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Abstract—Airports are the most resource-constrained compo-
nents of the air transportation system. This paper addresses the

problems of increased flight delays and aircraft fuel consumption
through the integrated control of airport arrival and departure
operations. Departure operations are modeled using a network
abstraction of the airport surface. Published arrival routes to
airports are synthesized in order to form a realistic model of
arrival airspace. The proposed control framework calculates
the optimal times of departure of aircraft from the gates,
as a function of the arrival and departure traffic as well as
airport characteristics such as taxiway layout and gate capacity.
The integrated control formulation is solved using dynamic
programming, which allows calculation of policies for real-time
implementation. The advantages of the proposed methodology
are illustrated using simulations of Boston’s Logan International
Airport.

I. INTRODUCTION

Airport surface delays are a major problem faced by air

transportation systems worldwide. A steady growth in de-

mand, coupled with the slow growth in air transportation

infrastructure, has led to large increases in air traffic delays.

The economic and environmental impacts of airspace and

airport congestion are borne by the passengers, the airlines,

and society as a whole. Government policies, public pressure

and voluntary initiatives have motivated many airlines and

regulatory authorities to strive for carbon-neutrality. Recent

studies indicate that efficiency improvements in aviation could

reduce fuel consumption by 9 million tons per year, and CO2

emissions by 28 million tons per year [1]. Such operational

improvements also have the potential to yield benefits in

the near-term, compared to long-term strategies such as new

aircraft designs.

Some flight delays are unavoidable, such as those due to

severe weather or maintenance issues. However, approximately

17% of flight delays at the 35 major airports in the United

States (US) in 2013 were attributed to high traffic volume

[2]. The annual taxi-out delays (the difference between actual

and unimpeded taxi-out times) at major airports in the United

States are estimated to exceed 32 million minutes [3].

Air traffic control procedures in the US currently allow

aircraft to depart from their gates as soon as they are ready,

regardless of the congestion level in the active movement area

of the airport [4]. This protocol is referred to as push-back at

pilot’s discretion in the rest of this paper. Combined with the

Harshad Khadilkar is a Research Scientist with IBM India Research Lab,
Bangalore 560045, India harshad.khadilkar@in.ibm.com.

Hamsa Balakrishnan is an Associate Professor in the Department of Aero-
nautics and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA hamsa@mit.edu.

This work was supported in part by NSF through CPS:Large:ActionWebs
(Award number 0931843) and FORCES (Award number 1239054).

scheduling of a larger number of departures than the capacity

of the airport [5], this unrestricted policy results in a large

queue of aircraft at the runway. A direct consequence of this

phenomenon is an excessive amount of fuel burn, which is

approximately proportional to taxi times [6]. The purpose

of this work is to propose an approach that substantially

reduces aircraft fuel burn on the surface, satisfies practical

constraints such as arrival airspace capacity as well as airport

gate capacity, and is compatible with near-term technologies

and procedures.

The remainder of this paper is structured as follows. Section

II describes related work in several areas relevant to this paper,

including airport congestion control protocols, modeling of

airport operations and network congestion control. Section

III describes the system models for the airport surface as

well as for the arrival airspace around an airport. Section

IV formulates the control problem and describes the solution

procedure for obtaining optimal control policies. Section V

evaluates the proposed control strategy, and also compares its

performance with current operations.

II. RELATED WORK

Current air traffic control procedures at most airports in the

United States allow aircraft to pushback from their gates as

soon as they are ready for departure, and join the runway

queue. This results in large taxi times during periods of peak

demand, as aircraft spend a large amount of time waiting for

their turn to take off [7], [8]. Several studies have shown that

when an airport is experiencing congestion, holding aircraft at

the gate can help reduce taxi times and fuel burn [9], [7], [10],

[11]. Aircraft waiting at the gate have their engines turned off,

in contrast to those in the runway departure queue. This leads

to direct fuel savings. Indirect fuel savings are also realized by

the gate-holding strategy since aircraft now encounter lower

congestion on the surface, thus reducing their taxi times.

Better management of surface operations is one of the major

objectives listed in the Federal Aviation Administration’s plan

for improvement of air traffic operations [12]. There have been

several efforts to develop and implement surface congestion

management strategies, including the field-testing of the Push-

back Rate Control strategy at BOS [4], [13], the Tower Flight

Data Manager (TFDM) demonstration at Dallas-Fort Worth

(DFW) airport [14], the field evaluation of the Collaborative

Departure Queue Management concept at Memphis (MEM)

airport [15], and the Ground Metering Program at New York’s

JFK airport [16], [17].

While these strategies have been shown to be beneficial,

several aspects of the airport congestion management problem

are yet to be addressed. Firstly, the primary control objective
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of these prior studies was to stabilize the level of surface

traffic, and to then evaluate the incidental benefits in terms of

reduced taxi times and fuel burn [4]. By contrast, the problem

formulation presented in this work explicitly targets these

benefits. Secondly, the algorithms found in prior literature do

not account for operational constraints such as the availability

of gates at the airport while determining the optimal control

policies. These factors are important in practice, especially

when flights are being held at the gate. Arriving aircraft that

are waiting for an occupied gate to be vacated can block active

taxiways and/or alleyways, which is undesirable at space-

constrained airports. Gate availability is included as an explicit

constraint for the calculation of optimal strategies in this work.

The emphasis in prior literature on airborne control algo-

rithms has been on computing optimal trajectories, with safety

and efficiency as the objectives. Effective formulations that

aim to maximize safety in free flight are rare, due to the

prohibitive computational requirements associated with opti-

mizing unconstrained aircraft trajectories. Even studies that

focus on time-optimality typically solve small-scale versions

of the problem, since optimization formulations for stochastic

systems of realistic size quickly become computationally in-

tractable [18], [19]. Therefore, while maintaining the current

airspace structure imposes somewhat stricter constraints on

airspace capacity, it is shown in [20], [21] that significant

efficiency gains can still be obtained with this approach

without paying the accompanying computational penalty. The

arrival airspace control algorithm utilized in this paper is

adapted from prior work [20], and combines distributed control

in low-density airspace with centralized control in the high-

density terminal areas.

The algorithms and policies proposed in this work leverage

two new air traffic management technologies. Airport Surface

Detection Equipment, Model-X (ASDE-X) is primarily a

safety tool designed to mitigate the risk of runway collisions

[22]. It uses real-time tracking of aircraft on the surface

to detect potential conflicts and to monitor conformance.

There is potential, however, to use the data generated by it

for surface operations analysis [23], [24] and modeling of

aircraft behavior. Reported parameters in ASDE-X include the

position, velocity, altitude and heading of each aircraft. The

update rate is 1 Hz for each individual flight track. ASDE-X

data from Boston Logan International Airport is used for the

illustration of the methodologies proposed in this paper. The

second air traffic management technology leveraged in this

paper is the Automatic Dependent Surveillance - Broadcast

(ADS-B). This is a Next Generation Air Transportation System

(NextGen) surveillance and communication technology, in

which aircraft broadcast on-board flight information obtained

using satellite navigation to ground stations or other similarly

equipped aircraft via a datalink [25].

III. SYSTEM MODELS

A. Network model of airport surface

Fig. 1 shows the runways and taxiways at BOS that are

represented in the network model. The taxiways form the links

of the network, and their major intersections are marked as

the nodes. The taxi-out phase for an aircraft is defined to

begin when an aircraft leaves the gate, and to end when it

starts its takeoff roll from the runway threshold. Therefore,

the origin/source nodes in the network are the ones adjoining

the gates, and the destination/sink nodes are the runway

thresholds. While the figure shows the union of the networks

for all possible airport configurations (allocation of runways

to landings and takeoffs), only one configuration is active at

a time, and each aircraft has a unique source node and sink

node. For example, the highlighted part of the network in Fig.

1 is active when departures are taking place from Runway 27.

An abstraction of the model for this runway configuration

is illustrated in Fig. 2. Aircraft enter the network through the

source nodes (sources) 1, 2, 3 and 8. Each of these sources

is associated with a buffer, which corresponds to its gate

capacity. Note that Fig. 2 does not show the actual number

of gates at Boston Logan, and is only illustrative. Each gate

in a buffer can be in one of three states: available (empty

circle), occupied-inactive (filled square) and occupied-active

(filled circle). Gates that are empty and can be occupied by

arriving aircraft are said to be available. When an aircraft

arrives at a gate, it becomes occupied-inactive for a period of

time, while the aircraft is being serviced. Once ready to leave,

the pilot calls the air traffic controller for permission to push

back. The gate is then tagged as being occupied-active.

Fig. 1. Layout of the surface at BOS. Nodes in the network model are
marked with white boxes. The configuration-specific network for departures
from Runway 27 has been highlighted in blue.

B. Model of taxi-out time

Aircraft movement through the network described above is

based on a taxi time model developed in prior work [26].

Depending on the buffer occupied while at the gate, each

aircraft begins taxiing from a specific source node. It is

assigned a set of connecting links in the network as its taxi

path to the runway. The travel time tl over each link l in the

network is modeled as,

tl = tu,l +

Ns,l
∑

i=1

ts,l,i (1)

This model indicates that the travel time over each link is the

sum of two types of variables: (i) tu,l, the time taken to traverse
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Fig. 2. Network layout for departures from Runway 27. Note that there are
few alternate taxi paths from each source. Empty circles are empty gates,
filled squares are occupied-inactive and filled circles are occupied-active. The
circle with a one-sided hash pattern marks the aircraft that is next in line for
push-back, while the double-hashed circles are aircraft that are already inside
the network and are taxiing towards the runway at node 6.

the link without encountering any obstacles, and (ii) ts,l,i, the

time for which the aircraft is stationary on the link. Intuitively,

the former variable is the result of the physical dynamics of

the aircraft, while the latter is the result of conflicts with other

aircraft on the surface. The unimpeded travel time over the

link l, denoted tu,l > 0, is modeled as an Erlang random

variable with order nl and rate λl. The number of stops on

link l, denoted Ns,l ∈ {0, 1, 2, ...}, is modeled as a geometric

random variable with parameter pkl ∈ [0, 1], where k is the

number of departing aircraft already taxiing on the surface.

Finally, ts,l,i > 0 is the stationary time corresponding to the

ith stop on link l, modeled as an exponential random variable

with rate µl > 0. Each instance of ts,l,i is assumed to be

independent and identically distributed.

If the number of stops is Ns,l = 0, then tl = tu,l.

Furthermore, each instance of travel time on a link is assumed

to be independent of all other instances, whether on the

same link or on other links, when conditioned on the level

of surface traffic. Taxi-out times at airports increase with

increased surface congestion, and this needs to be accounted

for by the model. The surface traffic level, k, is defined as the

total number of departing aircraft that have pushed back from

their gates but have not taken off yet. The additional taxi-out

time due to congestion can be accounted for by an increase

in the stopping probability on each link, pkl [26]. In addition,

the average taxi time on each link increases linearly with the

surface traffic level [26]. Therefore, E[tl] = ak,l+bk,l k, where

ak,l and bk,l are constants for each link l.

The taxi-out time model for a path consisting of two links

is depicted as a Markov process in Fig. 3. The departure rate

out of each state in Link 1 is λ1, the corresponding Erlang rate

for unimpeded travel time. The time required for n such hops

is therefore equal to the unimpeded travel time on Link 1. The

nth transition will be to the stop state S1 with probability pk1,

or to the first state of Link 2 with probability (1− pk1). State

S1 undergoes a self-transition with probability pk1 and rate

µ1, thus generating a geometric number of stops, each with

an exponential distribution and rate µ1. The same stochastic

process repeats for Link 2, finally achieving the departure state

D. The total taxi time for the aircraft is the time taken to move

from the first state of Link 1 to state D.

1 2 S1
n1

1 2 n2 S2

D

λ1 pk1 µ1

(1− pk1)µ1

λ2

pk2 λ2

(1− pk2)µ2

pk2 µ2(1− pk1)λ1

(1− pk2)λ2

pk1 λ1
Link 1

Link 2

Fig. 3. Representation of the taxi-out model as a Markov process, for a path
with two links. The transition time for each state is exponential with rate λi

or µi. State D is the final state, when the aircraft departs from the airport.

C. Model of arrival airspace

Fig. 4 shows the layout of the different approach paths

to Boston Logan International Airport. The outer boundary

corresponds to a circle with a radius of 500 nm, centered

at the airport. Arriving aircraft are depicted by solid circles,

and traverse along the solid black lines corresponding to

standard arrival procedures for Runway 33L. These aircraft are

assumed to follow the communication and control architecture

developed and described in detail in [20]. ADS-B messages are

generated and broadcast by each aircraft after fixed intervals

of time (typically every 0.5 sec). These messages are received

by surrounding aircraft and by ground stations, subject to an

electromagnetic propagation and loss model.

A minimum separation requirement between each pair of

aircraft is imposed for safety. Assuming that the arrival pro-

cedure that each aircraft is following is known, the received

ADS-B messages are used to detect potential conflicts several

minutes in advance. Changes in aircraft velocity (computed

either on board or by a ground facility, depending on aircraft

location) are used to resolve these conflicts. Trajectory modi-

fications (holding patterns) are avoided to the extent possible

in order to maximize safety [27]. An aircraft is sent to a

holding pattern (an elliptical trajectory designed to introduce

separation between aircraft) only if no feasible velocity is

found to resolve a projected conflict. The control algorithm

can either be automatically implemented on board the aircraft

involved in a potential conflict, or it can provide conflict

resolution advisories to the pilot and the controllers. The net

effect of the control strategy is meant to be (i) to minimise

the airborne flight time of arrivals, (ii) to smooth the delivery

of arriving aircraft to the airport, and (iii) to enable accurate

estimates of aircraft landing times.

The specific instantiation of the control strategy in [20]

divides the airspace around the airport into two parts: a

small region of centralized control immediately surrounding

the airport, and an outer, larger region with decentralized

control. In the centralized region, surveillance is conducted

by ADS-B ground stations and radar systems. Ground stations

receive state information about aircraft that are within range,

through their ADS-B transmissions. The radars scan through

360◦ of azimuth and send information to central facilities.

Each radar interrogates aircraft transponders within its range,

which respond using a directional antenna. The central facility
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Fig. 4. Model of the arrival airspace around BOS (depicted by a triangle).
The solid circles are aircraft on approach to the airport.

calculates velocities for all aircraft in the centralized zone by

estimating the current state of the airspace, based on the last

known location and velocity of each aircraft. Expected landing

times are calculated for each aircraft, thus generating a priority

order for the centralized zone. Conflict detection is carried in

a pairwise fashion for each pair of aircraft, starting with the

aircraft that has the highest priority.

Outside the centralized zone, the control algorithm uses

local information received from ADS-B transmissions. Each

ADS-B message is assumed to include a time stamp, and the

maximum and minimum achievable velocities of the aircraft.

When two aircraft in this region receive broadcasts from each

other for the first time, they calculate a pairwise order based

on their projected arrival times at the eventual merge point.

If aircraft A projects itself as arriving before B at the merge

point, it only notes the presence of B but does not adjust its

velocity. If it projects that aircraft B will arrive at the merge

point first, it computes a new velocity for itself in order to not

conflict with B, while still flying as fast as possible. If B is also

outside the centralized zone, it carries out a complementary

set of calculations on detecting A for the first time. Since each

pair of aircraft decides on a mutual order at the merge point, a

unique ordering of all aircraft heading to a given merge point

in the airspace is developed.

By collating the expected times of arrival of each aircraft

at the merge points, an estimate of the number of landings

at the airport over a given period of time can be formed.

Airborne aircraft are assumed to have priority over aircraft

on the ground, and therefore, the landing rate is assumed to

be unaffected by surface traffic. This estimated airport landing

rate as an input for determining an optimal control policy for

aircraft on the surface.

IV. INTEGRATED CONTROL ALGORITHM

A. State definition

Fig. 5 shows a functional representation of the network lay-

out depicted in Fig. 2. The purpose of the control formulation

is to calculate optimal delays for aircraft that are active (ready

for push back). Aircraft are allowed to push back on a first-

come-first-served (FCFS) basis. That is, aircraft push backs

are approved in the same order in which gates change from

occupied-inactive to occupied-active. Only the first aircraft in

the FCFS order is assigned a precise delay; the next aircraft

is assigned a delay when the first aircraft leaves its gate.

The optimal control policy (for push back delay u) is a

function of the state of the airport at the instant of calculation.

This state is defined by three quantities: the level of surface

traffic k, the set of available buffer capacities N̄i, and the

source snext for which the calculation is being carried out.

The expected taxi time for a given aircraft depends on its

taxi route, and hence on the source snext. The full state

representation is φ = (k, N̄1, . . . , N̄ns
, snext). The surface

traffic level k is assumed to satisfy k ∈ {0, 1, 2, . . . , kmax},

where kmax is a large but finite traffic level which is never

exceeded in operation. The available buffer capacities N̄i are

equal to the number of empty gates at each source and are

finite, non-negative integers. If Ni,max is the maximum gate

capacity of source i, then 0 ≤ N̄i ≤ Ni,max. In addition,

if Ni is the number of occupied gates (active and inactive),

Ni+N̄i = Ni.max at all times. The source snext for which the

calculation is being carried out can take values from the set

S, which contains a list of the source nodes in the network.

The available buffer capacities N̄i represent an implicit

constraint on the delay assigned to the current aircraft, by

determining the probability of buffer overflow. A buffer over-

flow occurs if an arriving aircraft finds no available empty

gates, that is, N̄i = 0 for the relevant source. An estimate of

the arrival rate βi to each buffer can be used to determine the

probability of this event as a function of the proposed delay u.

The rate of aircraft arrivals to the airport is estimated from the

landing time predictions, as explained in Section III-C. The

departure control algorithm assumes that the airport arrival

process is Poisson with a rate β proportional to the number

of expected arrivals over a fixed time horizon. This aggregate

arrival process is then split into sub-processes of rate βi for

each buffer, assuming that the rates are proportional to the

gate capacities Ni,max.
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Controller
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Fig. 5. Illustration of the departure control algorithm for calculating optimal
gate delays.

B. Calculation of state transition probabilities

Since the arrival and departure processes at the airport

are both stochastic, it is necessary to calculate the transition

probabilities from one state to another, given the assigned

push back delay. The evolution of snext is driven by the push

back order, which is decided on a first-come-first-served basis.

The transitions between the buffer states N̄i are governed

by Poisson processes of rate βi. Calculation of the transition

probabilities between surface traffic levels is more complex

due to the aggregate nature of these state variables. Aircraft

that are already taxiing-out may be distributed randomly on the

airport surface at any time, and it is difficult to develop exact



analytical expressions for the remaining time to departure

for each aircraft. Although Monte Carlo simulations with

randomized push back policies can yield empirical estimates,

they are highly time-intensive.

Approximate estimates of the transition probabilities for sur-

face traffic levels are obtained using the model depicted in Fig.

3. The expected time to transition to state D is calculated by

assuming that an observer appears at a random time [28]. The

departure of each aircraft from the airport is then approximated

by an exponential process with mean equal to the expected

time required to reach state D. Since there are k aircraft on

the surface, the combined departure process from the airport

is Poisson with the same rate, and with order k. Since each

component of the full state φ = (k, N̄1, . . . , N̄ns
, snext) is

independent of the others, the full transition probability is

equal to the product of the transition probabilities for each

component.

C. State aggregation

The full state representation φ defined in Section IV-A

results in a very large number of states for a realistic airport.

There are approximately 90 gates at BOS divided among four

terminals, two of which have a capacity of 25 gates each, and

two with a capacity of 20 gates each. A reasonable surface

traffic model would need to account for a maximum surface

traffic level of at least 25 aircraft. Combined with four possible

sources for each aircraft, the total number of states exceeds

31× 106. In order to make the calculation of optimal control

policies tractable, the size of the problem is reduced by using

state aggregation.

The set of buffer states, N̄i, encapsulates the risk of buffer

overflow as a function of the assigned push back delay.

An alternative parameterization of this risk is the maximum

acceptable push back delay assigned for a given instance of

{N̄1, N̄2, ...}. The state can then be redefined to be θ =
(k, umax, snext), where umax is the maximum push back delay.

Suppose γ is the buffer overflow tolerance, or the maximum

probability with which the capacity of at least one buffer is

exceeded. The value of umax equals the value of delay at which

the probability of there being more than N̄i arrivals in at least

one of the Poisson processes with rate βi exceeds γ. For ease

of policy calculation, the resulting value of umax is rounded

off and mapped to a discrete finite set U. There is a unique

mapping from the available buffer capacities N̄i to U, as a

function of γ and βi. Consequently, there is also a unique

mapping from states φ to states θ. Transition probabilities

pθ1θ2(u) between the aggregate states θ are calculated by

summing over all the transitions φ1 → φ2 that correspond to

transitions θ1 → θ2. Combined with the stage cost definition

developed in Section IV-D, a dynamic programming problem

is formulated to calculate the optimal push back policy u(θ).

D. Cost definition

The calculation of the optimal push back policy for each

state θ requires the knowledge of state transition probabilities

and a definition of stage costs. The expected stage cost C for

the aircraft/airport system is illustrated in Eq. (2). It consists

of three terms: the fuel burn for each aircraft, the fuel burn

for auxiliary power while aircraft are at the gate, and the

airport throughput loss due to low surface traffic. The auxiliary

power units are used to drive onboard aircraft systems such as

radios and air conditioning when engine power is unavailable.

The first and third terms in the cost function depend on the

projected traffic level kp at the assigned time of push back,

which is in turn a function of the current state θ1 and the

push back delay u. The value of kp can be calculated using

the method described in Sections IV-B and IV-C. As explained

in Section III-B, the expected taxi time increases linearly with

the surface traffic level kp, and is given by

E

[

∑

l∈P

tl

]

=

(

∑

l∈P

ak,l

)

+

(

∑

l∈P

bk,l

)

kp,

where P is the taxi path. The average separation between

successive departures at this traffic level is

E
[
∑

l∈P
tl
]

kp
=

(

∑

l∈P

ak,l

)

1

kp
+

(

∑

l∈P

bk,l

)

.

The minimum average inter-departure separation is achieved

as kp → ∞, and the penalty for maintaining a finite traffic

level is proportional to 1
kp

.

The resultant cost function is therefore given by:

C(θ1, u) =
∑

θ2

pθ1θ2(u)

[

c1 kp(θ2) + c2 u+
c3

kp(θ2)

]

. (2)

The first term in Eq. (2) is a measure of the aircraft taxi

time, and is therefore also a measure of the fuel burn during

taxi out [6]. The second term captures the fuel cost of using

auxiliary power while at the gate, and is proportional to the

push back delay u. The third term is proportional to the

difference between the ideal runway performance and the

actual expected performance, as defined by the expected time

between successive departures.

E. Calculation of optimal policies

Following the state and cost definition and the aggregation

procedure described in Section IV-C, the optimal push back

delays can be calculated using the aggregate states θ. The

transition probabilities pθ1θ2(u) in Eq. (3) are calculated using

the methods outlined in Sections IV-B and IV-C. U(θ1) is

the set of available push back delays for state θ1. J(θ) is

the optimal cost-to-go from state θ. Finally, α is the discount

factor, which defines the weight on future costs with respect

to the expected cost for the current transition. The Bellman

equation for the infinite-horizon discounted cost problem is

given by

J(θ1) = min
u∈U(θ1)

(

C(θ1, u) + α
∑

θ2

pθ1θ2(u)J(θ2)

)

. (3)

The infinite-horizon formulation is chosen as an approximation

to the relative time scales of assigned push back delays and

airport demand variations. While push back delays are of the

order of a few minutes, demand variations at busy airports

occur over the period of a few hours. The discounted-cost



structure of the formulation provides numerical stability in the

calculation of optimal policies [29]. In order to place sufficient

emphasis on future costs, the value of α is set close to 1. This

paper uses α = 0.99, unless otherwise stated. Eq. (3) is solved

directly using matrix inversion.

The resultant optimal policies for aircraft leaving from

source 1 are shown in Fig. 6. Each curve corresponds to a

different value of maximum push back delay, umax. As the

level of surface traffic increases, the assigned push back delay

increases, up to the maximum delay allowed. Similar policies

can be calculated for the three remaining source nodes. Note

that the number of states mapping into each of these aggregate

curves changes, depending on the values assigned to c1, c2, c3,

α and γ. In an airport implementation, only the current surface

traffic level and the gate occupancy are needed to calculate the

optimal push back delay.
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Fig. 6. Optimal push back delays at Boston Logan, calculated for departures
from source 1. The total airport landing rate β is assumed to be 0.011, or 1
aircraft every 90 seconds.

F. Combined control of departures and arrivals

The airspace capacity can by estimated through simulations

of the model shown in Fig. 4, by varying the traffic generation

rates β′, and observing the resultant landing rate, β. If the

incoming traffic rate results in a stable airspace network,

steady state is achieved with β = β′. The throughput of

the airspace model is characterized by plotting the number of

arrivals at the airport as a function of the number of airborne

aircraft within the modeled airspace (Fig. 7). This metric is

more useful than a plot of β as a function of β′, since it

is easier to count the number of aircraft in a given region of

airspace than it is to count their rate of arrival at the periphery.

The estimated steady state arrival throughput in Fig. 7 is

approximately 10 aircraft every 15 min or 90 sec between

landings, and is equal to the traffic generation rate. In other

words, the rate 1
β′

= 90 sec is feasible for the current airspace

layout. In the case of the BOS model with arrivals on Runway

33L, the maximum capacity is found to be 1 aircraft every

70 sec. This methodology allows us to gauge the maximum

rate at which the airborne portion of the model is likely to

deliver aircraft to the airport surface. This estimate determines

the arrival rates β, and hence the set of policies that are
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Fig. 7. Arrival throughput characteristics at Boston Logan. The y axis shows
the average number of landings in a 15 min interval, when the corresponding
number of active aircraft is on the x axis.

calculated for the departure control algorithm as described in

Section IV-E. The optimal policy used in real-time is selected

by considering the number of expected arrivals over a fixed

time horizon, given by the current arrival rate β. The resultant

control policy is expected to be more aggressive (that is, assign

larger gate delays) when the expected β is low, and vice versa.

V. PERFORMANCE EVALUATION

A. Simulation procedure

The arrival airspace model described in Section III-C and

the surface taxi model described in Section III-B are combined

in the integrated simulations, as shown in Fig. 8. Incoming

airborne traffic is generated at the periphery of the airspace

and propagated to the airport. The airport predicts landing

times for all aircraft that are within ADS-B broadcast reception

range. These landing time predictions are fed to the departure

control algorithm, which also predicts the taxi-in times and

forms an estimate of the arrival rate to each buffer, βi. These

arrival rates, in combination with the departure surface traffic

level k, drive the push back control policy. The surface traffic

simulation generates stochastic taxi-in and taxi-out times for

arrivals and departures, respectively.

Aircraft in the arrival airspace are assumed to use approach

paths for landing on Runway 33L at the airport, as shown

in Fig. 4. The surface movement simulation includes aircraft

taxiing in to their gates after landing, gate occupancy at the

airport, as well as aircraft taxiing out to Runway 27 (node 6

in Fig. 1) for takeoff. This runway is used for departures at

Boston when aircraft land on Runway 33L (node 7 in Fig. 1).

The four source nodes at the airport (nodes 1, 2, 3 and 8 in

Fig. 1) have capacities of 25, 20, 25 and 20 gates respectively.

An arrival is assumed to be able to park at any gate in its

assigned terminal. While this assumption is convenient for

demonstrating the proposed algorithm, in reality, each airline

has access to only a specific subset of gates at a terminal. The

formulation can be extended to accommodate this constraint

by defining a node for each set of gates used by an airline.

B. Simulation results

A simulation of one day’s operations at BOS is shown in

Fig. 9 and Fig. 10. Aircraft appear at the periphery of the
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Fig. 8. Schematic of the combined control algorithm and simulation procedure.

airspace as a variable rate Poisson process. The governing rate

is piecewise linear, and is based on the historical average seen

for various times of the day. Fig. 9 (top) shows that the peak

morning demand appears at the periphery of the airspace at

approximately 03:00 local time. These aircraft reach the airport

just before 06:00, when the number of landings increases to

about 10 aircraft every 15 minutes, or an average separation of

90 seconds between successive landings. The surface simulator

then propagates these arrivals through the airport network to

their gates, based on the taxi time model described in Section

III-B. A gate service time of between 30 and 45 minutes is

generated for each arrival from a uniform distribution. During

this time, the gate is marked occupied-inactive. Once servicing

is completed, the aircraft is ready for push back and the

gate is marked occupied-active. The occupied-active gates are

assigned push back delays on a first-come-first-served basis.

After push back, the simulation propagates each aircraft to

Runway 27 for departure. As seen in Fig. 9, the morning

departure demand trails the arriving one by approximately 45

minutes. The departure rate at the airport is seen to stabilize at

10 aircraft every 15 minutes. Fig. 9 (middle) shows the average

simulated taxi times for arrivals and departures. Since arrivals

are not subject to the higher traffic levels seen by departures

(Fig. 9, bottom), average arrival taxi times are significantly

lower than departure taxi times. This observation is supported

by empirical data. Fig. 9 (bottom) also shows a spike in the

departure traffic level at 20:00, which can be correlated with

the gate occupancy plotted in Fig. 10. A disproportionately

large number of aircraft arrive at sources 2 and 3 just before

20:00, pushing the gate occupancy close to the maximum limit.

The control algorithm responds by releasing aircraft with very

small gate delays, thereby temporarily increasing the surface

traffic level. In this manner, surface congestion is balanced

against the risk of buffer overflow.

C. Effect of control strategy on taxi times and gate delays

Current airport procedures allow pilots to push back at their

discretion, which means that each aircraft can leave the gate
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Fig. 9. Operation counts, average taxi and push-back delay times, and surface
counts in a full day’s simulation.

as soon as its servicing is completed. Therefore, the effect of

the proposed control strategy can be evaluated by carrying out

different simulations on the same ‘push back ready’ schedule.

The first simulation assigns zero push back delay to all

aircraft. The second simulation assigns push back delays to

each aircraft, as calculated by the departure control algorithm.

Finally, the third simulation incorporates information about

expected arrival times of aircraft to each buffer in assigning

pushback delays.
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The distributions of aircraft taxi-out times from the three

simulations are compared in Fig. 11. The base schedule used

for this study is the same as that generated in Section V-B.

The frequency of large taxi-out times is greatly reduced by

the control strategy, which results in substantially lower taxi-

out times. Incorporating predictions of arrival times further

lowers the taxi-out times, by allowing the control algorithm

to be more aggressive when the arrival rates are low. The

mean simulated taxi-out time reduction from the departure

control algorithm is 1.7 minutes per aircraft. The use of arrival

information further reduces the mean taxi-out time by 1.5

minutes per aircraft. The estimated fuel burn reduction per

medium-sized aircraft is 25 kg (9 gallons) for the departure

control algorithm, and a total of 45 kg (16 gallons) per aircraft

after including arrival information [6].

The corresponding gate delay assignments in the simulation

are depicted in Fig. 12. This figure highlights two major

features of the integrated control strategy. The first feature

is that the trend in gate delays is smoother when arrival

information is included. This indicates that there is a reduction

in the number of unexpected events (such as gate conflicts),

and therefore, better management of upcoming periods of high

demand. The second feature is the reduction in number of gate

conflicts, as depicted in the lower half of the figure. The largest

improvement is delivered for a gate hold of 60 sec, which is

assigned when the airport is entering high congestion states

(and is therefore at high risk of gate conflicts).

A comparison of the average taxi-out times and frequency

of gate conflicts seen for the three strategies is given in Table

I. These averages are calculated over 10 simulation runs, with

all three control strategies using the same push back schedule

for a given simulation run. The buffer overflow tolerance γ is

set to 5%. It can be seen that the departure control strategy

reduces mean taxi-out times per aircraft at BOS by 5.2%. The

departure control strategy with arrival information reduces taxi

times by 10.2% compared to current procedures. Since holding

aircraft at the gate increases the buffer occupancy, there is an
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increase in the number of gate conflicts (that is, instances of

buffer overflow). However, the fraction of aircraft with gate

conflicts is considerably less the tolerance level γ, possibly

because of the simplifying assumptions made while calculating

state transition probabilities in Section IV-B. It should also be

noted that including arrival information reduces the number of

gate conflicts by 30% in addition to reducing the mean taxi-out

times. Depending on user preference, the expected number of

gate conflicts can be traded off with taxi-out time reductions,

using the tolerance level γ.

TABLE I
COMPARISON OF TAXI TIMES AND FREQUENCY OF GATE CONFLICTS. THE

AVERAGES ARE CALCULATED OVER 10 SIMULATION RUNS. THE BUFFER

OVERFLOW TOLERANCE IS γ = 5%.

Control strategy
Avg. taxi-out Avg. # gate % flights with

time (min) conflicts/day gate conflicts

Pilot’s discretion 34.3 14 0.5%
Departure control only 32.5 33 2.7%

With arrival info 30.8 24 1.9%

D. Effect of control strategy on takeoff delay

The control strategy aims to not increase aircraft takeoff

times beyond those attained using current procedures, thereby



ensuring that the reduced fuel burn is not at the cost of airport

performance. Fig. 13 shows the distribution of simulated

takeoff delay (the difference between the takeoff times under

a push back control strategy and under current procedures) for

the two control strategies. The relative takeoff times are seen

to be distributed equally on both sides of zero takeoff delay.

The differences are therefore likely to be due to random error

only. Over the course of one day’s simulation, the mean takeoff

delay is in fact negative, meaning that on average, aircraft

will take off earlier than they do under current procedures.

The average decrease in takeoff times is 0.75 minutes and

1.25 minutes under departure control without, and with arrival

information, respectively.
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Fig. 13. Comparison of the distributions of takeoff times relative to those
attained using current procedures.

VI. CONCLUSION

The paper proposed a paradigm for the management of

aircraft operations in and around airports, with the focus

on practical implementation in the future. The objective of

the control strategy was to reduce aircraft fuel consump-

tion, as well as congestion on the airport surface and in

arrival airspace. At the same time, it was required to satisfy

constraints on system performance and safety. The proposed

methodology used several novel ideas in the realm of surface

congestion control, including modeling the airport surface

network using surface surveillance data. The departure control

algorithm included relevant constraints such as limited gate

capacity at the airport. Dynamic programming, with a state

aggregation procedure, was used to determine the optimal

control policy.

The arrival control algorithm assumed that the primary com-

munications system would be Airborne Dependent Surveil-

lance Broadcast (ADS-B). The strategy could then be im-

plemented by transmitting commands over a data-link and

displaying them as advisories to pilots. An integrated control

strategy was then developed by combining arrival airspace and

surface operations. This strategy considered various aspects

of airport operations, and departures were released from their

gates depending on surface traffic levels as well as expected

aircraft arrival rates. The resultant policy balanced fuel burn

reduction and the constraints imposed by airport gate capacity.

Simulations showed that the control strategy could substan-

tially reduce aircraft taxi times and fuel burn. An average of

10% reduction in taxi times as compared to current procedures

was noted. This corresponds to a 3.5 min reduction in taxi-

out time per aircraft, equivalent to 10 gallons of aviation fuel.

The implementation requires only the knowledge of the surface

traffic level and the gate occupancy at each terminal, both of

which are available in real-time. Although the simulations and

results shown in this paper corresponded to one configuration

at Boston Logan International Airport, they can be easily

extended to other runway configurations, airports, and oper-

ating conditions. Airspace constraints imposed by operations

at nearby airports can also be accounted for, by imposing

suitable constraints on available approach paths. It is believed

that significant airport efficiency improvements will still be

achieved in a wide range of scenarios.
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