposure to PM2.5 has
also been linked to increased incidences of all-cause mortal-

ity.4,24−28 Research suggests links between both short and long-
term exposures to PM2.5 and morbidity,9,29 and studies have
provided evidence linking exposure to air pollutants such as
ultrafine particles, oxides of nitrogen, ozone, carbon monoxide,
volatile organic compounds and sulfur dioxide to health
effects1,30,31 including respiratory illnesses and lung cancer.32

Previous research linking air pollution exposure to human
health effects, at the population level, has been carried out using
a variety of methods incorporating time-series studies13 and
spatial analyses.14,27,36 Many studies however are limited by a
lack of high resolution daily exposure data and have used
measurements from single or a small number of fixed-site
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monitors to assess air pollution exposure.3,18,33−35 Some studies
such as by Kloog et al.,29 which evaluated the acute and chronic
effects of particles on hospital admissions in New England,
addressed this by incorporating a PM2.5 model, which
accounted for the spatial variability of air pollution levels.
Where air pollution modeling efforts have been applied,
however, air pollution exposures have not been weighted
according to spatially and temporally varying populations
present in study regions. In spatial analyses linking population
exposure to health impacts,27,36 population exposure estimates
have not characterized or accounted for spatial and temporal
population mobility patterns.
Several studies comparing personal exposure measurements

to ambient monitoring at subject’s residences have revealed
significant variances between concentrations at home addresses
and personal exposure concentrations, and large discrepancies
between subjects and between studies.37,38 Other research has
indicated that varying activities and microenvironments are
major determinants of personal exposures.39−43 Dons et al.41

showed that commuting accounts for most variability in
personal exposures between people exposed to equal
concentrations at their residential location. A small number of
models have been developed to estimate population exposure
to air pollution using varying spatiotemporal population
mobility estimates.44−48 The Stochastic Human Exposure
Model and Dose Simulation (SHEDS-PM) predicts population
exposure to PM47 and the Air Pollutants Exposure model
(APEX), which is part of the EPA’s Total Risk Integrated
Methodology (TRIM) model framework, predicts human
health risks of air pollution exposure and inhalation.48 Whereas
these models are useful for estimating population exposure to
air pollution, the mobility patterns of individuals are either
simulated or randomly assigned, rather than directly measured.
There is a lack of research whereby human exposure to air
pollution has been assessed using location data collected from
mobile phones, and where it has, these studies have been
limited in terms of very low numbers of participants.49−51

Spatial and temporal human mobility patterns can be
characterized based on mobile phone trace data52,53 and
techniques to extract mobility information from mobile phone
traces have progressed in recent times.54−56 Data sets that can
be used for human mobility analyses include geographically and
time-referenced Call Detail Records (CDRs) or counts of
connections to the cellular network. These types of data sets
may include millions of anonymized records of mobile phone
and wireless device usage and can yield detailed information
about the activity patterns of large populations, especially where
mobile phone and wireless device penetration rates are high
relative to the population. Studies have shown that mobile
phone trace data can also represent individual mobility
patterns,55,57,58 and demonstrate advantages over traditional
travel surveys used in human mobility studies, which are limited
in terms of low response numbers, spatiotemporal scales, and
limited update frequencies. To the author’s knowledge, a study
applying extensive spatiotemporal population mobility esti-
mates from mobile phone data in the assessment of population
exposure to environmental pollution over a substantial study
domain has not been conducted previously.
This aim of this study was to quantify population-weighted

exposure to air pollution by combining extensive population
activity patterns and air pollution measurements. This would be
considered for a substantial study domain and human
population over a significant time period. The specific aim

was to use mobile device based mobility patterns representative
of several million people and spatiotemporal PM2.5 concen-
tration level estimates to evaluate population-weighted
exposure to PM2.5 for New York City (NYC) and for 71
districts within the city. It was intended to improve the
quantification of the spatial and temporal variations in
population exposure to air pollution for potential application
in future environmental epidemiological research studies.

2. METHODS
2.1. Study Protocol. Population-weighted PM2.5 exposure

in the NYC region was examined from April to July 2013.
Population-weighted exposure was calculated as a function of
air pollution concentration in an area and the proportion of the
total population of NYC exposed in that area. The spatial
domain studied included the boroughs of Manhattan, Staten
Island, Brooklyn, Queens and the Bronx. The total area of NYC
is 1214 km2. The total population of NYC is approximately 8.5
million people (2010 figure from the US Census Bureau, 2016).
71 separate districts of NYC were studied (see Figure S1) and
residential population statistics were attained for each of the
districts.59 It was assumed that the hourly air quality level and
the percentage of the total population present within each
district were uniformly distributed. Each district had a
geospatial centroid coordinate and hourly PM2.5 parameter
levels to be inferred or already associated if having an air quality
monitoring station located in it. Two scenarios of population-
weighted exposure to air pollution were compared. The first
was air pollution exposure weighted by population activity
counts deciphered using extensive mobile device usage records,
herein referred to as “Active Population Exposure”. The second
was air pollution exposure weighted by assuming people were
always located at their home location, using a Census-defined
spatial population distribution. This is referred to as “Home
Population Exposure”. For the “Active” scenario, the population
mobility data varied hourly in contrast to the “Home” scenario
in which the population was stationary over time.

2.2. Particulate Matter. PM2.5 concentration data was
obtained from the New York City Community Air Survey
(NYCCAS).60 The design and implementation of the
NYCCAS urban air monitoring program, which was designed
to characterize intraurban spatial gradients and complement
regulatory monitoring for informing local air quality manage-
ment, is described in.61 The NYCCAS monitors PM2.5 and
other criteria pollutant parameters at 155 locations throughout
NYC during each season of the year (as shown in Figure S2).
Data was collected over 2 week intervals at each of the 155
distributed locations once per season. Data was also collected at
another five reference sites in two week periods year round for
temporally adjusting distributed site data. These integrated
sampling units provide high-quality air pollutant data, which
exhibits significantly more geographic variation than is captured
by regulatory monitoring.
Spatial distribution maps of air quality parameter levels were

developed using the spatial interpolation technique of inverse-
distance-weighting, as this had been used effectively in studies
quantifying pollution exposures.62 PM2.5 values were therefore
interpolated from the NYCCAS monitoring stations to each of
the 71 district centroids, for each 2-week interval. To obtain
daily values for use in our study, the 2 week interval data was
adjusted to yield daily variation. This was completed using 24-h
concentration measurements obtained from a United States
Environmental Protection Agency (U.S. EPA) fixed-site
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monitoring station centrally located in Manhattan, classified as
appropriate for indicating population exposure to air
pollution.63 Figure 1 shows boxplots of the resulting daily
PM2.5 concentration levels for each district within NYC. Details
relating to the PM2.5 concentrations as measured by the
NYCCAS, and further adjusted for daily variability using data
from the USEPA, for districts are shown in Figure S3.

2.3. Mobile Device Based Population Activity Pat-
terns. Geographically and time-referenced mobile traffic data
were used to quantify hourly percentages of the total
population of NYC present in each of the 71 districts of the
city throughout the study period. The specific data set used was
3G mobile traffic data accrued from several operators and this
included data from all types of mobile devices such as phones

Figure 1. Boxplots of daily PM2.5 concentration levels for each district within NYC (n = 121 days).

Figure 2. “Active Population” determined for each district of NYC: Mean nighttime population according to the counts of connections to the
cellular network (top-left); mean daytime population according to counts of connections to the cellular network (top-right); mean difference
between the daytime and nighttime population (lower-left), and the “Home Population” according to the Census (lower-right).

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b02385
Environ. Sci. Technol. 2016, 50, 9671−9681

9673

http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02385/suppl_file/es6b02385_si_001.pdf
http://dx.doi.org/10.1021/acs.est.6b02385


and tablets. The data corresponded to several million
subscribers which represented a statistically significant fraction
of the total 3G mobile traffic in NYC (precise penetration rates
are not given for confidentiality reasons). The data was
assumed to be appropriate for extrapolating information about
the spatial relative distribution of the entire population in terms
of percentage of people that are present in certain areas.
Included in the data set were counts related to data
communication requests (phone-calls, SMS and passive data-
requests). Normalized data which was aggregated at the cell
tower level was provided, therefore users were anonymized.
The service area of each cell tower which recorded information
had a radius of approximately 100 m. To estimate population
levels in different areas, the data corresponding to passive data-
request activity were utilized. Passive data requests (such as
applications running on the background of a phone automati-
cally updating and syncing with the cellular network) track
mobile devices without requiring active user interference. The
data were spatially aggregated at the districts level (see Figure
S1), aggregated hourly and then spatially normalized.
The data set enables the collective tracking of the spatial and

temporal locations of the population of NYC. This would
subsequently enable the assignment of corresponding air
pollution exposures which also vary temporally and spatially.
The population exposure computed would thus be compared
to the traditional approach of assigning population exposures
which assumes a stationary population distribution, derived
using Census data.
Figure 2 shows the mean populations present in each district

within NYC, detected using the mobile phone data and herein
termed the “Active Population”. In this figure, a map of the
mean nighttime population during the week (Monday−Friday),
the mean daytime population determined during the week, and
the mean difference between these daytime and nighttime
populations are presented. A map of the Census population,
herein termed the “Home Population” is also shown for
comparison. Figure S4 shows boxplots of the “Active
Population” along with the “Home Population” as a single
point, for each district of NYC. Figure 3 shows the temporal
variation of the number of people present in five separate
districts selected from each of the five boroughs of NYC. It can
be observed for District 17 in Manhattan, the number of people
present peaks during the day, while in the other districts, the
population present peaks during the night.
2.4. Population-Weighted Exposure. The population-

weighted PM2.5 exposures were computed for each district for
both population scenarios of Active Population Exposure and
Home Population Exposure. This enabled a relative comparison
of populations exposure between the two scenarios. District
level daily population-weighted exposure is defined as Ei =
∑j=1

24 CiPij, where Ei is the daily total population-weighted
exposure for each district i, Ci is the estimated concentration of
PM2.5 in district i on each day, and Pij is the percent of the total
population of NYC present in district i at time j (which is hour
of the day) for both scenarios described already. Mann−
Whitney U Tests were carried out to assess the statistical
significance of differences between population weighted PM2.5

exposures between scenarios. Weekday and nighttime pop-
ulation-weighted exposures were determined and compared
also.

3. RESULTS
3.1. Relative Difference in Population-Weighted

Exposures by District. Population-weighted exposures to
PM2.5 were computed separately for each district, for the Active
Population Exposure and Home Population Exposure scenar-
ios. The relative influence of the population-weighted PM2.5
exposures per district of NYC were thus examined. Figure 4
portrays the mean population-weighted PM2.5 exposures
computed in each district of NYC. In some districts, the
population-weighted PM2.5 exposure in the case of the Active
Population Exposure or the Home Population Exposure are
negligible. This was due to the estimated population statistics,
which were used to calculate population-weighted exposures,
being negligible in the relevant district. Figure 5 shows boxplots
of the population-weighted PM2.5 exposures for each district
within NYC for both scenarios of exposure, and the relative
difference between these.
In the case of the Home Population Exposure, Figure 4

shows the districts where the mean population-weighted PM2.5
exposures computed are relatively higher than the rest of NYC.
These are located within Manhattan, Queens and Brooklyn. For
example, in Manhattan, District 63 and 38 (Hudson Heights
and Upper East Side), District 42 (Upper East Side), District
13 (Midtown East), and in District 68 (East Village), the mean
population-weighted PM2.5 exposures are relatively higher. In
Queens, District 41 (Flushing, Murray Hill, College Point, and
Whitestone), District 11 (Jamaica, Rochdale Village, St. Albans,
and Addisleigh Park Historic District in Queens), and District
59 (Cambria Heights, Laurelton, and Springfield Gardens) have
relatively higher mean population-weighted exposures to PM2.5.
In Brooklyn, Districts 55 and 53 (Astoria and Greenpoint),
Districts 2 and 26 (Bensonhurst and Borough Park), and

Figure 3. Temporal variability of the number of people detected in five
districts located in each of the five boroughs of NYC during 1 week,
according to spatially aggregated counts of connections to the cellular
network in that district. From the figure, it is observed that in
Manhattan the populations present in the Manhattan district (D17)
reaches a peak during the day, while in the districts specified in the
other four boroughs, the population present reaches a peak during the
night.
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Districts 28 and 12 (Flatlands and East New York) have also
been identified.
For the Active Population Exposure, which utilizes mobile-

phone-based spatiotemporal population distributions to
estimate population-weighted PM2.5 exposures, Figure 4
shows Districts 17 and 16 (Midtown Manhattan) as having
relatively higher PM2.5 population-weighted exposures than the
remaining districts in NYC. A cluster of districts in West
Queens and North-West Brooklyn (Districts 1, 69, 53, 14, 55,
7, 3, and 41) have been identified as having relatively higher
population-weighted exposures. In addition, a group of districts
in South-East Brooklyn and South-West Queens (Districts 2,
29, 36, 28, 22, 12, 70, and 11) were found to exhibit relatively
higher population-weighted exposures than the other districts
of NYC.
Some areas in East Queens and South East Brooklyn were

identified as areas where relatively greater population-weighted
exposure occurs when PM2.5 exposure was weighted by the
Census population statistics (see Figure 4). However, when
PM2.5 exposure was weighted according to mobile-phone
-based population activity patterns, it can be seen that districts
with higher relative influence on the total PM2.5 population
exposure are located in the lower region of Manhattan and
more centralized areas of Brooklyn and Queens (Figure 4). In

examining the relative changes in population-weighted PM2.5

exposures calculated using a mobile phone based spatiotempo-
ral population distribution (Active Population Exposure)
compared with an exposure computed using a static Census-
defined spatial population (Home Population Exposure), the
largest increases in mean population-weighted exposures
computed were observed in districts located in Lower
Manhattan (Districts 16, 17, 8, and 50), and some districts of
West Queens (Districts 14, 3, and 46) and North-East
Brooklyn (Districts 69, 1, 15, 12, and 70) (Figure 4). District
17, which is located in Midtown Manhattan, was observed to
have one of the lowest population-weighted PM2.5 exposures of
NYC when examining Home Population Exposure; however, it
was ranked highest when examining Active Population
Exposure. Differences in population-weighted PM2.5 exposures
computed in individual districts are shown in Figure S5 also.
Considering the population-weighted PM2.5 exposures in the

Active Population Exposure and the Home Population
Exposure separately, the values computed for both were
statistically significantly (p < 0.05) different in 68 of the 71
districts. The results of statistical tests assessing the differences
in population-weighted PM2.5 exposures between the two
scenarios are shown in Table S1.

Figure 4.Map of mean population-weighted exposure (PWE) to PM2.5 per district for the Home Population Exposure scenario (top-left), the Active
Population Exposure scenario (top-right), and the relative difference between these two scenarios (lower). Units are μg/m3 × percent of population
present/district.
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3.2. Relative Temporal Differences in Population-
Weighted Exposures. In the case of the Active Population
Exposure, Figure S6 shows the mean population-weighted
PM2.5 exposures computed during the daytime and the
nighttime in districts within NYC, and the relative difference
between the daytime and nighttime. The districts where the
population-weighted PM2.5 exposures are relatively higher are
very clearly located within Midtown and Lower Manhattan, and
centralized areas of Brooklyn and Queens. In analyzing
population-weighted PM2.5 exposure in the Active Population
Exposure during the daytime and during the nighttime on
weekdays, statistically significant (p < 0.05) differences
occurred in 57 out of the 71 districts. During the weekend,
statistically significant (p < 0.05) differences occurred in 31 out
of 71 districts. These results are shown in Table S1.
3.3. Total Population Exposure for New York City.

Figure 6 shows the daily cumulative population-weighted
exposures determined for the Active Population Exposure

scenario for the entire study duration. A similar graph for the
Home Population Exposure is seen in the Supporting
Information (Figure S7). Figure S8 enables a graphical
comparison of the daily cumulative population-weighted
exposures for two population scenarios. It can be seen that
the Home Population Exposure and Active Population
Exposure distributions are similar. However, more incidences
of PM2.5 values lower than 10 μg/m3 in the Home scenario are
observed in comparison to the Active scenario, in which more
PM2.5 exposure values greater than 10 μg/m3 are seen.

4. DISCUSSION

The impact of urban mobility patterns determined using
cellular network data, in evaluating population exposure to air
pollution for a large study domain and human population has
not been previously investigated. This study applied population
activity patterns representative of several million people to

Figure 5. Boxplots of population-weighted exposure (PWE) to PM2.5 for 71 districts of New York City for the (a) Home Population Exposure
assuming the Census-defined spatial population distribution, (b) Active Population Exposure assuming the mobile-device-based spatiotemporal
population distribution, and (c) relative difference between the Active Population Exposure and the Home Population Exposure. For the Home
Population Exposure, in some cases, there are no reported residents in the relevant district according to the 2010 Census; therefore, the resulting
PWE is negligible. Units of PWE are μg/m3 × percent of population present/district.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b02385
Environ. Sci. Technol. 2016, 50, 9671−9681

9676

http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02385/suppl_file/es6b02385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02385/suppl_file/es6b02385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02385/suppl_file/es6b02385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02385/suppl_file/es6b02385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02385/suppl_file/es6b02385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b02385/suppl_file/es6b02385_si_001.pdf
http://dx.doi.org/10.1021/acs.est.6b02385


estimate population weighted exposure to air pollution in NYC.
Spatiotemporal population statistics as defined by aggregated
counts of connections to the cellular phone network, and PM2.5

measurements were combined to estimate population-weighted
PM2.5 exposure, herein termed Active Population Exposure.
This was compared to Home Population Exposure, which was
calculated assuming a static Census-defined spatial population
distribution.
The 71 districts of NYC were compared in terms of their

relative contribution to the total population PM2.5 exposure
under both scenarios. When districts were examined on an
individual basis, significantly different (p < 0.05) patterns of
population-weighted PM2.5 exposure were observed. In
analyzing the Home Population Exposure, districts which
contributed most to the overall population exposure of NYC
tended to be located in areas of North-West and South-East
Brooklyn, and within Queens. This was due to these districts
having more residents than other areas according to the Census
population estimates. However, when the Active Population
Exposure was considered, districts with higher relative influence
tended to be located in the lower regions of Manhattan and
centralized areas of Brooklyn and centralized areas of Queens.
This was a result of higher proportions of New Yorkers
spending time in busy districts for employment, recreational,
and social activities. For the Active Population Exposure
scenario, the regions with relatively higher population-weighted
exposures were concentrated in more distinct clusters of
districts relative to the Home Population Exposure. This
tentatively implies that efforts for reducing population exposure
could be focused on these clusters of districts or regions within
NYC. The relative differences between population-weighted
exposures observed under varying population conditions, were
larger where there were greater disparities between the number
of people living in a region and the number of people most
likely to spend time in an area, such as Lower Manhattan where
a large increase was observed, and in West Queens and North-
East Brooklyn.

By using varying spatiotemporal population metrics to
investigate population exposure to air pollution, a new
perspective on identifying areas of elevated population
exposures is shown. Therefore, this research could aid in the
prioritization of air pollution interventions (both infrastructural
and policy orientated) for the protection of human health.
Authorities could focus their air pollution monitoring and
modeling efforts, for example by locating monitoring stations
where populations are more likely to be exposed. Evidence
suggests most air pollution interventions lead to health benefits,
including reduced incidence of cardiovascular and respiratory
mortality and morbidity.64 In a review of the public health
impacts of urban air pollution in 25 European cities, Pascal et
al.65 estimates that complying with the WHO guideline value of
10 μg/m3 in annual mean PM2.5 exposure would add up to 22
months of life expectancy at age 30, depending on the city. This
corresponded to a total of 19,000 deaths delayed for the regions
studied. Further to this, the associated predicted monetary gain
was approximately €31 billion annually, including savings on
health expenditures, absenteeism, and intangible costs, such as
well-being, life expectancy, and quality of life. While evaluating
where people are exposed to air pollution in the future using
mobile phone based population activity estimates, this could
assist in identifying where people are being exposed to levels
above the WHO recommended limits. Appropriate actions
could then be taken to reduce this number, that is, assigning
resources to prioritized areas, thereby maximizing public health
and related societal and economic benefits.
The use of spatially interpolated PM2.5 data in place of an air

quality model calibrated using real data was a study limitation.
Also, in future studies, a pollutant exhibiting more spatial
heterogeneity such as nitrogen dioxide, may offer further
evidence of the importance of considering mobility patterns in
evaluating population-exposure to air pollution. Although
municipal air quality monitoring is important for indicating
general levels of population exposure in urban environments, it
is often supplemented by physical air quality models such as the
Operational Street Pollution Model (OSPM)66 or the ADMS

Figure 6. Cumulative percentage of population and PM2.5 exposure determined for the Active Population Exposure scenario for each day of the
study period of 121 days.
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Urban67 to yield substantial spatial resolution. Techniques for
estimating air pollution levels between monitoring sites include
pollution dispersion,68 Land Use Regression (LUR)69 or hybrid
models (satellite data and LUR).70 Real-time air quality
monitoring using networks of sensors71 have received some
attention in recent years although the effectiveness of their use
for epidemiological studies has yet to be evaluated. Future
research should investigate whether air pollution exposure
weighted by mobile phone and wireless device based
spatiotemporal population distributions can offer improved
prediction estimates of premature all-cause mortality, cardio-
vascular and respiratory mortality and morbidity, and other
health outcomes. Previous environmental epidemiological
studies have not incorporated dynamic human activity patterns
into population exposure assessments. The methodology
described in this study could be applied to studies predicting
health end-points for different air pollution scenarios of
exposure. In future research related to this study, population-
weighted air pollution exposures for each district will be
determined based on particular times of the day and days of the
week. Probabilities of higher population exposure will therefore
be compared temporally which may also be useful for city
municipalities mitigating air pollution levels by, for example,
using adaptive traffic management strategies to reduce vehicular
emissions and air pollution concentration levels in localized
areas at specific times.72 A study limitation is the potential bias
in the population mobility patterns determined; in particular
regarding omission of individuals who are less likely to carry
mobile devices and to travel on a daily basis. Subpopulations
such as young children and the elderly are less likely to carry
mobile phones or mobile devices, and furthermore are less
likely to partake in daily commuting or travel, relative to other
demographics. As such, these subgroups may be under-
represented in the mobile phone based population activity
samples detected and the subsequent population-weighted
exposures quantified in this study.
Previous modeling frameworks have aimed to estimate

population exposure to air pollution using varying spatiotem-
poral population mobility estimates and activity patterns.44−48

For example, Burke et al.,47 developed the Stochastic Human
Exposure Model and Dose Simulation (SHEDS-PM) for
modeling population exposure to PM. The population for the
simulation were generated using demographic data at the
census tract level and individual diaries of human activity were
randomly assigned to each individual. These diaries were
obtained from the EPA Consolidated Human Activity Database
(CHAD) which includes 22 000 diary days collated from 10
separate surveys. The database contains various microenviron-
ments which individuals visit and the various activities
performed, while in each microenvironment. Further to this,
the Air Pollutants Exposure model (APEX), which is part of the
EPA’s Total Risk Integrated Methodology (TRIM) modeling
system predicts health risks due to air pollution exposure and
inhalation.48 APEX is a population-based, stochastic, micro-
environmental model and also uses simulated individual profiles
and randomly assigned activity patterns derived from the EPA’s
CHAD database. These models are functional for assessing
human exposure to air pollution, however, include some
limitations such as the mobility patterns and activities of
populations being randomly assigned, rather than being based
on measured mobility estimates for the populations considered.
As demonstrated in this study, cellular network data can be
used to measure the mobility patterns of millions of people.

Therefore, in future work, it may be possible to combine both
approaches to enhance population exposure modeling capa-
bilities.
The research methodology described in this study will enable

a better quantification of population exposure on a city-wide
scale, and can be applied across larger geographical regions
where relevant data exists. Other geo-referenced data which
would be indicative of human mobility patterns could be used
(e.g., traces from various GPS-enabled devices). One of the
novelest future contributions from this research is that geo-
referenced digital phone traces can also be used to decipher
individual trajectories. Therefore, personal air pollution
exposure studies could be conducted on cohorts incorporating
locations of exposure through mobile phone and wireless
device trace data. Accessible cellular network data are necessary
for progressing research in light of the epidemiological and
subsequent public health insights which can be gained. As
ethical issues and concerns around individual data privacy
emerge, however, appropriate stewarding and anonymization of
data through spatial aggregation or otherwise needs to be
ensured.
A novel perspective on population exposure is presented in

this study, whereby population exposure to environmental air
pollution is quantified using two dynamic variables, using
spatiotemporal variations in air pollution levels and extensive
spatiotemporal population activity patterns. This is the first
study of its kind to use measured population activity patterns
representative of several million people to quantify population-
weighted exposure to air pollution on an urban scale, using
cellular network data. This research is a novel contribution to
environmental exposure science and the environmental
epidemiology research sphere, and warrants consideration in
future studies linking air quality and human health end-points.
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