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Abstract

Recent applications of chirped-pulse Fourier transform microwave and millime-

ter wave spectroscopy have motivated the use of short (10–50 ns) chirped ex-

citation pulses. In this regime, individual transitions within the chirped pulse

bandwidth do not all, in effect, experience the same frequency sweep through

resonance from far above to far below (or vice versa), and “edge effects” may

dominate the relative intensities. We analyze this effect and provide simplifying

expressions for the linear fast passage polarization response in the limit of long

and short excitation pulses. In the long pulse limit, the polarization response

converges to a rectangular function of frequency, and in the short pulse limit, the

polarization response morphs into a form proportional to the window function

of the Fourier-transform-limited excitation pulse.

1. Introduction

Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, in-

vented in Professor Brooks Pate’s lab [1, 2], is rapidly becoming a mainstream

technique for broadband (> 10 GHz) high-resolution microwave and millimeter-

wave spectroscopy. Since its inception, CP-FTMW has also been a dynamically-

relevant technique. Dian et al. [2] show that the spectral coalescence of the

broadband rotational spectrum of a highly vibrationally-excited species can be
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used to extract dynamical information about intramolecular vibrational energy

redistribution (IVR) and chemical isomerization. Fine structure in the chirped-

pulse spectrum of the prism isomer of the water hexamer enables the measure-

ment of hydrogen-bond network rearrangement [3]. Prozument et al. [4] have

used chirped-pulse millimeter wave spectroscopy to obtain meaningful product

branching ratios and vibrational population distributions from a flash pyrolysis

reactor. Recent work in the A. G. Suits lab [5, 6] has demonstrated the use

of time-domain CP-FTMW measurements to measure the vibrationally-specific

rate of appearance of unimolecular and bimolecular reaction products in a cold

uniform flow.

Because of growing interest in CP-FTMW as a tool for kinetics and dynam-

ics, there is an increasing necessity for reliable, quantitatively accurate measure-

ment of relative intensity across broadband spectral regions. At the same time,

several factors are driving researchers to use chirped excitation pulses of shorter

duration. First, there has been a push to extend chirped-pulse spectroscopy

to higher millimeter-wave frequencies, where Doppler dephasing times become

short [7, 8, 9]. Next, the use of CP-FTMW by Abeysekera et al. [6] to study

bimolecular reactions at pressures as high as ∼ 0.2 mbar leads to a regime where

the coherence time is shortened by pressure broadening. Indeed, the authors of

Ref. 6 found that when using 1 µs long excitation pulses, dephasing phenom-

ena had a significant effect on the relative intensities. As a result of dephasing

during the excitation pulse, intensities of transitions that were excited early in

the chirped pulse were weakened relative to those of transitions excited later

in the pulse. The problem was mitigated by decreasing the pulse duration to

250 ns, or by taking the frequency-domain average between spectra from “up-

chirp” and “down-chirp” excitation pulses. (See Figure 2 of Ref. 6.) Proposed

experiments to probe pure-electronic transitions in Rydberg molecules rely on

chirped pulse schemes for rapidly populating non-core-penetrating high-l states

before pre-dissociation occurs [10, 11]. Finally, kinetic schemes involving time-

resolved broadband microwave spectroscopy [6] motivate fast excitation pulses

to achieve the best time-resolution for monitoring state-resolved reactant and
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product populations.

References 4 and 12 discuss the need for the chirped excitation pulse to be in

the weak-field (fast-passage) limit rather than the strong-field (adiabatic rapid

passage) limit in order to avoid saturation effects on the relative intensities.

References 6 and 13 and others discuss the need for the duration of the excita-

tion pulse to be short relative to the coherence decay time in order to achieve

accurate relative intensities. However, most authors have ignored “edge effects”

on relative intensities in chirped-pulse spectra. Therefore, we will discuss these

effects briefly. These effects become pronounced as one uses shorter excitation

pulses. It is important to point out that we do not derive any novel physics

in this paper. Our results may all be obtained from analysis of the equations

presented in Refs. 14 and 15 and reviewed in detail in Ref. 16.

2. Polarization from a linearly chirped pulse in the weak coupling
limit

The polarization response P = 2(Pr cosωt− Pi sinωt) of a two-level system

to a linearly swept excitation pulse of the form E = 2E cos (ωt− kz) is reported

in the weak coupling limit by McGurk et al. [15, 14] and is also discussed in

Ref. 13 and reviewed in detail in Ref. 16. If phenomenological dephasing terms

are ignored, the optical Bloch equations for this situation is exactly solvable.

The solution is given by
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where C(a) and S(a) are the Fresnel integrals,

C(a) =

∫ a

0

cos(πx2/2)dx, S(a) =

∫ a

0

sin(πx2/2)dx,

µab is the transition dipole moment, ∆N0 is the population difference of the two-

level system, E and α are the electric field strength and sweep rate of the driving

pulse, respectively, and ∆ωi and ∆ωf are the initial and final values of the the

detuning from resonance. We have simplified the expression derived by McGurk

et al., noting that the Fresnel integrals are odd functions, C(−a) = −C(a) and

S(−a) = −S(a), which allows us to remove the absolute values and the ±

choices.

The solutions (1–2) seem complicated, but the form is simplified by the

assumptions

|∆ωi| � (πα)1/2, |∆ωf | � (πα)1/2. (3)

With this assumption, we can use the limiting behavior of the Fresnel integrals,

lim
a→−∞

C(a) = −0.5 lim
a→−∞

S(a) = −0.5

lim
a→+∞

C(a) = +0.5 lim
a→+∞

S(a) = +0.5,

We assume the case where ∆ω is swept through resonance from negative to

positive (∆ωi < 0, ∆ωf > 0, and α > 0). From assumption (3), we obtain

Pr ≈
|µab|2E∆N0

h̄

√
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|µab|2E∆N0
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In the case where ∆ω is swept in the other direction, the phase of Eqs. (4–

5) will change, but the magnitude will remain the same. Assumption (3) will

hold for most chirped pulse experiments as long as the sweep rate is not too

fast and the molecular resonance is not too close in frequency to the initial or

final frequency of the linearly swept excitation pulse—i.e., if the transition is

not too close to the high- or low-frequency edge of the spectrum. For a typical

chirped pulse experiment, the excitation pulse sweeps through a bandwidth of
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∼10 GHz during a time interval of ∼1 µs, so α ≈ 1016 s−2 and (πα)1/2 ≈ 180

MHz. Furthermore, in this case, the values of the square-bracketed terms in

Eqs. (1–2) will be within ∼20% of unity for any transition not within 30 MHz

of the boundaries ∆ωi or ∆ωf , so the approximation in Eqs. (4–5) will usually

apply. With these typical conditions, the approximation will be invalid only for

transitions located in the outer 0.3% wings of the frequency span of the applied

pulse.

Equations (4–5) may be simplified even further to give the magnitude of the

oscillating polarization. Recalling the definitions of Pr and Pi , we see that the

bracketed sin and cos terms in Eqs. (4–5) merely describe the rapid oscillation

of the polarization in the rotating frame of the applied electromagnetic field.

Because the polarization of the molecular resonance will oscillate at a frequency

ω0 in the non-rotating frame, we may write

P ≈ 2|µab|2E∆N0

h̄

√
π

α
sin(ω0t+ φ), (6)

where φ is a phase that may be determined from Eqs. (4–5), and the prefactor,

2|µab|2E∆N0/h̄ gives the magnitude of the oscillating polarization.

3. Limiting behavior of the polarization response with respect to
pulse duration

For very short excitation pulses, assumption 3 is invalid. Therefore, it is

useful to examine the limiting behavior of Eqs. (1–2) as α → ∞ and α → 0.

The evolution of the polarization response from a 10 GHz bandwidth excitation

pulse is shown in Fig. 1. We define the nominal bandwidth, ∆ωp, and duration,

Tp, of the chirped excitation pulse such that

∆ωp = ∆ωf −∆ωi

Tp =
∆ωp
α

.

5



-30 -20 -10 0 10 200.0

0.2

0.4

0.6

0.8

1.0

1.2

-12 -10 -8 -6 -4 -2 0 20.0

0.2

0.4

0.6

0.8

1.0

1.2

-12 -10 -8 -6 -4 -2 0 20.0

0.2

0.4

0.6

0.8

1.0

1.2

-12 -10 -8 -6 -4 -2 0 20.0

0.2

0.4

0.6

0.8

1.0

1.2

Δωi	  (GHz)	   Δωi	  (GHz)	   Δωi	  (GHz)	  

Δωi	  (GHz)	   Δωi	  (GHz)	  

|P
|/
(|
μ a

b|
2 ε
ΔN

0π
1/
2 /
ℏ
α1

/2
)	  

-12 -10 -8 -6 -4 -2 0 20.0

0.2

0.4

0.6

0.8

1.0

1.2(a)	   (b)	   (c)	  

(d)	   (e)	  

-12 -10 -8 -6 -4 -2 0 20.0

0.2

0.4

0.6

0.8

1.0

1.2

Δωi	  (GHz)	  

(f)	  

CP response	

(Eq. (6–7))	

Limiting case	

(Eq. (13))	


|P
|/
(|
μ a

b|
2 ε
ΔN

0π
1/
2 /
ℏ
α1

/2
)	  

     Tp =1 ns
Δω p

πα
=1.78

     Tp =10 ns
Δω p

πα
= 5.64

     Tp = 50 ns
Δω p

πα
=12.62

     Tp = 500 ns
Δω p

πα
= 39.89

     Tp = 2 µs
Δω p

πα
= 79.79

     Tp = 2 ms
Δω p

πα
= 2520

Figure 1: The magnitude of the polarization from Eqs. (1–2), normalized to the prefactor
as indicated, is plotted against the initial detuning frequency ∆ωi for a ∆ωp = 10 GHz
bandwidth chirped pulse as a function of pulse duration, Tp. In panel (a), the limiting sinc
function behavior from Eq. 8 is plotted for comparison as a dotted curve, normalized to the
same prefactor. As the pulse duration increases, the frequency dependence of the polariza-
tion response morphs from the window-function-limited behavior of Eq. 8 to the rectangular
response function of Eq. 7.

3.1. Long pulse limit

In the limit of very long pulse duration, (α → 0), assumption (3) applies

and the limiting behavior of the Fresnel integrals is relevant. Note that the

signs of the Fresnel integrals in Eqs. (1–2) depend on the signs of ∆ωi and ∆ωf .

Assuming ∆ωf > ∆ωi, there are three cases:

lim
α→0
µE→0

|P | =



0 ∆ωf < 0 and ∆ωi < 0

2|µab|2E∆N0

h̄

√
π
α

(∆ωi < 0 and ∆ωf > 0)

or (∆ωi > 0 and ∆ωf < 0)

0 ∆ωf > 0 and ∆ωi > 0.

(7)

The first and third cases of Eq. (7) apply when the resonance is below or above

the excitation pulse bandwidth and the second case applies when the resonance

is within the excitation bandwidth. Thus, we see that in the α→ 0 limit of an

infinitely long excitation pulse, Eqs. (1–2) become a square wave excitation with
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a completely flat polarization response. (See Fig. 1(f).) Of course, Eqs. (1–2)

also assume the weak field limit (µE/h̄ � α1/2, i.e. the Rabi frequency is slow

compared with the sweep rate) and neglects dephasing. Thus, to obtain this

result we have also implicitly assumed an infinitesimal µE and 1/T2 coherence

dephasing rate. Therefore, panel (f) of Fig. 1 is not intended to represent

a physically realistic regime for most experiments—it is merely intended to

illustrate the limiting behavior of Eqs. (1–2).

3.2. Short pulse limit

In the limit of very short pulse duration (α → ∞), assumption (3) does

not apply. However, in the limit where the bandwidth of the excitation pulse

window function, E(t), becomes broader than the nominal chirp bandwidth,

the polarization response becomes dominated by the Fourier transform of the

window function. For a rectangular window function, it is possible to show that

Eqs. (1–2) approach the limit

lim
α→∞

|P | = |µab|
2E∆N0√
2h̄

Tp sin
[

1
2 (∆ωi + ∆ωp/2)Tp

]
1
2 (∆ωi + ∆ωp/2)Tp

. (8)

Eq. 8 is simply a sinc function centered at the middle of the chirped pulse

bandwidth. Note that the
√
α scaling has disappeared and that the prefactor

depends instead on the excitation pulse duration Tp. Thus, when the window

function bandwidth becomes much broader than the chirp, the sample no longer

behaves as if it is being excited by a chirped pulse. Instead, the polarization

response morphs into what would be obtained from a rectangular excitation

pulse with a carrier frequency at the center of the chirped pulse bandwidth.

This limiting behavior is illustrated in Fig. 1(a). Note that in most chirped-

pulse spectrometers, it is difficult to generate a 1 ns excitation pulse due to

limitations of currently available microwave components. Therefore, the case

illustrated in Fig. 1(a) is not intended to represent an experimentally realistic

regime—it is merely shown to illustrate the limiting behavior of Eqs. (1–2).

In conclusion, there are three primary considerations that are necessary in

order to ensure a flat polarization response across a broadband chirped-pulse
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spectrum:

Tp � T2 (9a)

|µab|E/h̄� α1/2 (9b)

|∆ωi|, |∆ωf | � (πα)1/2 (9c)

Condition (9a) ensures that the transition intensities will not be attenuated

by dephasing of the coherence during the excitation pulse. As shown in Ref.

6, dephasing effects can lead to anomalies in the relative intensities because

transitions excited early in the excitation pulse will undergo more dephasing

than transitions excited later in the excitation pulse. Condition (9b) ensures

that the excitation pulse will be in the weak field limit so that saturation effects

will be avoided and Eqs. (1–2) will be valid. Finally, condition (9c) ensures that

the transition is not too close in frequency to either edge of the chirped-pulse

bandwidth, where edge effects can dominate the relative intensities.

In the Bloch sphere picture, the two-level system is in the linear fast passage

regime as long as two conditions apply. First, |∆ωi| and |∆ωf | must be much

greater than |µab|E/h̄. That is, the initial detuning must be large enough to

ensure that the driving vector, Ω, is, in effect, swept 180◦ in the u,w plane from

the +w to the −w axis Bloch sphere axis. Secondly, α1/2 must be much greater

than |µab|E/h̄ in order to avoid the rapid adiabatic passage (RAP) regime.

When these two conditions are met, the Bloch vector, Θ, initially precesses

tightly around Ω, but as the Rabi frequency decreases during the sweep toward

resonance, Θ becomes decoupled from Ω, avoiding RAP. We point out that

these two conditions are insufficient to ensure a flat polarization response. In

addition, it is necessary to have condition (9c) in order to avoid “edge effects.”

This places a lower bound on the amount of time in which the bandwidth ∆ωp

can be rectangularly polarized.
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4. Conclusions

We have briefly described the impact of “edge effects” on the polarization

response in linear fast passage experiments. In order to obtain a flat frequency

response over the full bandwidth of the chirped excitation pulse, it is important

for the initial and final detuning frequencies to be much greater than α1/2.

This is because the linear fast passage regime relies on a Bloch vector, Θ, that

follows the driving vector, Ω, adiabatically when it is far away from resonance,

but becomes decoupled from the driving vector along the approach to resonance.

If |ωi| and |ωf | are too small or α1/2 is too fast, the sample will not effectively

experience a frequency sweep through resonance from far away, and the relative

intensities will be affected by the window function of the chirped excitation

pulse.

In the usual implementations of CP-FTMW, typically the bandwidth is not

broader than 10–20 GHz and the pulse duration is 1 µs or longer, so that these

effects are unimportant. However, new directions in chirped pulse microwave

and millimeter wave spectroscopy have motivated the use of shorter excitation

pulses, where the polarization response loses its flatness. We have therefore

analyzed the long-pulse and short-pulse limits of the linear fast passage response,

and we have given the appropriate simplifying expressions for these extreme

cases.
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