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Abstract. We show that the normalized supercharacters of principal admissible mod-
ules over the affine Lie superalgebra s€2|1 (resp. ps€2|2) can be modified, using Zwegers’
real analytic corrections, to form a modular (resp.S-) invariant family of functions.
Applying the quantum Hamiltonian reduction, this leads to a new family of positive
energy modules over the N = 2 (resp. N = 4) superconformal algebras with central
charge 3(1 — (2m—|—2)/M), where m € Zsg, M € Zx>o, gcd(2m 4+ 2, M) = 1if m > 0
(resp.6 (m/M — 1), where m € Z>1, M € Z>9, ged(2m, M) = 1 if m > 1), whose modi-
fied characters and supercharacters form a modular invariant family.

0 Introduction

Modular invariance of characters of affine Lie algebras have been playing an im-
portant role in their representation theory and applications to physics (see [K2]
and references there).

Recall that an affine Lie algebra g, associated to a simple finite-dimensional Lie
algebra g over C endowed with a suitably normalized invariant symmetric bilinear
form (.].), is the infinite-dimensional Lie algebra over C:

g =glt,t '] ®CK & Cd, (0.1)
with the following commutation relations (a,b € g, m,n € Z):

[at™, bt"] = [a, B)t™ " + M, —n(alb)K, [d,at™ =m at™, [K,]=0. (0.2)
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We identify g with the subalgebra 1 ® g. The bilinear form (.|.) extends from g
to a non-degenerate symmetric invariant bilinear form on g by:

(at™[bt") = 6m,—n(alb), (g[t,t']|CK + Cd) =0, (0.3)

(K|K) = (d|d) =0, (K[d)=1. '

Choosing a Cartan subalgebra h of g, one defines the corresponding Cartan subal-
gebra of g: R

h=CdaobhoCK. (0.4)

The restriction of the bilinear form (.|.) from § to b is non-degenerate, hence we
shall identify b with its dual h* via this form.
One uses the following coordinates on b:

69 h=2mi(—7d+ z +tK) =: (1, z,t), where 1,t €C, z €. (0.5)

Choosing a Borel subalgebra b = h®n, of g containing b, where n is a maximal
nilpotent subalgebra of g, we define the corresponding Borel subalgebra of g:

b=hon, o (@n>ogt").

Given A € 6*, one extends it to a linear function on b by zero on all other sum-
mands, and defines the highest weight module L(A) over g as the irreducible mod-
ule, which admits an eigenvector of b with weight A. Since K is a central element
of g, it is represented on L(A) by a scalar A(K), called the level of L(A) (and of A).

A g-module L(A) is called integrable if any nilpotent element of g is represented
by a locally nilpotent operator (hence this module can be “integrated” to a rep-
resentation of the group, associated to g). It is well known [K2| that a g-module
L(A) is integrable iff for all simple roots aq,...,a,; and the highest root 6 the
numbers

2(A|ai)/(ai|ai), 1= 17 . .,E, and 2(A|K — 9)/(9|9)

are non-negative integers. It is easy to deduce that if the bilinear form on g is
normalized by the condition (0|8) = 2, then the level (A|K) is a non-negative
integer and (A|0) < (A|K).
The character of L(A) is defined as the following series, corresponding to the
weight space decomposition with respect to b, cf. (0.5):
ChL(A)(T, 2, t) = tI‘L(A)62m(7Td+Z+tK).
It is known ([KP], [K2]) that for an integrable L(A) this series converges in the

domain
X ={hebh|Re(h|K)>0}={(r,21) | Im 7> 0} (0.6)

to a holomorphic function.
Note that, as a g’ = g[t,t~!] ® CK-module, L(A) remains irreducible, and it is
unchanged if we replace A by A +aK, a € C, and the character of the g-module
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gets multiplied by ¢*. Here and further ¢ = e2™*7. Note also that the set of highest
weights A of level K of integrable g-modules L(A) is finite mod CK. We denote
this finite set by Pf.

An important property of integrable g-modules is modular invariance of its
normalized characters, discovered in [KP]. Recall that the normalized character
chy is defined as

cha (7, z,t) = ™" chpa) (T, 2, 1),

where my € Qis the “modular anomaly” (see formula (3.15)). Note that chyyq.x =
chyp, a € C. Recall the action of SLa(R) in the domain X in coordinates (0.5):

(ZZ> (nat) = <Z:I§’ CTid’tQ(Cc(jﬁ)d)>' (0.7)

The modular invariance of normalized characters of integrable g-modules means
that the C-span of the finite set {chy | A € P} is SLo(Z)-invariant (for the
action (0.7)).

The proof of modular invariance of normalized characters of integrable modules
L(A) relies on the Weyl-Kac character formula

Rehpny = Y (detw)w(et?), (0.8)
wEW

where R is the affine Weyl denominator, W is the affine Weyl group, and p is the
affine Weyl vector (see [K2] for details). One has [K2]:

W=Wx{ty|aclL},

where W is the Weyl group of g, L C b is the coroot lattice, and ¢, € Enda is
defined by:

ta(N) = A+ (A K)o — ((/\|a) + (\K) (af) )K. (0.9)

Using this, (0.8) can be rewritten, after multiplying both sides by a suitable power
of ¢, as

¢ 5 Rehy = > (detw) w(©44p). (0.10)
weW

Here, for A\ € 67 such that n = (A K) is a positive integer, the theta function (=
Jacobi form) ©, of degree n is defined by

(A[X)
Orx=q 2 » ta(ed). (0.11)
acl

This series converges on X to a holomorphic function, which in coordinates (0.5)
takes the usual form, going back to Jacobi:

@,\(T, Z,t) — eQTrint Z qn(ﬂ'p) eQTrin('y|z)’ (012)

NEAHL
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where A denotes the orthogonal projection of A on h. Now modular invariance
of Jacobi forms (which we recall in the Appendix) easily implies the modular
invariance of the numerators of normalized characters of integrable modules, and
modular invariance of the normalized denominator ¢4™9/24R easily follows from
the Jacobi triple product identity.

As we have discovered in [KW1], [KW2], modular invariance of normalized
characters holds for a much larger class of irreducible highest weight modules
L(A) over g, which we called admissible modules (and we conjectured that these
are all L(A) with the modular invariance property, which we were able to verify
only for g = sfs). Roughly speaking, a g-module L(A) is called admissible, if the
Q-span of coroots of g coincides with that of A-integral coroots, and with respect
to the corresponding affine Lie algebra ga the weight A becomes integrable after
a shift by the Weyl vectors.

We showed in [KW1] that a formula similar to (0.8) holds for chyay if A is

an admissible weight: one just has to replace W by the subgroup, generated by
reflections with respect to non-isotropic A-integral coroots. It follows that the
numerators of normalized admissible characters are again expressed as linear com-
binations of Jacobi forms, which again implies modular invariance of normalized
characters of admissible g-modules.

Furthermore, using the quantum Hamiltonian reduction, one can transfer the
modular invariance property from the admissible modules over affine Lie algebras
to the “minimal models” of W-algebras [FKW], [KRW], [A2], the simplest example
being the Virasoro algebra. (Note that the integrable modules are “erased” by the
reduction!)

A natural question arises whether the theory of integrable and admissible mod-
ules over affine Lie algebras g extends to the case when g is a finite-dimensional
simple Lie superalgebra. Of course, we need to assume that g carries a non-
degenerate supersymmetric invariant bilinear form, and also that its even part
gg is a reductive Lie algebra. According to the classification of [K1], a complete
list of such Lie superalgebras consists of the classical series s€m|n(m >n > 1),
P8l (n > 2), 08Py, n(m > 1,n > 2 even) and three exceptional superalgebras.

Of all these Lie superalgebras, the above mentioned results extend without
difficulty only for g = ospy,, in particular, the modular invariance property of
normalized characters and supercharacters of integrable and admissible modules
still holds [KW1], and the quantum Hamiltonian reduction in the case of g =
0sp1)2 leads to modular invariance of characters of the Neveu-Schwarz and Ramond
superalgebras (N = 1 superconformal algebras).

In general, for a Lie superalgebra g in question, a g-module is integrable iff it is
integrable with respect to gg. However, such non-trivial g-modules L(A) exist iff
go has only one simple component (which is the case only when g = s,,|1, 05p1j2n,
or 05pgj2n). In all other cases one considers partially integrable modules, namely,
those for which integrability holds for the affine subalgebra, associated to one of
the simple components of gg.

Partially integrable g-modules L(A) in the “super” case have been classified
in [KW4], but the computation of their characters is a very difficult problem in
general. However, in the special case of “tame” modules (see Definition 3.5) we



AFFINE SUPERALGEBRAS AND MOCK THETA FUNCTIONS 387

found a conjectural formula for the characters (see formula (3.12)). This formula
has been proved in all cases that are considered in the present paper (see [KW4],
[S], [GK]). Note also that in the “super” case one has to study supercharacters
along with the characters (when the trace is replaced by the supertrace), but one
can pass from one to the other without difficulty.

The formula for the supercharacter of a tame partially integrable module L(A)
over an affine Lie superalgebra g differs little from formula (0.10) for the character
of an integrable module L(A) over an affine Lie algebra. One just has to replace
the theta function ©, 5, defined in (0.11) (or (0.12)) by the mock theta function!
Given a finite subset T' C h of pairwise orthogonal vectors, which are also orthog-
onal to A, the following series converges to a meromorphic function on X, called a
mock theta function of degree n:

qn (—YL’Y) eQTrin('y|z)

__ _2mint
Oxr(T,z,t) =€ Mper (1 — g~ G1®e-2mi812))

7€S\/n+L

(0.13)

These kind of functions (when #7 = 1 and rank L = 1) first appeared in the work
of Appell [Ap] in the 1880s in his study of elliptic functions “of the third kind”, and
also, a few years later, in the work of Lerch [L]. More than 100 years later these
functions made their way to the representation theory of affine Lie superalgebras
[KW4].

One of the simplest results of [KW4] is the following formula for the normalized
supercharacter of the integrable SAEQ‘l—module L(d) (of level 1), obtained via the
super boson-fermion correspondence:

chy (1,21, 22) = (1) 72011 (7, 21)011 (7, 22) (T, 21, 22), (0.14)

where 7(7) is the Dedekind eta-function, ¥11(7, z) is one of the standard Jacobi
forms (see the Appendix), and

eﬂ'izl (_1)nqé (n2+n)627rian

M(Tv ZI;ZQ) = 1911(7_ 22) Z

nez

(0.15)

1— 6271'2'21 qn

The function (7, z1,22), up to the factor ¥11(7, 21 + 22), is a difference of two
simplest mock theta functions (see (5.16)), which we denote by ®(7, 2y, 29,0)
(see (5.3), (5.4)).

It is the function wu(r, 21, 22) that plays a central role in the work of Zwegers on
mock theta functions [Z], which has been a major advance in the understanding
of Ramanujan’s mock ¥-functions. Ramanujan defined a mock ¥-function as a
function f of the complex variable ¢, defined by a g-series of a particular type,
which converges for |¢| < 1 and satisfies the following conditions (see [Z]):

(i) infinitely many roots of unity are exponential singularities,
(ii) for every root of unity & there is a ¥-function J¢(q), such that f(g) —J¢(q)
is bounded as ¢ — £ radially,
(iii) there is no ¥-function that works for all &.
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It turns out that the function u(7, 21, 22) is the prototype for a mock theta function
in the sense that, specializing the complex variables z; and 29 to torsion points
(i.e., elements of Q + Q7), one gets mock ¥-functions [Z1].

An important discovery of Zwegers is the real analytic function R(7, u), 7,u € C,
Im 7 > 0, such that the modified function

~ )
M(Tv 21, 22) = M(Tv 21 22) + 2R(7’7 z1 = ZQ)

is a modular invariant function with nice elliptic transformation properties ([Z,
Thm. 1.11]). Furthermore, Zwegers introduces real analytic functions Ry,.¢(7,u),
similar to R(7,u) (they are related by (5.15)), such that, adding to a rank 1 mock
theta function of arbitrary degree m > 0 (and #T = 1 in our terminology) a
suitable linear combination of rank 1 Jacobi forms ©,, ; as coeflicients, he obtains
a modular invariant real analytic function ([Z, Prop. 3.5]). The latter functions
are used in the study of Ramanujan’s mock theta functions ([Z, Chap. 4]).

In our paper (Section 5) we use the functions R,,11.¢ of Zwegers in order to
modify the normalized supercharacter of the SA€2|1—module L(md), where m is a
positive integer. The normalized supercharacter is given in this case by the follow-
ing formula: N

R™ch, (1,21, 22,t) = <I>[m](7, 21, 292,t), (0.16)

where R~ is the superdenominator (see (4.2) for its expression in terms of the
Jacobi theta function 911 (7, 2)), and ®™ is the following mock theta function

lm] (1,21, 22,t) = e2mim+1)t Z

( e2mij(m+1)(21+22) qu (m+1)
JEZL

1 — e2miz1 qj

- e—27rij(m+1)(21+22)qu(m"rl) >

1— e—27rizQ qj
Following Zwegers’ ideas, we introduce the real analytic modified numerator
(AI;[m] (T7 215 22, t) = (I)[m](Ta FAREDD t) + (DLZLL(T’ 215 22, t)7

where @gﬁé is a real analytic function, similar to Zwegers’ correction in higher
degree, and prove the following modular transformation properties:

~ 1 _
(I)[m] ( ) Zla Z2vt7 ZlZ2> = T(I)[m](Ta Zlszat)v
T T T T

(0.17)
(I)[m](T + 1,213227t) = (I)[m](T’ 21’22’t)7

along with certain elliptic transformation properties (Theorem 5.10 and Corol-
lary 5.11). This establishes modular invariance of the modified normalized super-
character ch,, = & /R~

Next, in Sections 6 and 7 we discuss modular invariance properties of the mod-
ified normalized principal admissible characters of slyj;-modules, associated to a



AFFINE SUPERALGEBRAS AND MOCK THETA FUNCTIONS 389

compatible homomorphism of degree M (see Section 3 for the definition of these
modules). The main result of Section 6 is the following modular transformation
formula (Theorem 6.5(a)):

(AI;[m] (M zZ1 R9 ‘— 2,’12:2>

T’ ™™ 018
- Z qwﬁljkem(ﬁm(k““z?)‘f[m] (M7, 21 + j7, 20 + k7, 1), (019
J.kEL/MZ

provided that ged(M,2m +2) =1 if m > 0. We deduce that the modified normal-
ized principal admissible characters, supercharacters, and their Ramond twisted
analogues, form a modular invariant family under the above conditions on M and
m (Theorem 7.3).

In Section 8 we study the behavior under the modular transformation S= ((1J _5 )

of modified normalized characters of Em—modules L(md), where m is a non-zero
integer. This is related to the sfy); case, using a simple connection between the

numerators of 121\1‘1 and SAEQH normalized supercharacters (for m > 1):

1 0 0
PpAvm] t) = - Pim=1 t). 0.19

(1.21,22,%) 2mi \ Oz Oz (7,21, 22,1) (0.19)
The S-transformation of modified normalized characters and supercharacters, and
their Ramond twisted analogues is given by Theorem 8.5 for m > 0 and Theo-

rem 8.7 for m < 0. Note that in either case we do not have T' = (} 1 )-invariance,

and that the process of modification is more complicated than in the sfy; case.

In Section 9 (resp. 10) we study modular invariance of the modified characters
of modules, obtained from the principal admissible L;\EQH (resp. /Alm)—modules by
the quantum Hamiltonian reduction (developed in [KRW], [KW5], [KW6]).

As a result we obtain in Section 9 a modular invariant family of N = 2 modi-
fied characters, supercharacters, and their Ramond twisted analogs, of irreducible
positive energy modules with central charge 3 (1 — (2m + 2)/M), where m € Z>,
M € Z>z and ged(2m+2, M) = 1if m > 0. (Theorem 9.4). If m = 0 we obtain the
famous N = 2 unitary discrete series, for which modular invariance holds without
modification, but for m > 1 we obtain some very interesting new positive energy
N = 2 modules, which should be of great interest for the conformal field theory.
For example, as shown in [W], the fusion coefficients for the N = 2 unitary discrete
series are equal to 0 or 1. Remarkably, using the same method, one can show that
the same property holds for arbitrary m > 0, such that ged(M,2m + 2) = 1.

The quantum Hamiltonian reduction of principal admissible /Alm—modules, stud-
ied in Section 8, produces N = 4 irreducible positive energy modules. However, we
obtain modular invariant families of modified characters only for negative level, the
central charge being 6 (m/M — 1), where m € Z>1, M € Z>2 and ged(2m, M) =1
if m > 1 (Theorem 10.6).

For the convenience of the reader, we provide in Sections 1-4 some necessary
material on Lie superalgebras and their highest weight modules, and in the Ap-
pendix we give a brief review of some basic facts about Jacobi theta functions,
used throughout the paper.
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Note that a general definition of a mock modular form was given by Don Zagier
(see [DMZ] for an introduction to the subject), and that connections of the theory
of mock modular forms to level 1 integrable Qn|1—characters, computed in [KW4],
have been established in [BF], [BO], [F].

In our subsequent paper we will consider the remaining case of a rank 2 simple
finite-dimensional Lie superalgebra, g = ospz2, and the corresponding N = 3
quantum Hamiltonian reduction.

The main results of the paper were reported by the authors at the ”Lie super-
algebras” conference in Rome in December 2012.

The authors worked on the paper during the second author’s visit to MIT in
the spring of 2012, and while both authors visited THES, France, in the fall of
2012 and in the spring of 2013; the paper was completed while the first author was
visiting THES in the summer of 2013. We would like to thank these institutions
for their hospitality.
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1 Kac—Moody superalgebras and their highest weight mod-
ules

Let I be a finite index set and let A = (a;5): jer be a symmetric matrix over R. A
realization of the matrix A is a vector space hg of dimension |I| 4 corank A over
R with a linearly independent set of vectors {h;};cs, and a linearly independent
set of linear functions II = {«; };c1, satisfying

Oti(hj) :aij, j EI. (].1)

The elements «o; € h*, i € I, are called simple roots.

Let h = C®g bhr. Given a subset I7 C I, one defines the Kac-Moody superalge-
bra g(A4, I7) as follows [K1]. First, denote by g(A, I7) the Lie superalgebra on gener-
ators e;, f;, i € I, and b, the generators e;, f; for i € I7 being odd and all the other
generators being even, and the following Chevalley relations (i,5 € I, h € h) :

(5,8] =0, e, f5] = dijhi,  [hyei] = ai(h)ei, [, fi] = —ai(h) fi.

The Lie superalgebra g(A4, I7) has a unique maximal ideal J among those inter-
secting the subspace b trivially, and we let

g(A7 Ii) = g(A7 Ii)/‘]

Fix a non-degenerate symmetric bilinear form (.|.) on hg, such that (h;|h;) =
aij, 1,J € I, and extend to h by bilinearity.

Of course, g(A, I1) is a Lie algebra iff I1 = (. In this case it is isomorphic to
a simple Lie algebra g if A is the Cartan matrix of g, and to the corresponding
affine Lie algebra g if A is the extended Cartan matrix of g.
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Proposition 1.1 (cf. [K2, Chap.2]). The Lie superalgebra g(A, I7) carries a uni-
que bilinear form (.|.) , extending that on by, which is supersymmetric (i.e., (alb) =
(=1)P@P®)(b|a)) and invariant (i.e., ([a,b]lc) = (a|[b,c])). This bilinear form is
non-degenerate.

The abelian subalgebra b is called the Cartan subalgebra of the Kac—-Moody
algebra g(A, I1). As usual, we have the root space decomposition:

g(AaIi) = h®(®aeAga)7 (1'2)

where g, = {a € g(A,I1) | [h,a] = a(h)a for all h € h} and A ={a e bh* |a#0
and g, # 0} is the set of roots.

Denoting by ny (resp. n_) the subalgebra of g(A4, I;) generated by all the e;
(resp. fi), we have the triangular decomposition:

oA L) =n_&h& .. (13)

Let ) = ZII C b* be the root lattice, and let Q4 = Z>oIl. Let AL = ANQ4+
be the set of positive roots. Then ny = @aea, J+a-

Since g(A, I1) has the anti-involution which exchanges e; and f; and fixes f
pointwise, we conclude that dimg, = dimg_,.

Since the bilinear form (.|.) to h is nondegenerate, we may (and will) identify
b with b*. For a non-isotropic root a € A, we let

a’ =2a/(ala), (1.4)
and define the reflection r,, € GL(H*) by
ra(A) =X — (NaY)a, Xeb*. (1.5)

If o € Ay, then a = ), ; ki, where k; € Z>o, and its parity is p(a) =
> kip(e;) mod 2, which is the same as the parity of g,. Denote by Ag and Az
the subsets of A, consisting of even and odd roots, respectively.

Proposition 1.2 (cf. [K2, Chap. 3]). Let & € A be an even non-isotropic Toot,
and suppose that ad g, is locally nilpotent on g(A, I1). Then ro(A) C A.

A root «, satisfying conditions of Proposition 1.2, is called integrable. The
group, generated by all reflections r,, where « is integrable, is called the Weyl
group of the Kac-Moody superalgebra g(A, I7), and is denoted by W (C GL(h*)).
By Proposition 1.2,

WA =A. (1.6)

Forw € W let w = r,,- - -r,, be a decomposition of w in a product of s reflections
with respect to integrable roots, and let s_ be the number of those of them, for
which the half is not a root. Define e (w) = (—1)® and e_(w) = (—1)*-. (For
g = 8lm|n, m >n, and gly, |y, one has: ¢ (w) = ey (w).)

Let pg (resp. pi) be the half of the sum of positive even (resp. odd) roots. The
element p = pg — p1 is called the Weyl vector. One has [K1]:

(plai) = 5 (eilei)(= jai), i€l (1.7)
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Let V = V5 @ V5 be a vector superspace (i.e., a vector space, decomposed in
a direct sum of subspaces Vg and Vi, called even and odd, respectively). The
associative algebra End V has the corresponding Z/2Z-grading;:

EndV = (End V) & (EndV);, Z/2Z = {0,1},

where

(EndV)o ={a € EndV | aVs C Voyg}, «,B €Z/2Z.

One denotes by g/, the vector superspace End V' with the bracket
[a,b] = ab— (—1)P(@P®)pg,

A module V' over a Lie superalgebra g is a homomorphism of g to the Lie
superalgebra gl . If dim V < oo, one defines the supertrace on End V' by

stra = tr Fa, where Fly, = (-1)%, «€Z/2Z, (1.8)

and the superdimension of V' by sdim V = str [y = dim Vg — dim V3. In this case
gty contains the subalgebra sly = {a € gfy,/| stra = 0}.

For each A € h* one defines an irreducible highest weight module L(A) over the
Kac—Moody superalgebra g(A, I7) as the (unique) irreducible g(A, I1)-module for
which there exists an even non-zero vector v, such that

hva = A(h)va  forall hebh, nipvy =0.
One has the weight space decomposition with respect to b:

L(A) = ®xep=L(A)x,  where L(A)y={veL(A)|hv=Ah)v, hech}.
(1.9)
Since L(A) = U(n_)va, it follows that dim L(A)s = 1 and dim L(A)) < oo.
One then defines the character

chfyy = D (dim L(A)y)e?
Aebh*

and the supercharacter

chp iy = Y (sdim L(A)y)e.
Aeh*

Note that for h € h one has:
chz(A)(h) =tr ) el chZ(A)(h) = strra) el

An integrable root « is called A-integrable if g, and g_, are locally nilpotent
on L(A) (note that g, with a € A is always locally nilpotent).
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Proposition 1.3 (cf. [K2, Chap. 3]). Let a be a A-integrable root. Then dimL(A)
= dim L(A), (n), and the same holds for sdim. FEquivalently, chjL[(A) are To-
movariant.

Proposition 1.4 (cf. [K2, Chap. 10]). The series chf(A) converge to a holomor-
phic function in a conver domain, containing the domain'Y := {h € h | Re a;;(h) >

0,i€el}.

Remark 1.5. Let g'(A, I1) denote the derived Lie superalgebra of g(A4, I7). Then
we have:

9(A, 1) =b+9' (A7), ¢'(AL1)Nb=1b":=span{h, |iec I}.

It follows that L(A) remains irreducible when restricted to g'(4, I7), and that
ch%( ») depend essentially only on Ay, namely:

chfw =ehA chf(A/) if Aly = Ay

Definition 1.6. The g(A, I7)-module L(A) is called integrable if any integrable
root « is A-integrable.

If A is the Cartan matrix of a Kac-Moody algebra g(A), then the integrable
g(A)-modules L(A) are precisely the ones that can be “integrated” to the corre-
sponding Kac-Moody group.

If g(A, I7) is a finite-dimensional Kac-Moody superalgebra, then it is easy to
show that integrable modules L(A) are precisely all finite-dimensional irreducible
g(A, I7)-modules.

If g(A,I7) is an affine Kac-Moody superalgebra with I7 # (), then non-1-
dimensional integrable modules L(A) exist in only a few cases, so that it is natural
to consider “partially” integrable modules instead. They are classified in [KW4],
and will be discussed in §3.

Proposition 1.7. Suppose that a Lie superalgebra carries two structures of a
Kac—Moody superalgebra with the same set of even positive roots. Then

(a) One of these Kac—Moody superalgebra structures can be obtained from the
other one by a sequence of odd reflections.

(b) If L(A) is an irreducible highest weight module with highest weight vector
vp with respect to the first structure, then it is an irreducible highest weight
module with respect to the second structure. Explicitly, if the second struc-
ture is obtained from the first one by an odd reflection r;, then the new
highest weight vector is fioa if (Ala;) # 0, and is v if (Aloy) = 0.

(¢) If L(A) is integrable with respect to the first Kac—Moody superalgebra struc-
ture, then it is also true for the second one.

Proof. (a) is proved in the same way as Proposition 5.9 from [K2], by making use
of odd reflections (described, e.g., in [KW4]). (b) is Lemma 1.4 from [KW4] and
(c) follows from (a) and (b). O
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2 Examples of finite-dimensional and affine Kac—Moody su-
peralgebras

LetV = V5 @ Vi be a finite-dimensional superspace over C, let m = dim Vg, n =
dim V5. Then one denotes g€m|n = gly, slyn = sly. Since sty = sly)y,, We
shall always assume that m > n.

Let g = sy, it m > n, and g = gt,,, if m = n. The Lie superalgebra g carries
several structures of a Kac-Moody superalgebra, described below (it is easy to
show that there are no others).

Fix a basis vi,...,Vyyn of V| such that each vector v; lies either in Vg or in
Vi; we write p(v;) = 0 or 1, respectively. Let I = {1,2,...,m +n — 1} and let
It ={i e I'|p(vi) # p(vis1)}-

The choice of basis of V' identifies End V' with the space of (m + n) x (m +n)
matrices. Let {E;;} denote the standard basis of this space, and let £; denote the
linear function on the space of diagonal matrices, which picks out the ith diagonal
entry.

Let b be the space of all diagonal matrices in g, and let

hij = (~1)POV By — (~1)PC) By, (2.1)

The elements h;; lie in h, and the elements h; := h; 41, © € I, are linearly inde-
pendent. Let
Qp =E&; —Ei41 € f)* (2.2)

Then the set IT = {«; }ier is linearly independent.
Let a;; = a;(hj). It is easy to see that A = (a;j); jer is a symmetric matrix.
Moreover, this matrix is 3-diagonal, with diagonal entries

ai; = (_1)p(v7;) + (_1)p(v1-+1)’

which are equal to 0 if ¢ € I3, and to +2 otherwise, and the non-zero offdiagonal
entries are a; 11 = @11, = ,(,1)p(v1'+1)'

This matrix is depicted by the Dynkin diagram e —e —e —- .. — e — e, consisting
of |I| nodes, where the ith node is ®, called grey, if i € I7, and is O, called white,
otherwise.

Since the h; are supertraceless and II, restricted to the supertraceless diagonal
matrices, is linearly independent (resp. dependent) if m > n (resp. m = n), we
conclude that corank A = 0 if m > n, and corank A = 1 if m = n. Thus, we have
constructed a realization of the matrix A.

The structure of a Kac-Moody superalgebra g(A, I7) in g is introduced by letting

ei=FEiiv, fi=C)PYIE L, el (2.3)

Indeed, it is clear that e;, f; and b generate g, and it is easy to check that they
satisfy the Chevalley relations. Also g has no ideals intersecting b trivially.
Furthermore, the supertrace form:

(alb) = strab.
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is an invariant bilinear form on g. The induced bilinear form on h* is given by:
(gilej) = 0 (—1)PCD i =1,2,... m+n. (2.4)
The set of roots is
A={e;—¢jl|i,j=1,2,....m+n;i#j} (2.5)

a root €; — ¢; being even if p(v;) = p(v;), and odd otherwise. The set of positive
roots is
Ap={e;—¢jli,j=12,....m+n;i<j} (2.6)

The root spaces are ge, ., = CEj;, and the triangular decomposition is the usual
one: ny (resp. n_) consists of strictly upper (resp. lower) triangular matrices.

Note that, in view of (2.4), a root €; — ¢; is odd if and only if it is isotropic
(this is not the case for other finite-dimensional Kac-Moody superalgebras). The
orthogonal reflection with respect to an even root ¢; —¢; (which is integrable since
dimg < o0) is the transposition of ¢ and j. Hence the Weyl group W of g is
Sm X Sp, where Sy, (resp. S,,) is the group of permutations of all even (resp. odd)
vectors v;’s.

Example 2.1. The constructed above Kac-Moody superalgebra structures on
g = sly); correspond to three Dynkin diagrams:

® ©, O ©®, & O
and those on g = gfy), to the Dynkin diagrams:

® O ®, O ©® 0O, ®& & 6.

The corresponding Cartan matrices A are respectively:

0 1 2 -1 0 -1

1 0/’ -1 0)° -1 2 )’
and, up to an overall sign (which does not change the Kac-Moody superalgebra
structure):

0 1 0 2 -1 0 0 -1 0
1 -2 1}, -1 0 1], -1 0 1
0 1 0 0 1 -2 0 1 0

Recall that a Kac—-Moody superalgebra structure exists on an almost simple
finite-dimensional Lie superalgebra iff either g is a Lie algebra (then it is unique
up to conjugacy), or g = sl,,, With m > n, gl,, ., 0pm|n, D(2]1;a), F'(4) or G(3)
[K1].

Next, we proceed to construct examples of Kac-Moody superalgebra structures
in the affine superalgebra

=9 CK @ Cd,
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associated to a finite-dimensional Kac-Moody superalgebra g. Here g = CF +
slpinlt, t 7] if @ = gl,,, and g = g[t,t"'] in all other cases, and K is a non-
zero central element of g. The brackets of all other elements of g are as follows
(a,be€g,m,ne):

[at™ bt"] = [a, b]t" " + m(a|b)dpm,—n K, [d,at™] = mat™.

In particular, g is a subalgebra of g.

Let g = g(4, I1) be a Kac-Moody subalgebra structure on g with {h;}ier C b,
A = (aij)ijer a symmetric matrix, and II = {«;};es; defined by (1.1). Let 6 =
dicr ki i € AL be the highest root (e, Y, kiis maximal)

Let I = {0} U1, and let I; = I; if 0 is an even root, and I; = {0} |J I otherwise.
Let A be the I x I-matrix obtained from A by adding the Oth row and column,
where

app = (9|9)7 ap; = a;0 = 7(0‘0&1) for 7€ 1.

Note that det A = 0. N
Next, we construct a realization of the matrix A. Let

h=h+CK +Cd, (2.7)

and let § be the linear function on E, defined by
dlp+cx =0, 0(d) = 1. (2.8)

Let hg = K — 0, ag = 6 — 6. Then b and {h;},_7 define a realization of A, with
the set of simple roots IT = {ag} JIL.

We now consider in more detail an important example for this paper: g = sf,,,,
with m > n or gf,,,. We introduce a structure of a Kac- Moody superalgebra in
g7 associated to the basis vi,...,Vm;4pn of V as follows. Let I= {0} U I, and let

I = - I7 if vi and vy have the same parity, and I; = {0}UI; otherwise. Let Abe

16[

the I x I- -symmetric matrix, obtained from A by adding the Oth row and column,
where agy = (—1)P0V1) 4 (=1)POmin) gqo = —(—1)P(V1), A0min_1 = (,1)p(vm+n).
Note that the sum of entries of each row of A is zero. Such a matrix is depicted by
the extended Dynkin diagram, which is a cycle, where the additional, Oth, mode,
is grey if 0 € I7 and is white otherwise. N

Clearly, corank A < 1 if m > n and corank A < 2 if m = n. In fact, we have

equalities since ZZG 7a; = 0, and, if m = n, we have a linear dependence of the

o , restricted to h’ (= span of the h;;). Hence dlmh = |I| + corank A, and we

indeed have constructed a realization of the matrix A.
The structure of a Kac-Moody superalgebra g( A4, I7) in g is introduced by letting
ei, fi for i € I being the same as for g, and

-1
€0 = G,Qt, fO = eet )

where esg € gig are chosen such that (eple_g) = 1. (For g = sl,,|,, with m > n
and gl,, we take eg = E1 mint, fo = (—1)”(“"1+")Em+n,1t*1.)
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The invariant bilinear form (. |.) extends from g to the invariant bilinear form
on g by the following formulae (a,b € g, i,j € Z):

(at’|bt?) = 6;—;(alb), (at'|CK 4+ Cd) = (K|K) =0, (d|d)=0, (K|d)=1.
We identify H* with the space
h* @& Cod & CAo,
where ¢ is defined by (2.8), and
Aolprca =0, Ao(K)=1. (2.9)
Then the induced bilinear form on /h\* is given by (2.4) and
(5*|C6 +CAo) =0, (6]6) =0, (AolAo) =0, (Aod)=1. (2.10)
The set of roots A of g is the union of the sets of real roots A and imaginary
roots A™_ where (cf. (2.5)):
A ={a+ss|acA,scZ}, A™={ss|secZ\{0}},
the parity of a root a + s equals that of a, and all s§ are even roots. The set of
positive roots is the union of
Ef:{a—l—sﬂaeA, s>0tUA,, Eif:{sé\s>0}.
The root spaces are ga4ss = gat®, and gos = ht°, except for g = gl,,,, where
gss = t°{h € b | strh = 0}.
The triangular decomposition is:
g=n_@bhan,,
where ny = ny + D650 t*5g. For example, if g = 8lmns M > n or gly,, then ny
consists of all supertraceless matrices over C[t], which are strictly upper triangular
at t =0.
Note that all imaginary roots are isotropic, and the even real roots are not. It

follows from the description of root spaces that all even real roots are integrable.
Hence, by definition, the Weyl group W of g is generated by reflections r, @ € Ay

An important alternative description of the group W is as follows. Given a € h*,
define the following automorphism ¢, of the vector space h*:

ta(N) = A+ A(K)a — (()\|a) + (aéa) A(K))(S. (2.11)

It is easy to check that ¢, preserves the bilinear form (.|.) on b* and that tats =
tats, @, B € b*. Given an additive subgroup L C b*, let ¢, = {to | @ € L}.
Let L =Z{a" | « € Ag}. Then we have ([K2, Chap. 6]):

W=Wxtg (2.12)

Remark 2.2. Note that e4(t,) =1 for @ € L, but £_(¢,) is sometimes —1. How-
ever for the affine superalgebra, associated to sl,,, m > n, or to gly,, it is
always 1.

Example 2.3. The extended (symmetric) Cartan matrices A for Example 2.1 are
obtained from the matrices A using the property that the sum of entries in each
row and each column is zero.
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3 Partially integrable and admissible highest weight mod-
ules over affine superalgebras

Let g be either a simple finite-dimensional Lie algebra or one of the simple finite-
dimensional Lie superalgebras slp,,,,m > n, 08pmn, D(2[1;a), F(4), G(3), or
Glnn, endowed with a structure of a Kac-Moody superalgebra g(A, I7), and let
g be the corresponding affine superalgebra with the structure of the Kac-Moody
superalgebra g(A, I7) (see Section 2).

Let hY be the half of the eigenvalue of the Casimir operator, associated to the
bilinear form (.|.) on g. It is given by the usual formulae [K1, p. 85]:

hY = (pl0) + 5(00);  h¥(alb) = Y (~1)"a(a)a(b), a,b€b. (3.1)

aEA L

Recall that # € A, is the highest root and p is a Weyl vector, defined in Section
1. Recall also that we have the following “strange” formula (cf. [KW3]):

(plp) = hY (sdim g)/12. (3.2)

Now we introduce the important subset A%& of the set of even roots of g [KW3].
If b # 0 (which happens iff g # g/, |n, 05P2n4212n O D(2|1;a) [K1]), let

A%# ={a € Ay | hY(ala) > 0}. (3.3)

In the case g = g,,,, there are two choices of A#, described in the example below.

Example 3.1. Let g = sl,,,,, m > n, or g, , with one of the structures of a Kac—
Moody algebra, described in Section 2. Then hY = m —n for the invariant bilinear
form (alb) = str ab on g. We have: A%# ={ei—¢j | p(v;) = p(v;) = 0,7 # j}. It
m = n, there is another choice: A%& ={e; —¢; | p(vi) =p(v;) =1, i +# j}. For all
o€ A’gﬁ we have (a]a) = 2, except for the second choice of A’gﬁ in the case m = n,
when (a]a) = —2.

Note that in all cases the set Ag# is W-invariant. Let L# be the Z-span of the
set {a¥ |a € A?}, and let us introduce the following subgroup of the Weyl group
. B

W# =W K tp. (3.4)

Let A € b* and let L(A) be the corresponding § = g(A, I1)-module. Then the
central element K acts as a scalar A(K), called the level of A, which we denote by
the same letter K, unless confusion may arise.

Definition 3.2. The g-module L(A) is called partially integrable if

(i) any root o+ nd, where o € Agé,

(if) any root o € Ay is A-integrable.

n € Z, is A-integrable;

Condition (i) means that L(A) is integrable with respect to the subalgebra ﬁ#
of g , where ﬁgﬁ is the affine subalgebra with the set of real roots {a + nd | a €
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A%#,n € Z} , and condition (ii) means that L(A) is integrable with respect to gg
(= locally finite with respect to g).
We let o} = a; if a; is a simple isotropic root, and define it as in (1.4) otherwise.

Define the fundamental weights A; € E*, 1€ IA, by
(Aila)) =0, jel, Aj(d) =0, (3.5)

and also Aj(F) = 0 for g = g, (which is consistent with (2.9)).
As has been explained in Section 1, we may assume that A(d) = 0, and A(F) =0
if g = gty for a highest weight A. Then we can write:

A= ZmiAi for some m; € C. (3.6)
iel

The numbers m; are called the labels of A .
Define p € b* by

(Bloy) = Yagy, jeI, (pld) =0, (3.7)
and, in addition, p(F') = 0 if g = gf,,,,. It is easy to see that (cf. [K2, Chap. 12])

In [KW4] we gave a classification of partially integrable modules L(A) in terms
of the labels m; of A. Here we give the answer only for the two examples relevant
to this paper. Unlike in the present paper, we used in [KW4] Dynkin diagrams
with the minimal number of grey nodes. Here we use diagrams with a white Oth
node and recalculate the results of [KW4] using Proposition 1.7(b).

Example 3.3. g = sly1; we use its first Dynkin diagram in Example 2.1 and the
corresponding extended Dynkin diagram. The level of a g-module L(A), where A
has labels mg, mqy, mao, is:

K:m0+m1+m2.

We have A%& = {£60}, where § = a1 + 3. Let K’ = my + mg. Then L(A) is
partially integrable iff mg, K’ € Z>o (hence K € Zx¢), and my = mg = 0 if
K’ =0 [KW4] . (Note that in these cases L(A) is integrable. In fact, any partially
integrable g-module L(A) is integrable iff g is either a Lie algebra, or g ~ 8l
with m > 1, or g >~ 08py,|, with m =1 or 2 and n > 2 [KW4]).

Example 3.4. g = gly)2; we use its first Dynkin diagram in Example 2.1 and the
corresponding extended Dynkin diagram. The level of a g-module L(A) is

K =mg+my —ma +ms.

The first choice of Ag# is {£0}, where 0 = a1 + as + a3. Let K/ = mq —ma + ms.
Then L(A) is partially integrable iff: mg, K’ € Z>o (hence K € Z>g), and m; =
mg = 0 if K/ = 0 and myms = 0 if K’ = 1. For this choice, 6, § — 0 and a»
are A-integrable. The second choice is Ag& = {£as}, i.e., a2, — as and 0 are
A-integrable. Let then K" = mg + m1 + ms3. The partial integrability conditions
in this case are: ma, —K" € Z>¢ (hence —K € Z>), and m; =mg =0if K" =0,
mims = 0 if K" = —1. Thus, a gA€2|2—module L(A) is integrable iff dim L(A) = 1.
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Definition 3.5.

(a) Let A € b*, where b is a Cartan subalgebra of g. A A-maximal isotropic
subset of A is a subset T, consisting of the mazximal number of positive
roots B;, such that (A|B;) =0 and (8;|3;) =0 for all 5;, 5; € Th.

(b) A g-module L(A) is called tame if there exists a A + p-mazximal isotropic
subset of A, contained in the set of simple roots II.

(c) A g-module L(A) of level K is called tame if the g-module L(A) is tame,
where A = Aly, and K +h" # 0.

As usual, we introduce the Weyl denominator BT and superdenominator R~
by:
. Tlacay, (1—¢™)

[oca,, 1Ee7) ’

Conjecture 3.6 ([KW3]). Let L(\) be a tame finite-dimensional g-module. Then
there exists a mon-zero integer jx, such that

R (3.9)

erp

w , 3.10
Mocr,, (1+cF) (3-10)

jAR+chz(>\) = Z eq(w)
weW

where Ty, C II is a A + p-mazimal subset of A, and €4 (w) = dety w.

It is not difficult to show, using (1.8), that (3.10) implies the following formula
for the supercharacter:

eMr

JaR™chy = e_(w)w A (3.11)
R PEIEE

Remark 3.7. (a) Due to Remark 1.5, the g/,,-module L()) remains irreducible
when restricted to sf,, . Furthermore, if A(I2,) = 0, then L(A) is actually a
module over psl,,,, := 5Ly, /Clay,.

(b) Due to Remark 1.5, the gAﬁnm
stricted to sAEn‘n = slynlt, t~114+ CK +Cd . Furthermore, if A(I2,) = 0, then L(A)
is actually a module over p/s\én‘n = pslyp[t,t1] + CK + Cd.

-module L(A) remains irreducible when re-

Conjecture 3.8 (cf. [KW4]). Let L(A) be a partially integrable tame g-module.
Then R R B
Rtchfyy = > ta(e@™ P ARV ch] 1) (3.12)
aeL#

(and, consequently, the same formula holds for chZ(A) if we replace R* by R~ and
R by R™, and insert e_(t,) in front of to). Here in the LHS we have the affine
Weyl denominator RT and superdenominator R~, defined by:

HaeAﬁ (1 _ ean6)>

aea, (1 £ exm?) (3.13)

Rt = P PR H ((1 — e_”‘s)g
n=1



AFFINE SUPERALGEBRAS AND MOCK THETA FUNCTIONS 401

where £ is the multiplicity of the root §.
Note that £ = dim b if g # g/, £ = dim b — 1 = 2m — 1 (resp. = 2m — 2) if

g = glmm and A(l2,,) # 0 (resp. = 0).
Note that, using (3.10), formula (3.12) can be rewritten as follows:

jaR*chE,, = Z eq(w)w et .
L(A) = [ser,, (L£e?)
Conjectures 3.6 and 3.8 have been verified in many cases ([KW4], [S], [GK]).
Given A € 6* of level K # —hY, by analogy with the affine Lie algebra case, we
introduce the following number ([K2, Chap. 12]):
_ (A+p/A+p) sdimg
T 2K +hv) 24 0
called the modular anomaly of A. As in the affine algebra case, using the “strange”
formula (3.2), we obtain another important expression for my:

(3.14)

(3.15)

ma = h(A) — C(in), (3.16)

where
h(A) = (2[2; iﬁhés (3.17)
o(K) = I;Siir;vg. (3.18)

As in the affine Lie algebra case, ¢(K) is the central charge of the Sugawara’s
Virasoro field L(z) = Y, ., Lnz=""2, and hy is the minimal eigenvalue of L in
L(A) (cf. [K2, Chap. 12]).

As in the affine Lie algebra case, in order to “improve” modular invariance prop-
erties of characters, one introduces the normalized character and supercharacter of
the g-module L(A) by the formula

chy = e ™4%h7 ). (3.19)
Note that chi depends only on A mod C3.

Definition 3.9. An injective homomorphism ¢ : g — g is called compatible if it
respects the triangular decomposition and preserves the invariant bilinear form.

It is clear that for a compatible homomorphism ¢, the map ¢ : 6 — 6 is an
isomorphism, that Ay C ¢*(A4), and that ¢(K) = MK, where M is a positive
integer, called the degree of ¢. Furthermore, the subset S = (p*)"1(I) C Ay
clearly satisfies the following two properties:

a—ﬁgéﬁ for a, B € S, (3.20)
QS = QIl. (3.21)

Such an S is called a simple subset of EJF. As in [KW2], it is not difficult to classify
all simple subsets S in EJF. (In fact, for g = sly,)n, m > n, and gly,, the answer
obviously is the same as for the Lie algebra s¢,,1,.) We give here the answer for
g = sly)y and gly)o.
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Example 3.10. ®; &9 from Example 2.1. There are two types of simple
subsets S C £+:

S1 = {ao+ kod, a1 + k19, aa + k26};
Sy = {—ag + kod, —a1 + k16, —az + ka20}.

Here k; € Z are such that S; and Sy lie in £+ (i.e., k; € Z>¢ for S1, and k; € N
for S).

Example 3.11. ®; (O &3 from Example 2.1. There are four types of
simple subsets S C ﬁ+:

S1 = {ap + kod, a1 + k16, aa + k26, as + k3d};

Sy = {—ap + kod, —a1 + k10, —an + koo, —a3 + ksd};

S3 = {ao + kod, a1 + ag + k10, —as + kad, aa + ag + k3d};

Sy ={—ag+ koo, —a1 — as + k19, aa + k20, —as — a5 + k3d}.

Here k; are all non-negative integers, such that S C £+.

Definition 3.12. Let ¢ : 9 — @ be a compatible homomorphism, and let S =

©* (). Then A € b* is called a (corresponding to o) principal admissible weight
(with respect to S) if the following two properties hold:

(i) (A+7p|aY) €Z for a € Ny implies that o € ZS N A;
(i) the g-module L(A) is partially integrable, where

A’ = p* (A +p) — P (3.22)
Note that the level of AY is expressed via the level A(K) of A by
A(K) = M(A(K)+hY) —hY, (3.23)

where M is the degree of .

Conjecture 3.13. Letp : g — g be a compatible homomorphism and let A € h* be
a corresponding principal admissible weight. Then we have the following formula
for the characters and supercharacters:

o~

(REchyy))(h) = (R*chi o)) (97 (), h € B. (3.24)

This formula is proved, in the case when g is an affine Lie algebra, for more
general, admissible modules, in [KW1]. We conjecture that a similar result holds
also in the Lie superalgebra case. (However, all admissible modules are principal
admissible for Lie superalgebras, considered in this paper.) Note that Conjecture
3.8, in the form given by equation (3.14), is proved in [GK] for all cases considered
in the present paper.
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As shown in [KW2], formula (3.24) can be written in a more explicit form as
follows. Let M be a positive integer and let S(ap) = {(M —1)d+aq, a1,...,ae} be a
simple set of degree M. Let 8 € b* and y € W be such that S := tzy(Sa)) C AJF.
Then S is a simple set. All principal admissible weights with respect to S and of
level K are of the form (up to adding a multiple of 9):

A = (1) (A — (M = 1)(K + 1¥)Ao + ) — B, (3.25)
where A” is a partially integrable weight, and, by (3.23), we have:
h\/
K=" j\_l —hY, where m is the level of A°. (3.26)

It is convenient to write formula (3.24) in the following coordinates on 6, which
we will be using throughout the paper:
h=2nmi(—1d+ z+tK) =: (1, 2, t), where z € b, t,7 € C. (3.27)
We will always assume that Im 7 > 0 in order to have all our series convergent.
Note that e=(h) = ¢ := €™ so that |¢| < 1.
In these coordinates formula (3.24) rewritten for the normalized characters and
supercharacters becomes (cf. [KW2]):

(e~ "5 "0 REchE)(r, 2, 1)

sdim ~ 1
= ("R () (e elg+ T ),
or, a little more explicitly:

(e O REDR) (72,1

7n+hv

wi(m+hY sdim ~
=q M (Blﬂ)e2 <M+h )(Z‘B) (6_ d24 gtSRiChi:U) (MT7 y_l(Z + Tﬁ>7

t (3.28)
")

Next, we describe the principal admissible weights in the cases considered in
this paper.
Proposition 3.14. Let g = sly)q, let ¢ : g — @ be a compatible homomorphism of

degree M, and let A € 6* be a principal admissible weight with respect to a simple
subset S C Ay such that A° = mAg, m € Z>o (see (3.22)), and ged(M, m+1) = 1.
Then we have for the level K of A:

m+1
M

Furthermore, the value of M and the description of all such principal admissible
weights N with respect to S = S;, i = 1,2, from Ezample 3.10, is as follows
(ko, k1, ko € Z>0) :

S=5: M=ky+ki+ka+1, k1,k0 >0, ki1 + k<M -1,
Agcll),kg Z(m—ko(K+1))Ao—k1(K+1)A1 —kg(K—i—l)Ag,
S:SQI M:k0+]€1+]€271, 1§k1,]€2§M71,k1+]€2§M,
A2 = (ko (K +1) = m — 2)Ag + ky (K + 1)Ay + ka (K +1)As.

K = 1. (3.29)
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Proof. Formula (3.29) follows from (3.23) since k¥ = 1. In the case of A, admissible
with respect to S7, we have:

(A° + plag) =m +1 = (A + plkod + o) = ko(K + 1) + (Alag) + 1;
(A’ + plar) =0 = (A + plk16 + 1) = k1 (K + 1) + (A|aw);
(AO + p|0¢2) =0= (A + p|k526 + 012) = kQ(K + 1) + (A|a2),

hence (A|a0) =m — ko(K + 1)7 (A|011) = 7k1(K + ].), (A|012) = 7k2(K + 1)7 and
similarly for Ss.
The computation of M immediately follows from the fact that Md equals the

sum of the elements of S;. Condition (i) on principal admissible weight is equivalent
to (3.29). O

Proposition 3.15. Let g = glyo, let ¢ : g — g be a compatible homomorphism

at degree M, and let A € E* be a principal admissible weight with respect to a
simple subset S C A, such that A° = mAg, where m is a non-zero integer and
ged(m, M) = 1. Then we have for the level K of A:

K= (3.30)

Furthermore, the value of M and the description of all such principal admissible
weights A with respect to S = S;, i = 1,2,3,4, from Example 3.11, is as follows
(ko,.... k3 € Z>o are such that S C Ay):

3
S=S1:M=> k+l,
=0

A(l) = (m - k‘oK)Ao - ]flKAl + ]{ZQKAQ - kgKAg,;
3
S=S8:M=> k-1,
=0
A(Q) = (k’oK —m — 2)A0 + ]{ZlKAl - (kQK + 2)A2 + ]{33KA3;

3
S:SgM:Zkz+l7
1=0
A®) = (m = koK) Ao = (14 (ky + k) K)As
, — (24 ko K)Ag — (1 + (ko + k3)K)As;
S:S4M:Zkl_17
=0
AW = (koK —m —2)Ao + (k1 +k2)K +1)Ay
+ ko K Ao + ((ka + k3) K + 1)As.

Proof. 1t is the same as that of Proposition 3.14 [
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4 Characters of partially integrable modules and
mock theta functions

In this section we rewrite the characters of partially integrable modules L(A) over
an affine superalgebra g in terms of “mock” theta functions. Throughout the
section, g is a finite-dimensional Lie superalgebra as in Section 3 and ¢ is its rank
(= rank gg).

Let m be a positive integer and let j € Z/2mZ. In the course of the paper we
shall often use the well-known theta functions of degree m (rather Jacobi forms)
O©).m(T,2) = O (7, 2,0), where O, ,,(7, z,t) are defined by formula (A.1) in the
Appendix. Especially important are the four Jacobi theta functions of degree two
[M]:

Yoo = O22 + BOq 2, Vo1 = —O22 + Oq 2, V10 = O12 + O_12, V11 =101 2 —iO_1 9,

discussed in detail in the Appendix.
Since p(K) = h" by (3.8), we obtain the following formula for the affine Weyl
denominator and superdenominator (3.13) in the coordinates (3.27):

Hzozl ((1 _qn)é HaeAa,Jr (1 o 672m’a(z)qn71)(1 _e2wia(z)qn))

RE(h) = e2mi(hY t+p(2)) ‘ .
( ) € Hzo:1 HaeAi +(1:l:e—27'rza(z)qn—1)(1ieQTl'lOé(Z)qn)

Using formulae (A.7) from the Appendix, we can rewrite these expressions (or
rather their normalization by a power of ¢) in terms of the four Jacobi functions
of degree two:
—dg+d; Haea, , In(m ()
[loea; , Po(T a(2))
e—d()-‘rdj HQEA(L+ 1911(7-7 a(z>>
[laea; , 911(m,a(2))

q214 sdim g§+(h) _ e%ihvtid@n(ﬂ (4.1)

q214 sdim gﬁ— (h) _ eQTrithid()—din(T) (42)

Here and further, d, = |Aq 4|, @ € Z/27.

In order to obtain a modular invariant family, we need to consider also twisted
affine Weyl denominators and superdenominators. For this purpose, fix an element
& € b*, satisfying

(€la) € p(a) +Z, a€A, (4.3)

and let R R
R™F = te(RF).

Recalling (2.11), we have:
te(0)=0, te(a)=a—(&la)d if a €A, p™ :=te(p) = p+h's— (30 (€[6)+(pl8))0.
Hence we obtain from (3.13):

a —q")* e agn—1=(§la)y(1 _ gognt(&le)
étw,i _ e;;tw H (]- q ) Ha€A6,+(]‘ € q )(]‘ € q )
[Maea, (1 £eogn1=Elo)(1 £ eognt(Elo)

n=1
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This can be rewritten in terms of the four Jacobi functions, as in the non-twisted
case (cf. (4.1), (4.2)). For this we need to use Proposition A.6 from the Appendix.

By a straightforward (but a bit lengthy) calculation we derive formulae, similar to
(4.1) and (4.2):

q214 sdim g ptw ’*(h)
_ eQWihvt(,l)Q(PO|5)Z‘d6n(7-)5*d6+di HOAEA@Y+ 7—911(7_3 OL(Z)) ’ (4,4)
[loea; , Poo(r, a(2))
q24 sdim gRtw 7(]1)
_ e?ﬂ'ihvt(_1>2(p|§)— édiz’d(’)n(»r)e_d(’)""di Ha€A67+ 1911(7-7 a(z)) (45)

[laca; , Yor(ma(2))

It turns out that modular transformation formulae can be written in a beautiful
unified form if we use the following notations for (4.1), (4.2), (4.4), (4.5):

(1) =R (rz0), (42 = RO(r, 2.1),
(4.4) = B (r,2,8),  (4.5) = RO(r,2,1),
i.e., the superscripts (;) and (0) refer to the denominator and superdenominator,

respectively, and the subscripts 0 and ; refer to the non-twisted and twisted cases,
respectively.

Theorem 4.1. Lete,e’ =0 or ; Then
~ 1
(a) R§E)< 7_3 j_at - (ZE)) = CE(fiT)éZRsE‘E) (Ta Zat)7

where ¢g = (—i)%~% and c1 = (—i)o;

L 1 =z z|z .\l
R (—T, T,t - (2|7')> = ca,g,(—zr)2€R( (1,2,t) if e £ ¢,
where ¢y 1 =c1 o= (-1 1)2(pl&) = 3 di+dg o
(b) éés)(,r + 17 Z,t) el 1 sdim ER E)(T > t)
RO(r+1,2,8) = (-1)20110- bt B0 A7 (1 2 ).
2
Proof. 1t is immediate by the modular transformation formulae for the four Jacobi

theta functions of degree two, given by Proposition A.7 in the Appendix and the
modular transformation formulae for the n-function:

o(-1) = Cintam. e n=efn. O

The representation theoretical meaning of twisted denominators and superde-
nominators is as follows. Let

g™ = golt.t ™" @ guft,t )2 ® CK & Cd
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with the same commutation relations and the same 6 as in Section 2. The action of

t¢ on 6* induces the action of £_¢ on 6, which extends to the following isomorphism

t_¢ :fj“w ;fj:

t_e(ht") = ht" + E(W)Kdno, hebh, t_¢(K)=K,
t*f(d) = d - € - ;(ﬂg)Ka t*ﬁ(eatn) == 6atn+(€|a)7 €a S ga-

Via this isomorphism, the g-module L(A) becomes a g" -module, which we denote
by L™ (A). The g™ -module L™ (A) is a highest weight module with respect to
the triangular decomposition of g induced from that of g via the isomorphism
t_¢. Its highest weight is

A™ =t¢(A), (4.6)

and its character and supercharacter are:
+ +
chpw (o) = te(chyy)), (4.7)

their denominators being R™.=. The corresponding normalized twisted character
and supercharacter are given by

chiY SN IchT (A) (4.8)

where
(A™ + ™ [A™ + ™) sdim g
2(K + hY) 24
Remark 4.2. (a) As in the affine Lie algebra case (see [K2, Chap. 12]) we have, in

view of (3.16)—(3.19), the following formula for the normalized character chy in
coordinates (3.27):

tw

my (4.9)

chf (h) = cha(T, z,t) = 2™ Kty 1y glom 2 e miz, (4.10)

where K is the level of L(A), L is the 0th mode of the Sugawara’s Virasoro field
L(z) = ,ez Lnz""72, and ¢(K), given by (3.18 ), is its central charge. A similar
formula holds for ch), by replacing tr by str.

(b) We have the twisted Sugawara’s Virasoro field L™ (z) = >, Lt 27 "2,
for which we take s, = —({|a), a € Ay (see [KW6, Sect. 1]). Then my’ =
™ (A) — ¢(K)/24, where h™ (A) = (A™ + 2p"™ [A™)/2(K + h") is the minimal
eigenvalue of L{¥ in L™ (A), and we have:

h (7, 2, 1) = 2™ K tr o gy gl ~ 2 e Mz (4.11)

and similarly for ch® ", and R"™* are the denominators of ch’ =

Next, we introduce mock theta functions. Having in mind applications to affine
Lie superalgebras, we use notation similar to that above.

Let hr be an ¢-dimensional vector space over R with a non-degenerate symmetric
bilinear form (. |.) (not necessarily positive definite). We shall identify hr with h%
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using this bilinear form. Let L# be a positive definite integral sublattice of . Let
E]R = hr® (RK ®Rd) be the £+ 2-dimensional vector space over R with a symmetric
bilinear form (. |.), which coincides with that on hgr, and such that hr L (RK@Rd)
and RK @ Rd is the 2-dimensional hyperbolic space, i.e., (K|K) = (d|d) = 0,
(K|d) = 1. We identify ER with E]E = b} ® RI ® RAg, using this bilinear form, so
that hr gets identified with b, and K (resp.d) with § (resp. Ag). Given « € b5,
define the automorphism t, of the vector space Eﬁi by formula (2.11).

Let A € Eﬁi be such that A(K) is a positive real number, which, as before, we
denote by K, and (A|L#) C Z. Let T C b be a finite set of vectors that spans an
isotropic subspace of h%, and such that (T|L#) C Z and A L T, where, as before,
A € b, denotes the restriction of A to bg.

Definition 4.3. A mock theta function of degree K is defined by the following

series:
A

(AlA) e
Of , =¢ 2k ex(ta)ta ) (4.12)
AT anL# HﬁeT(l +eB)

It is not difficult to deduce from (2.11) that the series @X’T (resp. © 1 ) con-
verges in the domain

X :={heb|Red(h) >0}

to a meromorphic function with poles at the hyperplanes
{h € 6 | B(h) — (| B)d(h) = (2n + 1)7i (resp. = 2n7i)},

where o € L#,3 € T,n € Z. It is also clear that @fT depends only on A
mod C4§. We shall also call a mock theta function an arbitryary linear combination
of functions of the form (4.12).

By (2.11), in coordinates (3.27) the mock theta function (4.12) looks as follows:

qK(gH) eQﬂ'iK'y(z)

2miKt Z Ei(t )
v —(v18) g—2miB(2)) "
’YeL#J’_K,l]\ HBET(l iq € )

@iT(T,Z,t) =e (4.13)

Recall that e4(t) = 1 in all cases, and e_(t,) = 1 in all cases considered in this
paper.

Remark 4.4. Let D be the Laplace operator, associated with the bilinear form
(.].). Using that D(e*) = (A|\)e*, we immediately see that D(@f,T) = 0. Also,
obviously, these functions are t,-invariant (rather anti-invariant) for all a € L#,
invariant under the translations z — z + 2mia for o € L#, and satisfy the de-
gree property: O(h + aK) = eX©(h), a € C. It is known ([K2, Chap. 13]) that
these properties characterize classical theta functions of degree K. It is an inter-
esting problem to find out what are the properties which, along with the above,
characterize mock theta functions.

In the same way as the normalized characters of integrable modules over affine
Lie algebras are rewritten in terms of the theta functions (see [K2, Chap. 13]), by
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Conjecture 3.8, the normalized characters and supercharacters of partially inte-
grable tame modules over affine Lie superalgebras can be rewritten in terms of
mock theta functions:

) +
jaREcht = wai<w>@i<A+ﬁ>,w<Tw (4.14)
we

where T3, , is a maximal subset in A1 |, consisting of linearly independent pairwise
orthogonal isotropic roots, which are orthogonal to A + p.

Remark 4.5. Since chY ™ = ¢, (chf)7 we obtain in coordinates (3.27):
chy*(r,2,t) = chi (7'7 z+71Et+ (2 + 7€l —;:f) - <Z|Z)>.

The main objective of our discussion in the next Section will be modular trans-
formation properties of the numerator (cf. the RHS of (4.14)):

(I)%,T = Z Ei(w)Gi(A),w(T), (4.15)
weW

where A € 611*& is such that A(K) is a positive integer (denoted as before by K),

and T C Eﬁ'i consists of pairwise orthogonal linearly independent isotropic roots,
which are orthogonal to A, and (T|L#) C Z .
Recall the action of the group SLs(R) in the domain

X ={(r,z,t)|Im >0} C§*

in coordinates (3.27):

ab at +b z c(z]z)
. t) = t— 4.1
(cd) (7,2,1) (cr—i—d’ cr+d’ 2(ct+d) )’ (4.16)

and the action of the corresponding metaplectic group Mp2(R) on the space of
meromorphic functions on X:

Fla(r,z,t) = (et +d)" 2 F(A- (1, 2,1)) (4.17)

(see [K2, Chap.13] for details). Everywhere in the paper the square root of a
complex number a = re*?, where r > 0 and —7 < 6 < 7, is, as usual, chosen to be
al/2 — p1/2,i0/2

Let us consider the mock theta functions of the form ©) 4, for which the set
T consists of one isotropic vector . Choose a basis V1,V2,... of b, such that
(Blv;) = 01,. Then coordinates (3.27) on b become h = 2mi(—7d + 2252V HtK),
and we have:
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- ikt 27” S is1 2 (A Ealvy)+7(5 (ala)+(Ala)))
61\ 5 =€ Z 6727r7,(21+(a|ﬁ)'r)

aeL#

Hence for each fixed 7, Im 7 > 0, this function has only simple poles and they
occur at the hyperplanes z; = n — (y|8)7 (n € Z,v € L#). For v € L¥ let
L,={a e L# | (a|f) = (7|8)}. It is immediate to compute the residue:

2mi K
Res @X,@(h) _e ‘t Z egwi(n(A+Ka|vl)+zj22z,-(A+Ka|vj))
a=n=(lfr i ST (4.18)
% 627”'7'({j(a\a)+(A|a)—(W\B)(A-&-Koz\vl)).

On the other hand, for each fixed 7, Im 7 > 0, the function, transformed by
S =(97}), looks as follows:

. I Sj>1 25v5012
2miK | t— 122730
(O 4ls)(h) = 77205 4(S-h) =7"2¢ G

i ( ]>1Zj(A+Koz|vJ-)f’E(a\a)f(/\la))

e T
x D 1— e~ T(z—(alB)

a€L#

For each fixed 7, this function has only simple poles as well, and they occur at the
hyperplanes z; = (y|3) +nt (n € Z,v € L#). The corresponding residue is
1- £ 2miKt v
Res  (O,ls)h) =" -¢ T TE (B A A s v 2

zZ1= nTt 2 ]
1=(718)+ ™ (4.19)

. 27
> 2 eQTrzn(A+Ka|v1)e i P7

a€ly

where P = (4]8)(A + Kalvi) + 3,55 % (A + Kalv;) = (5 (ala) + (A]a).

Proposition 4.6. Let dimbh =2 and let A € E*, a, B € b* be such that A(K) is a
positive integer, (Ala) € Z, (A|B) =0, A(K)(a|a) is a positive integer, (a|f5) = 1,
(B|B) = 0. Let L* = Za. Then the function G = O 5 — O4 pls is holomorphic
in the domain X .

Proof The function G is holomorphic in the domain X if and only if © 5 and

|5 have the same poles and equal residues at each pole. For v € L# we have:
L., = {7}, hence formulae (4.18) and (4.19) become:

e27riKt )
Res O, 4(h) = e2mi(n(A+Ky[vi)+22(A+ K~ |vz2))
a=n-(lg)r P 2mi

x g2 +A =B A+KyIvi)
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and
627TiKt K 2 .
Res (07 .|s)(h) = o= TN QIB) FnrIvi+2ava? 2min(A+ K ]vi)
z1=(v|B)+nt J 211

w o= TAIB ATy V1) +22(A+Krlva) = § (117~ (A1)

Let vi = a, vo = 8, v = a«, a € Z. Then the above formulae become:

627riKt - Ka?
Res ©F y(h) = © - camifiazs = 5" ol
zZi=n—art ’ 271
2miKt
e ; Kn?
Res ©O7 .lg(h) = . 6727r7,Kn22 -7 (o¢|a)'
z1=a+nt A’B| (h) 271 e

Hence the residues at all poles of the function G are zero. [

5 Transformation properties of the mock theta functions
®[™l and their modifications ®[™

Let g = sfy); with a structure of a Kac-Moody algebra as in Example 3.3, and let
g be the corresponding affine superalgebra. We have

sdim g =0, £=2, II=A1, = {1, 0}, A, ={0=as+as},
(ailow) =0, (au|an) =1, (0]0) =2, pg=pi =30, p=0, bV =1.

We introduce the following coordinates in the Cartan subalgebra b of § (cf. (3.27)):
h =2mi(—7Ao— 2102 — 2001 +10) = 2mi(—TAo+u(ar+az)+v(ag —az)+td). (5.1)

In this section we shall study transformation properties of the numerator of
the normalized supercharacter of the integrable g-module L(mAg), where m is a
non-negative integer (see Example 3.3), using formula (3.14) for chy(ng)- We

have: p = Ao, Mmma, = 0, hence chz(on) = ch,,,,. We choose in this formula
To = {a1}. Then jo =1 and (3.14) gives:
(m+1)Ag
~ e
Rchy,,, = ZA swhw, .- (5.2)
weW#

Since L# = 76 and W = {1,74,4a,}, due to (3.4) and (2.11), formula (5.2) in
coordinates (5.1) looks as follows:

e2mij (m+1)(21+22) 3% (m+1)
p— 13— Ti(m q
(R ChmAU)(T7 Zl7 22) ) 2 ( +1)t Z ( 627‘{‘221 q]

JEL (5.3)
- e—27rij(m+1)(z1+22)qj2(m+1) )

1 — e—2miz2 qj
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We denote the right-hand side of this formula by

(7, 21, 20, 1) = ™ (1, u,0,1), (5.4)

where u = —é(zl + 29), v = é(zl — z2). This is the numerator of ch

The main properties of the functions ®"™ are described by the following lemma.

Lemma 5.1.

(a) ®"(7, 21 + a, 20 + b, t) = ®(7, 21, 29, 1) for all a,b € Z.

(b) <I>[m](n—z1,—z2,t) = —0M(7, 21, 29, 1).

(¢) ®UN(7, 29, 21,t) = ®I™(7, 21, 20, 1).

(d) ®™(7, 21 + 7,20 + 7, 1) = g~ (MFDe=2milmtDt22) @I (1) 21 25, 1).
(e) ®IMI(7, 21, 29,t) — 2™ MFTVA DI (7 21 29 4 7, 1)

- o _ G+D?
= Z;ﬂ:ol em(]+1)(z1fz2)q Alm41) (@j+1,m+1(7—7 21 + 29,t)
_97(j+1),m+1(7; 21 + 22, t)),
where O, (1, 2,t) = ™™ O, .. (7, 2), and O}, (7, 2) is given by (A.3).

Proof. Without loss of generality we may assume that ¢ = 0. Property (a) is
obvious, while property (b) follows easily from (c). Property (c) follows from the
expansion of ®™ from formula (8.3) in [KW3]:

(I)[m] (T, Zl,Zg,O) = < Z — Z )627Ti(jzl+kzz)q”fil '

J,k20, min(j,k)[m+1  j,k<0, max(j,k)|m+1
Next, we prove (e). We have:

e2m‘j(m+1)(zl+zz)qj2(m+1)

q)[m] (7—7 214522, O) = Z 1 . eQﬂ'izl J
JEZL q
e—27rij(m+1)(z1+z2)qj2(m+1)

- Z 1 — e—2mizagi )

JEZ
and

e2mij(m—+1)(=1 +22)qj2 (m+1) (6271'2'21 m+1

—omi qj
‘D[m](ﬂ 21,20+ 7,0) =€ sz <Z 1 — e2mizigi :
JEZL

B Z e—27rij(m+1)(z1+zz)qj2(m+1)(e—QWiZqu)m-‘rl
1— 6727r7,'22qj

JEZ

Hence we have:
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DM (7, 21, 2,0) — 2™ M D2PIMI (7 21 20 4+ 7,0)
2mizy 7 \m+1
_ Z 627rij(m+1)(Z1+zz)qj2(m+1) 1—(e ¢)

1— 627Ti21 J
JEZ q

_ Ze*QWij(m+1)(zl+zQ) Pmany L — (e72=2g7)m A
— q 1— 6727ri22qj
VIS
m
- o . .
_ Z Z e27rz](m+1)(zl+22)q] (m+1)(627r121 q])k
k=0 jeZ
m
- Z Z e—27rij(m+1)(zl +zQ)q_j2 (m+1)(6—2ﬂ'i22 qj)k
k=0 jeZ
s . k2 . . k . k 2
— Z eﬂ—lk(zl _z2)q_ 4(m41) ( Z 62W1(m+1)(21+z2)(]+ 2(m+1) )q(m+1)(]+ 2(m+1) )
k=0 JEZ
_ Z 627Ti(m+1)(21+22)(j* 2(m1) )q(m“)(j* 2(ma1) )2>
JEZ
m ‘ 2
= Y TR T s (O 1 (T, 21 4 22) — O pman (T, 21 + 22))
k=1

Finally, we prove (d). Exchanging z; and z3 in (e) and using (c), we obtain:

olm] (1,21, 22,0) — e2mi(mt1)z2 glml (1,21 + 7, 22,0)
=Y emitmagT s (©jm+1 = O—jm+1) (T, 21 + 22).
j=1

Replacing z2 by 29 4+ 7, we deduce:

OlMI(7, 21, 20 + 7,0) — 2 (M FDz2gmILQIM (7 2y 4 7 25 +7,0)

m ) o
o i_ d
= E e (22 z1)q2 4(m+1) ((_)j,m-i-l — @—j,m-i-l) (T, Z1 + 22 + 7’)
Jj=1

m N2
.. . m—+1—
=Y et ) = i
j=1
X (O_(mt1-5),mt1 — Oma1—jm+1) (T, 21 + 22).

Replacing in the summation 7 by m + 1 — j, and multiplying both sides by
e2milm+1)21 e obtain:

e2rilmt1)z1 glml (1,21,20+7,0) — e2milmt1)(z1t22) g1 [m] (1,21 + 7,220+ 7,0)
m 3 2
==Y GRG0 (8 41 — O—jmt) (1,21 + 22).
j=1

Adding this equality to (e), we obtain (d). O
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Remark 5.2. Properties (c¢) and (e) of @™ have a simple representation theoretical
meaning (and proof). Property (c) means that chy ., ) is unchanged under the

flip of the Dynkin diagram of g. Property (e) follows from the fact that the odd
reflection with respect to a; maps mAg to mAs = m(Ag + 1) (and does not
change the supercharacter), hence we have:

m(Ao+ai) A m—1 '
Z ( 1 — e _Z = _Z (em( otai) Zo 670‘1),
j=

weWw weWw weWw
Lemma 5.1 on properties of the functions ®") immediately implies the following
lemma on properties of the functions ¢!

Lemma 5.3.
o™ (1 u+ a,v+b,t) = " (1, u,v,t) ifa,be ;Z, a+beZ.

[m]
(b) ap[m](r, —u,v,t) = —gp[m](r,u,ut).
(c) emi(r,u, —v,t) = ™ (7, u,v,1).
(d) oM (r,u+71,0,t) = g~ (Mt dmilmtDupml(r 4 4 1),
(p[m]( — 7,0 t) q—(m+1)e4ﬂ'i(m+1)u(p[m] (7. u, v t)
(©) @7y, 1) — eBmmE D) gl (70— 7y 7 )

.. i2
= —emimADI ST | e2mivg 4t (0 g1 — @fj,erl)(Ta 2u).

Proof. Properties (a), (b), (c), (d), and (e) of ®["™) immediately translate into
properties (a), (b), (c), the second formula in (d), and (e) of p[™. The first
formula in (d) is obtained from the second one by replacing u by w+ 7. O

Note that formulae (d) of Lemma 5.3 imply the following version of property (e):

27ri(m+1)(2v7‘r)(p[m] (T, u,v— T, t)

) iy 2m+1 ) (55)
= —e?mitm Z eI amta (93 m+1 = O—jm+1)(7, 2u).

Jj=1

cp[m] (Tyu,v,t) —e

Recall that in coordinates 7, u, v,t we have:

olml = }AB*ch;l =0 —r90O

mAo,aq mAog,a1?

and note that the function ©, ,  satisfies all conditions of Proposition 4.6 (with
— 0"

a = ). Hence the function ©, . . Aoy |s 18 holomorphic in the domain
X. Since the action of the Weyl group on X commutes with the action of SLa(RR),

the same holds for r©,, \ o, — 7601, .0, |s. Consequently, the function

1 uw v u2v2> (5.6)

G(T,U7U7t) = Qp[m] (T,u,’t),t) - T_lw[m] < y 7t -
T T T T

is holomorphic in the domain X.
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Proposition 5.4.
(a) G(r,u,v+1,t) — G(1,u,v,t)
. o
= e2mi(m+1)t \/mi L (—iT)2
2m—+1 27i(m+1) j 2, e
x ng Dokez/emiz€ T (v 2ms2)” sin i Ok,m1 (T, 2u).
(b) G(r,u,v,t) — 2 MTDCV=T)G(r y, v — 7,1)
T '27'
= —emilmF1)t yoamit €™ 2042 [0 g1 — O jm41](T, 2u).
(¢) The holomorphic function G is determined uniquely by the above properties
(a) and (b).

Proof. Without loss of generality we may put ¢ = 0. In order to prove (a), first
recall the well-known transformation formula for theta functions (cf. formula (A.5)
in the Appendix):

1
1 z rimz2 ZT 2  wing
Oim <T’ 7') - < 2m> Z e On,m (T, 2). (5.7)

neZ mod 2mZ

Using (5.5) and (5.7) we obtain:

1 v v 2mi 1 v v+1
m] { _ 0) =7 @utl) iml 0
S& ( 7_ ) 7_ ) 7_ ) > 6 ()0 < 7_ b 7_ b 7_ ) >

1
f =217 \ 2?2 2wi(mt1)w?
=1 [ T
m+1

2m+1 9 .
2mijv 2mij . 7T_]k’
X E E e T~ eUm+ir gin Ok m+1(T, 2u).
m+1

j=1 keZ/(2m+2)Z

We deduce (a) from this by a straightforward calculation.
In order to prove (b), by a straightforward calculation we get:

G(r,u,v,0) — 627”.(m+1)(2v77—)G(7‘, u,v —7,0)

- <p[m] (1,u,v,0) — eQm(mH)(%*T)go[m] (r,u,v—,0).

By (5.5), the RHS of this equation is equal to the RHS of (b).
In order to prove (c), note that the difference, say, F(7,u,v,t) of two holomor-
phic functions, satisfying (a) and (b), satisfies the following two equations:

F(ryu,v+1,t) = F(r,u,v,t), F(r,u,v—71,t) = 6_4’”‘(er1)”qm“F(T7 u, v, t).
Consider the function

P(r,u,v,t) = F(1,u,v,t)011((m + 1)7, (m + 1)v)>.
Since, by Proposition A.6 from the Appendix,

Yi((m+ D, (m+1)(v—1)) = —ezm(mﬂ)”qf " Y11 ((m 4+ 1)1, (m + 1)v),



416 VICTOR G. KAC, MINORU WAKIMOTO
we deduce that
P(r,u,v+1,t) = P(r,u,v,t), P(r,u,v—7,t) = P(1,u,v,1).

Since P is a holomorphic function in v, which is doubly periodic (for each fixed
value of 7, u and t), we conclude that P is constant in v. Since 91 1(7,0) = 0 (see
formula (A.7)), we conclude that P is identically zero. [

Now we relate the function G to the functions hy, introduced by Zwegers in [Z],
page 51; we will denote hy by N, to emphasize its dependence on m. Replacing
x by z + i in Zwegers’ formula, it is straightforward to obtain a slightly different
formula:

. 2 s _
h (T U) - xir (@m— ) +2mi(2m—i)o e2mimrx +27w(2m—j)Tax—4rm./x " (5 8)
m;j Rotis 1 — 27w ’ :
—+15
where s e R, 0 < s < 1.
Theorem 5.5.
2m—+1
G(T7U7U7t) = —e2milmt1)t Z hm+1;2m+2—j(7a U)(6j7m+1 - ®—j,m+1)(7'7 2“)'
j=1

Proof. Due to uniqueness of a holomorphic function on X, satisfying properties
(a) and (b) of Proposition 5.4, it suffices to show that the RHS satisfies these two
properties.

Let a;(7,v) = hmy1,2m42—5(7,v) to simplify notation, 1 < j < 2m + 1. Replac-

ing x by x +1i,,7 , in (5.8) and taking s = , 7 ,, we obtain a simpler expression:
627ri(m+1)z27'747r(m+1)mv

a;(t,v) =1 iy dx. 5.9

J( ) /IR 1— 6277(T+ 27:;.]1»2) ( )

Property (a) of Proposition 5.4 of the function

2m—1
G(t,u,v,t) = > Z a; (T7,0) (0. m+1 — O_jm+1)(T, 2u)

is equivalent to the following property of the functions a;:

2m1

o) —a(rno)= o0 (i ze W ke lia)? (5.10)

Equation (5.10) is established as follows. Using the expression (5.9) for a,(7,v),
we obtain:

G,j(T,’U + 1) _ CLj(T,U) _ Z/ 2mi(m4+1)z? T —4mw(m+1) va ( ) ,
R
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where
o) = €T angns 1= T )
J 1 627ri(a:+ 2T2ﬂr2) 1 — 27r(a:+ 2m+2)
2m+1 B
_ e—47r(m+1)a: Z eQﬂ'k(:ch 27:;7‘#2)’
k=0
wijk
which, replacing k& by 2m + 2 — k, is equal to imIFQ e 2k~ min Thus,

a;(T,v+1) —a;(1,v)
2m—42 R
T : 2 —
= 2 e erl/ 2ni(m+1)z*T—4n(m+1)zv—27ka dz

j 2m§+2 —migk 2mimi) g k[ ami(mea 1) (i Gt 2th)?
= e m+le T 2m+2 e (2m+2)7 dx.
k=1 R

We compute the integral in the above expression using the formula

o m\1/2
/ e dx:( ) if Rea>0, beR,
R+ib a

to obtain (5.10).
In order to establish property (b) of Proposition 5.4, we need to prove

a;(T,v) — eQ”ij“(mH)(%_T)aj (1,v) = —e* Ve~ 2:éj+22. (5.11)

By (5.8) we have:
a;(T,v) = z/ P(r,v,2) dr (0<s<1), (5.12)

where

P(T, v, I) —e 2m+2 'r+27m]v 27rz(m+1)7'a: —47T(m+1)va:+27r]7'ac

The function P satisfies the identity
62’”‘(’”+1)(27_”)P(T7 v—rT,x) = P(T,v,2 — ).

Hence

. P —i P
e27rz(m+1)(2v77')aj(7_’ v — 7_) _ Z/ (7_, U’z Z) dr — Z/ (7_, ’UQ, I) dx
R+is 1 —esm™ R+i(s—1) 1 —e*m®

Using this and (5.12), we obtain:

a;(r,v) — e27ri(m+1)(2v7'r)aj(7_ / / P(r, 1}2 ,T) i
R+is R+i(s—1) 1 —e*m

97 Res P(r,v,z)dx

=0 1— eQTra:

= P(7,v,0),

proving (b), and the theorem. [
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Remark 5.6. Let ¢™ = o™ — 1G = L(plm + plml|g). This function has a
good modular transformation property: ¢[m]| s = ¢™ but not so good elliptic
transformation property:

¢[m] (T7 u,v—"m, t) = 627Ti(m+1)(772v)¢[m] (Ta U, v, t)
— RN B (0 1y — O i) (7, 20).

Jj=1

Following the idea of Zwegers [Z], we introduce below a non-holomorphic mod-
ification @™ of ™, which has both good modular and elliptic transformation
properties. For that we shall be making use of the functions R, ;(7,v), where m
is a positive integer and j € 7Z, introduced in [Z], p. 53 (1,v € C, Im 7 > 0):

1
I I 2 min? .
Rm;j(T7U) = Z <sign (n + %) - E<<n + 2m12 i)( H;LT> )) e "am fr727mnv7

neZ
n=j mod 2m
where F(x) is the odd entire function 2 fom e~ du. The explicit expression of the
holomorphic function E(z) is used only in the proof of formula (5.13) below, given

in [Z]. The key property of these functions relates them to the functions h,,.; as
follows (see [Z, Remark 3.6]):

7 2mimuv? _ wijk 1 v
Rypii(T,0) + e Y e R (T, T) = 2R (1,0), (5.13)

. 1
(—2miT)> keZ/2mZ

provided that 0 < j < 2m — 1.
Remark 5.7. Note that the functions R,,.; depend on j only mod 2m, while
this is not the case for the functions hy,.;, namely hpm;; (T, w) — hmyjom (T, u) =
q— Z; e—27riju.

The functions R,,;; have also the following elliptic transformation properties,
which is straightforward to check.

Lemma 5.8.

(a) Rpyy(T,v+ é) = (_DjRM;j(Tvv)'
(b) For 0 <j<2m—1 one has:

Rm;j(T, ’U) - 627rim(2v—7')Rm;j(7_’ v — 7_) _ 26_;*51 (Qm_j)27-+27ri(2m—j)v'
Now let

P (7, u,0,t) = jermitmrt Z Rint1,5(7,0) (05 mt1 — O—jm+1) (7, 2u),
JEZ/(2m+2)Z
[m]

@[m] (Ta u,v, t) = Qa[m] (T7 Uu, v, t) + @add(Ta u, v, t)

The correction function gpggll has the following properties.
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Lemma 5.9.

(a) @[7;(]1(7' u,v,t) — @ dd|5(T u,v,t) = =G(1,u,v,t).
(b) cpadd(r u+ta,v+b,t) = (pgd(]j(T u,v,t) ifa,b€ 7 are such that a+b € Z.
(c) ‘Padd(T u+T,u,t)=q —(m+1) p—4mi(m+1)u [dc]l(T u, v, 1).
d T,u,v,t) — e2mH2v=7) [rm] T, U,V — T,t
‘Padd Padd ’,
— e2mi(m+1)t Z?Zil ezmjvq drmta (@j,erl — @7j’m+1)(7-’ QU)‘

Proof. We have by definition of gogggl:

2 2
1 m 1 u v uc —v
wadd|S(Tau7v7t)*T Padd (T’ 7.’ T’ti T )

1 ) _2mi(m41) 2 2
6271'1(m+1)t6 o (u®—v?)
2T

1 v 1 2u
Z Rm+1] ( s 7_> (Gj,m+1 - ij,m+1) (7_ Yo )

JEL/(2m+2)Z
Now we apply to the RHS the following modular transformation formula, which is
immediate by (5.7):

1

1 2u 2mi(m+1) 2 T 2
Oim —0_jm - = T v -
( j,m+1 Js +1)< T ) € ( 2m+2>

Tijk
XY e (O mt1 — O_gmg1)(7, 2u).
kEZ/(2m+2)7Z

Substituting this in the previous formula, we obtain (after exchanging j and k):

(padd|5'(7-u v t)
_ —1
C2V2m 42
2mi(m+1) 2 _ wijk 1 v
x Y e r Ve Ry (_T’ T)(9j,m+1—@—j,m+1)(T7QU)~
J,k€Z/(2m+2)Z

(_2-7_)— : e2mi(m+1)t

Using this and the key formula (5.13), we have:

P (w0, 8) — I s (74,0, 1)
2m+1

= TN D1 (1, 0) (0 mtt — O 1) (7, 20).

j=1

The RHS of this equation is equal to —G(7,u,v,t) by Theorem 5.5. This proves
claim (a). The remaining claims (b), (c) and (d) follow from Lemma 5.8. [

Now we can prove the following important theorem.
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Theorem 5.10.

2 _ .2
o] <1 T ) = 73" (1, u, v, t).

—
2

NaZ

AS

s oy b
T T T T

() M(r,u+a,v+b,t) = o™ (1, u,v,t) ifa,be ;Z are such that a+b € Z.
(¢) "1, u, —v,t) = oM (1,u,v,t), @M(r, —u,v,t) = =@ (1, u,v, ).
(d) @M(r +1,u,v,t) = o™ (1, u,v,t).

) [m]

"™(r,u+ ar, v+ b1, t) = q(m+1)(b2’“2)e4m(m+1)(7““+b”)§5[m] (tyu,v,t) if
a,be éZ are such that a +b € Z.

Proof. Adding to the equation of Lemma 5.9(a) formula (5.5), we get @™ —
@lmM|s = 0, proving claim (a). Adding equations of Lemmas 5.3(a) and 5.9(b),
we get claim (b).

Claim (c) is derived as follows. It is straightforward to check that

Rm;j(T,—U) —‘rRm;_j(T, U) = 2507]‘, j € Z/2mZ. (514)

It follows easily that @EZILL (1,u,v,t) is unchanged if we change the sign of v. It is

also immediate to see that (,0[;3(]1(7‘, u,v,t) changes sign if we change the sign of w.

This proves (¢). Claim (d) is obvious.
Finally, we derive claim (e) from claims (a) and (b) as follows. Replacing u by
u—+ at and v by v + b7 in (a), we obtain

1
@“’”( ,u+a,”+b,t>
T T T

2wi(:nr+1) (u2—U2)e47ri(m+1)(au—bv)q(m+1)(a2—b2) ~[m]

=e oM (T u+ ar, v+ b7, t).

But an equivalent form of (a) is

(Z[m] (_ 1 u ’U7 t) e 2mi(m+1) (uz_vz)g[m] (7,1, 0, ).

’ ’
T T T

Since, by (b), the LHS of the last two formulae are equal, we conclude that the
RHS are equal as well, which gives (e). O

Translating the discussion on @éﬁé and @™ into the language of ®’s, we obtain

the following modification of the function ®"™ (7, 21, 2o, 1):

Plml (1,21, 22,t) = <I>[m](7, z1,22,t) + @Lﬁé(r, 21, 29, 1),
where
Bl (T,21, 22, 1)

. zZ1 — =
= 3OS Ry (17 %) @4 — s +22)
JEL)(2m+2)Z

Then we obtain the following corollary of Theorem 5.10.
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Corollary 5.11.

(a) Hlml (_ 17 21’ 22’ . 212’2> _ 7_EI;[m](7_7 21, 22, b).
T T
(b) Plml (1,21 +a,z2 + b,t) = Plml (1,21, 22,t) if a,b € Z.
(c) ‘5[m](T, —21, —zg,t):—EI;[m](T, 21, 22, t); EI;[’”](T7 zQ,zl,t):EI;[m](n 21, 22, t).
(d) ®™(7 41, 21, 20, 8) = BI™I(7, 21, 20, 1).
(e) Plml (1,21 4+ 7,20 + k7, t) = q_(m+1)jke_2”i(m+1)(kzl""j“)(f)[m] (1,21, 29, t) if
5,k e Z.

Remark 5.12. The following Appell-Lerch sum plays a key role in Zwegers’ paper
[2]:

67T’i21 (71)7111; (n2+n)627rin22

1911(7‘, ZQ) Z

ne”Z

(T, 21, 22) =

1— eQﬂ'izl qn ’

along with its non-meromorphic modification

~ 1
AT, 21, 22) = (T, 21, 22) +  R(T, 21 = 22),
where R is defined in [Z, p. 11]. Let us compare these functions with the functions

(7, 21, 29) == ®™(7, 21, 25,0) and Ry (7, z), which play a key role in the
present paper. First it is easy to see that

R(7,2z) = Ra1 ('r7 ;) — Ry, ('r, ;) (5.15)

Furthermore, in [KW4] (formula (3.22) for s = 0, m = 2) we proved the following
character formula:

chy (7, 21, 22,0) = V11(7, 21)911 (7, 22) (T, 21, 22)/n(T)3.
Comparing this formula with (5.3) for m = 1, we obtain the following identity:
OU(7, 21, 29,0) = V11(7, 21 + 22) (T, 21, 22). (5.16)
On the other hand, using (5.15), it is easy to see that
@Lﬂd(ﬂ 21,292,0) = ;R(T, z1 — 22)011(7, 21 + 22). (5.17)
Comparing (5.16) and (5.17), we get the “modified” identity

Pl (1,21,22,0) = 911(7, 21 + 22) (T, 21, 22). (5.18)
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6 Modular transformation formula for the function
(I)[m](T/M’ z1/M, z2 /M, t)

Given an additive subgroup A of Q, consider the following abelian group:
Qa={(a,b)e lAx A|a+be A}.
For a positive integer M consider the abelian group
Qur = Qz/z.

The first result of this section is the following theorem.

Theorem 6.1. Let M be a positive integer and let m be a non-negative integer,
such that ged(M,2m +2) =1 . Then

(a) N[m}(T U vt)_M~[m] Muvt u? — v?
LP M’M’M7 —7_90 7_77_’7_’ TM :
b ~[m] ( T u v t)
()QD MaMan o . )
= Z g v (@) T (eu=bo) BmI N 4 ar, v + b ).
(a,b)EQM
Replacing (7, u,v,t) by (/M,u/M,v/M,t) in Theorem 5.10(a), we obtain (a).
The proof of (b) is based on several lemmas, proven below.
Given coprime positive integers p and ¢, for each integer n € [0,q — 1] there
exist unique integers n’ € [0, p — 1] and b, such that

n=mn'q+bup. (6.1)
Furthermore, the set
Ijp:={by|n=0,1,...,¢—1}

consists of ¢ distinct integers. Any n € Z can be uniquely represented in the
form (6.1), where n’ € Z and b, € I, and this decomposition has the following
properties:
(i) n>0iff n' > 0;
(ii) if 4, jo € Z/pZ are such that j = qjo mod p, then n = j mod p iff n’ = jy
mod p.
We shall apply this setup to p = 2m+2, ¢ = M, and let I = Ips,2y,+2 for short.

Lemma 6.2.
(a) @™ ( P t) = Z e ™ (a+20)zitazs) i (o +2ab)

M7 M’ M’ <
SSM xOIM(Mr, 21+ a7, 2+ (a+ 20)T ).
(b) (p[m] (]7\—4’ JL\;’ Alj[,t) _ Z 674#11(1”&1+1) ((a+b)u+bv)qm;;1(a2+2ab)
0<a<M

el ><<p[m] (M7,u— (a+b)T, v+br,t).
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Proof. We prove (a); (b) follows immediately from (a). Recall that

Ol (r, 21, z,t) = 2TV (7 2y, 20) — @ (7, 2, —21)),

where

gi’ (m+1)
1— 627Ti21 qj

2mij(m+1)(z1+22)

[m] _ €
(pl (Ta 21, 22) -

JEz

We have, by expanding each term in this series in a geometric series (assuming

that |¢| < 1 and Im z; > 0) , and replacing (7, 21, z2) by (AT/[, i ;f[)

m T Z 27\'1(m+1) z - 2mwikz 152 (0m .
@) ](M M M) (>X->)e vhee T g T Im DR, (6.2)
7,k>0 j,k<0

Now we divide j by M with the remainder a, 0 < a < M : j = M + a, and
decompose k according to (6.1): k = k'M + (2m + 2)by. Since

]\14(j2(m +1)+4k) =53¢ (m+ 1)+ k)M + 5’ (a + 2bg)(m + 1)

a(a + 2bg)(m + 1)

-/ 1 /
+a(j'(m+1)+k)+ Y )

we obtain from (6.2):

o (M ;/[ M) > (Z > )A/k/e““”}“)“(mm)

0<a<M j',k'>0 5/ k<0
bel

471'1(m+1) bZ1qMJ (' (m+1)+k’ )B (m+1)]¢\1/1(a+2b)

X e 3, k4 ’

where

Aj’,k/ _ 6271'1'(777,Jr1)j'(21+,22)6271'ik'217 Bj/,k’ _ e27ri7'(2j’(m+1)(a+b)+ak')'

Therefore, using again (6.2), we obtain:

(I)[lm] ( T 21 22 ) _ 62ﬂ(;+1) ((a+2b)z1+azQ)qu}r1 (a®+2ab)
) )
M MM ogza<M
bel

X <I>[1m](MT, z1 +ar, 2o + (a + 2b)7),

which proves (a). O
Lemma 6.3. Given j € Z/(2m + 2)Z, let jo € Z/(2m + 2)Z be the element, such
that j — M jo € (2m + 2)Z. Then
m41 mi(m41)
(@) Rmsrs (50 ) =D 0 ™ Ve "0 Ry g (M, v+ br).

bel
m41 2 471'1(m+1)
(b) ®j7m+1 (1\7;[’ 2]\;) = q M “ M ®joam+1(MTv 2u + 26”-)'
acl
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Proof. By definition of R,,,; we have:

Rty (]Tw, ]\1}4) = Z <sign(n+ 2)

n=j mod 2m-+2

1
I 1/1 M 2 win? win
(vl ) (0 i

We have the decomposition (6.1):
n=n'M+b,(2m + 2),
and, by its property (ii),
n =7 mod 2m+ 2 iff n’ = jo mod 2m + 2.
Using property (i) of the decomposition (6.1), we obtain:

R (fi) =X 5 (smorey

bel n’=jomod 2m+2

(e ) (20 ))

i 2 . 1 Ami(m—+1
% e—;’;ﬂ{‘ign' —271'zn'(v-|-b7')qf"‘A}r b267 “(EJF ) by

 m+1,2  4wi(m+1)
= E g M Ye M PR o (MT v+ bT),
bel

proving (a).
In order to prove (b), note that we have from (A.3):

@j,m+1 (]Tw, ]Zw) = Z 6(47317:47)M”26"§\?z. (6.3)

n=j mod 2m-+2

Using the decomposition (6.1): n = n'M +(2m+2)a, where a € I, and its property
(ii), we deduce:

Oj,m+1 R o Gamndyn (W M+(2m+2)a)® 7 (n/ M+(2m+2)a)=
7 M’ M

acl n'=jomod 2m—+2

m41 2 2mi(m+1)
= E gM e M O, (M1, 2+ 2a7),
acl

and (b) follows by replacing z by 2u. O
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Lemma 6.3 implies that for @éﬁé (1,u,v,t), defined in Section 5, we have:

m] (T w v
Padd M’ M’ Mvt
_ Z qmﬁl(“2—172)64”(13“)(““_bv)cpg?gl(MT,u +ar,v+brt).
a,bel

(6.4)

End of the proof of Theorem 6.1(b). First, by induction on |j| we obtain from
Lemma 5.9(c) for j € Z:

Sp[m] (Tyu+j7,0,t) = q_j2(m+1)6_4ﬂij(m+1)u@[m] (T,u,0,0). (6.5)

This equation implies that for j € C, the expression

m41 2 Ami(mt1)

g™ I M I (M w4 v, t) (6.6)

remains unchanged if we replace j by 7/ = 5 + Mn, n € Z . Indeed, we have:

oM(Mr,u + j'm,v,t) = o™ (M7, u + j7 + ((5' — 5)/M)MT,v,t), and we apply

(6.5) with w replaced by u + j7, 7 replaced by M7 and j replaced by (' — j)/M.
Replacing v in (6.6) by v + b7 (b € C) and multiplying it by

m+1p2 Ami(m41)
Y AP Vi

q

)

we deduce that the expression
g " (@ =) Y (@u=bo) S (A7 4 4 ar v + b t) (6.7)

remains unchanged if we replace a € C by a + Mn, n € Z.
It follows that Lemma 6.2(b) can be rewritten as follows:

[m] T U v t
LS VAN VARV
m—41

= g (@? =8 T (aubo) [m) (MT,u+ ar,v+ br,t),
a,bel

(6.8)

by making use of the following lemma.

Lemma 6.4. Given b € Z, for each a € Z>o, such that a < M there exists a
unique o' € I, such that —(a+0b) =a’ mod M. Moreover, {a’ |0 <a < M} =1.

Proof. We have, by decomposition (6.1) with p =2m +2, ¢ = M:
—2(m+1)(a+b)=n"M+ 2m +2)a’ (n' € Z, a’ € I).

Hence —(2m + 2)(a+b) = (2m +2)a’ mod M, and —(a+b)=a’ mod M. O
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We obtain from (6.8) and (6.4):

~[m] T u v "
(P M’M’M’

i(mt1 6.9
= g™ (a®=6%) o T )(‘w—b”)@[m] (MT,u+ ar,v+ br,t). (69)
a,bel
It follows from Theorem 5.10(e) that the expression
quJl (a®=b%) o "G Y (@u=bo) Gl (Mo7 u+ ar,v + b, t) (6.10)

is independent of the choice of (a,b) € Qz mod Q7. Along with (6.9), this
completes the proof of Theorem 6.1(b).

Next, we translate the obtained results from @l" to ®™l. For that we define
the map

72— (1z)?, (j,k)H(a:—j;k,b:j;k). (6.11)
This map induces a bijective map
(ZJ)MZ)* = Qur. (6.12)
It follows from Corollary 5.11(e) that the function
g ke Y (keiiz) I (N 2y 4 7 2o + KT, E) (6.13)

is independent of the choice of j, k mod MZ.

Theorem 6.5. Let M be a positive integer and let m be a non-negative integer,
such that gcd(M,2m +2) =1 if m > 0. Then

(a) zf'[m] (_ ]\47 zZ1 29 r_ 2122>

i’ M
— ]\7'4 Z q”ﬁlikez"l(z&"ﬂ) (k214722) QUM (M7, 21 + j7, 20 + kT, 1),
3, kEZ/MTZ

b (AI;[m] T Z1 22 ¢
o) & (7
_ Z qm]\}rljk62m<z\7+1)(kzl+jzz)(§[m](MT, 21 + 57, 22 + kT, t).
S k€T MZ

Proof. Recall that @m](r, 21, 20, 1) = @7, u,v,t), where 21 = v —u, 20 = —(v+
u). Hence 3™ (M7, u+ar, v+ br, t) = O (1, 21 + (b—a)7, 20 — (b+ a)T, t) =
Plm] (1, 21 4+ j7, 22 + k7, t), where j = b —a, k = —(b + a). Hence under the map
(6.11), (6.12) formulae from Theorem 6.5 correspond to those of Theorem 6.1.
Finally, M can be any positive integer if m = 0, as explained in Remark 6.6 below.
O
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Remark 6.6. If m = 0, then Theorem 6.5 holds for an arbitrary positive integer M.
Indeed, in this case gcd(M, m + 1) = 1, Lemma 6.2(a) still holds with I replaced
by I' = Inm+1 and 2b replaced in each summand by b (the proof is the same).

Also ©;1 —0O_;1 =0 (j € Z/2Z), hence gpggd =0, and @l = L0, QIO = PO,
Therefore we have for any M > 1:

M zZ1 %2 Z1%22
o[ — t—
R S ™™

= ]\; Z quQAT (kZ1+JZ2)<I>[O](MT z1+j7, 20 + k7, 1).
4, kE€L/MT

7 Modular transformation formulae for modified
normalized characters of admissible sf;;-modules

Recall (cf. Section 4) that in order to have SLy(Z)-invariance, we need to take,
along with characters and supercharacters, also twisted characters and superchar-
acters. For the twisted sfy; -modules we choose

£ =—5(a1+a). (7.1)

Throughout this section we shall work, as in Section 5, in the following coordinates
of the Cartan subalgebra f) of 3£2|1

h =2mi(—7Ay — z100 — 200y + t8) 1= (7, 21, 22, ). (7.2)

In particular, we have:

T T 21+ z T
t_g(T,ZhZQ,t):(T721+2722+ A4 Ty ) (7.3)

2 2 4

As in Section 4, throughout this section the superscripts (1/2) and (0) will refer
to characters and supercharacters, while the subscripts 0 and 1/2 will refer to
non-twisted and twisted sectors, respectively.

By (4.1)—(4.5) we have the following formula for the normalized affine denomi-
nators (g, =0 or J):

77(7')31911(7, 21 + 22)

ﬁé(f) 720, 20,) = (=1 2e(1-2¢") 2mit ' 74
¢ ( b2 ) ( ) 191—25',1—25(7‘7 21)191—25/,1—25(7'7 2’2) ( )
By Theorem 4.1 we have the following modular transformation formulae:
= 1 ’ Tiz] 29 A
RS (_ T le Z:t> = (=)' re T RE (7,2, 20, 1) (7.5)

R( )(7’ +1,21,20,t) = em's,]%gs*e/‘)(r, 21, Z2,t). (7.6)
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Fix a positive integer M and a non-negative integer m, such that ged(M, 2m +
2) = 1if m > 0. In connection with the study of the numerators of the normalized
characters of admissible SAEQ‘l—modules introduce the following functions (g,&’ =0
or 3, j,kee +17):

WL%;ZL;E](Ta 215 22, t)
(m+1)jk  2mi(m+1) (kz1+j22) g [m] . (7.7)
=q M e M z1+jz2 (I)m(MT7z1+]T+E7ZQ+kT+E7M)’

and denote by {IVIE%,’Z“E](T, 21, z2,t) the function given by the same formula, except

that @ is replaced by ®. Since the functions (6.13) depend only on the choice of
j,k mod MZ, the same holds for the functions

2mi(mA e 4y = (M omge
e M G+ )\Ijg‘,k;e’ ](

7, Zlszat)'

The following theorem is immediate by Theorem 6.5(a) and Remark 6.6.
Theorem 7.1. Let e,e' =0 or 1/2, and let j,k € € +Z/MZ. Then

27 1
@[M,m;s] _ 1 21 2 t) = T e ﬂ'l(ﬂ-i_ )2122
ke’ 7’ M

_2milmA) (i) [Mmse')
X Z € a7 (aktbd) \I/a,b;e (Tﬂ 21, %2, t);
a,bEe+Z/MZ,
3 (M m;e] _ o (mADIk =M msle—e’|]
Uipe (TH+121,20,t) =e M S ke (7,21, 22, 1).

Now we link the functions \I/y\g_’g,m] to the normalized characters of admissible

SAEQH—modules of level K = ((m + 1)/M) — 1. Recall (cf. Proposition 3.14) that we
have admissible weights of this level K of two types (j,k € Z>g):

- m+1 .m+1 m+1 o
Ag’z((”k“) M 1>A°J v Mk T A 0k, k<M -1

M
2) ; m+1 .m~+1 m+1 S
A§,k((ﬂ+k1) M +1>Ao+g yp MR A 1<k, GRS M.

Also in coordinates (7.2) we have for the corresponding simple subsets S; (resp.
S2) ={ai[i=0,1,2}:
&1(h) = —27Ti(21 + ]{317')7 &Q(h) = —27Ti(22 + k27)7

(resp. a1 (h) = —2mi(—z1 + k17), aQa(h) = —2mi(—22 + ko7)). (7.8)

As before, it is convenient to introduce the following notation for normalized
untwisted and twisted characters and supercharacters:

chi = chg\l;{f), chy = chﬁ%, chiVt = chg\lﬁé, ch"'™ = Ch53)1/2' (7.9)
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Proposition 7.2.
(a) If A =AS), where j k€ Z, 0 <jk,j+k<M—1, then

(RS)ChE\E;)s/)(Tv 21,22,1) = \1/5,+ét7j]’€i]_6,;8,(7, 215 22, 1)

(b) If A= AY), where j,k € Z, 1< j, k,j+k < M, then

(ﬁif)chgi)e,)(ﬂ 21, 29,t) = 7LII[1\J/\[{—;—Z;i]j,M+e’—k;E’ (1, 21, 22, t).
Proof. We explain how to derive (a), the proof of (b) being similar.

First, the (super)character of an admissible module is obtained from the (su-
per)character of the corresponding partially integrable module L(A®), as described
by formula (3.24). This amounts to replacing the simple roots a; € II by the
a; € S1,1 € I, described by (7.8), in the numerator of the (super)character of

L(A®). Thus, the supercharacter of an admissible sAﬁg‘l—module L(A%ﬁ) is ob-
tained from that of L(mAy) by the following substitution in the RHS of (5.3): the
z; are replaced according to (7.8), and ¢ is replaced by
1 t+ (m+1)(z1k + 295
A = m T EnR R,
In order to deduce the formula for the normalized supercharacter (3.19), we find
for A = AL
_m+1,
ma = u Jk.
Then (a) for ¢ =&’ = 0 follows.

To deduce (a) for ¢’ =0, e = 1/2, note that the character is obtained from the
supercharacter by replacing z;, i« = 1,2, by z; + (1/2). Finally, to deduce (a) for
e’ =1/2, ¢ =0 or 1/2, we should replace A by A®™  which, according to (4.6),
(4.7), (4.8) and (4.9), amounts to replacing j and k by j + (1/2) and k + (1/2),
and replacing ch™ by t¢(ch®). O

In order to state the modular transformation formula for the modified normal-
ized admissible characters it is convenient to change notation as follows:

[M,m;e] @) [M,m;e] .7 (e)
Chj—&-&’,k-‘r&’;e’ = ChA(l) s ChM+E’—j,M+8’—k:;E’ = 7ChA(2)
j,k;e! j,k;el
Then o]
,m; . .
{ch e |Gk EZ0<j k<M —1,6¢ =0,1/2}

is (up to a sign) precisely the set of all admissible characters (resp. supercharacters)
if e =0ande = 1/2 (resp. € = 0), and it is the set of all twisted admissible
characters (resp. supercharacters) if e’ = 1/2 and ¢ = 1/2 (resp. £ = 0). In view of
these observations, introduce the modified normalized characters (e = 1/2, &’ = 0),
supercharacters (¢ = 0, &’ = 0), twisted characters (¢ = 1/2, ¢’ = 1/2), and twisted
supercharacters (¢ = 0, ¢’ = 1/2), letting

M mie]
Uohie (T, 21, 22, )

RS (, 21, 22,1)

Then from (7.5), (7.6), and Theorem 7.1 we obtain the following theorem.

~ [M,m;e]

chy e (7,21, 20,1) = , G kee+7Z,0<j k<M. (7.10)
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Theorem 7.3. Let M be a positive integer and let m be a non-negative integer,
such that gcd(M,2m 4+ 2) =1 if m > 0. One has the following modular transfor-
mation formulae (£,6' =0 or 3; jk €&’ + 7,0 < j, k< M):

'B[J\I,m;é‘] 1 21 29 2129
Ol ke . N e
T T T T

/]_ mi(m Mm
:(71)455M Z e’ G (ak+bj) h[ e E](T721,22,t);

a,bee+7Z
0<a,b<M
[M,m;e] og (MADIK s ~ [M,msle—e 1
Ch]ks, (T4 1,21,29,t) = ¢ M h]ks, (1,21, 22, ).

Remark 7.4. If m = 0, we have admissible é\lgu—modules of boundary level K =
(1/M) — 1 [KW4]. In this case, by Remark 6.6, ®[) = ®[9 and, since chy = 1,
we have, by (5.3), (5.4):

ol = R,
(Note that this is the famous Ramanujan summation formula for the bilateral

basic hypergeometric function ; ¥4, cf. [KW3].) Hence in this case (7.10) becomes
(k€& +2,0< k< M):

Y. L S S P S )
o R( )(T7217227t)

These are the normalized characters and supercharacters of all admissible un-
twisted and twisted modules of boundary level K = (1/M) — 1. In this case one
needs no modifications, and modular transformation formulae for these characters
and supercharacters is given by Theorem 7.3 for m = 0 with tildes removed.

8 Modular transformation formulae for modified
normalized characters of admissible A;;-modules

Consider the Lie superalgebra gfs)5, endowed with the structure of a Kac-Moody

superalgebra as in Example 3.4, and let ﬂz‘g be the corresponding affine Lie su-
peralgebra (see Section 2). On the Lie superalgebra sfy, the supertrace form
is degenerate with kernel Cl,, but it induces a non-degenerate invariant bilinear
form, which we again denote by (.|.), on the Lie superalgebra A, = pslys(=
sly)2/Cly). The associated affinization (see Section 2)

Ay = At @ CK @ Cd
is a Lie superalgebra with a non-degenerate invariant bilinear form (.|.) induced
from gy,

Throughout this section, g = A;}; and 9= A\1|1' The Lie superalgebras g and
g inherit from gls)o and gA€2|2 all the basic features of a Kac-Moody superalgebra,
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discussed in Sections 1 and 2, like the root space decomposition, the triangular
decomposition, the Weyl group, etc. The Cartan subalgebra h of g is, by definition,
the quotient of the space of diagonal matrices from sl55 by CI4. (Thus, dimb = 2,
|I| = 3, the corank of the Cartan matrix is 1, and II is not a linearly independent
set, so that g is, strictly speaking, not a Kac-Moody superalgebra, but a simple
variation of it.) The Cartan subalgebra h of g is, as before, defined by (2.7).

It is easy to see that an irreducible highest weight module L(A) over gAﬁz‘Q is
actually a g-module, provided that A(I4) = 0, and it remains irreducible when
restricted to g. The condition A(Iy) = 0 is equivalent to the following condition
on labels of A (defined by (3.5), (3.6)):

mi = ms. (81)

Let TI = {a1, a2, a3} be the set of simple roots of g (note that a; = az). We
denote a1s = a1 + ag, ez = g + a3, aaz = a1 + as + ag, ete., for short. We
have:

g:_27 £:2a Ag:{OZQ; 92&123}7 A{:{al7a3;a127a23}7
(ar]ar)=(az|az)=(a1]az) =0, (az]az)=-2, (ai]az)=(az|az)=1, (0|0)=2,
2pg=0n2+ao3, pi=0, 2p=—ay3, h'=0.

We choose ¢ € ) by letting

(Elar) = (glas) = 5. (flaz) =0, (8.2)
so that
(pol€) = 5. (1) =1, (pl6) = —5.
We choose the following coordinates in § (cf. (3.27)):

h =2mi(—7Ao — (21 + 22)an1 — z10 + t9) := (7, 21, 22, 1). (8.3)

Note that for z = —(21 + 22)an1 — 2102 we have: (z|z) = 221 2.
By (4.1)—(4.5) we have the following formulae for the normalized affine denom-
inators (g,&/ =0 or }):

= / Y11(7, 21 — 22)011(T, 21 + 22)
R® 7,21, 22) = (—1)% n(r)* ’ ’ ) 8.4
N ( ' 2) ( ) G ) 191725/,1725(7'7 21)2191725',1725(7'7 22)2 ( )
Note that these denominators are independent of ¢ since hY = 0.
By Theorem 4.1, we have the following modular transformation formulae:

}A%S) (=1, 2, =2) = (—1)2(8_El)i7‘6ﬂ222 RS/)(T, 21, 22), (8.5)
}A%S)(T +1,21,29) = e”i(%/_é)}?gsie,‘)(n 21, 22). (8.6)

Next, we study modular transformation properties of the numerator of the nor-
malized supercharacter of the partially integrable g-module L(mAg), where m is
a non-zero integer (see Example 3.4), using formula (3.14) for chy, » ;.
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We have: W = {1,rq,,79,7a,79}. We choose T, = {a1, a3} in (3.14) . Since
T,y fixes e™A0FP /(1—e~1)(1—e~23), we deduce that jo = 2, and the summation
in (3.14) is over the semidirect product of the group {1, r,, } and t;%. Furthermore,
L# =70 if m > 0, and L¥ = Zay if m < 0. Hence formula (3.14) gives, using
(2.11), the following supercharacter formulae, where m is a positive integer:

e MmMo—PR=chT

L(mAo)
im0 gmi®+i e~z —iml gmj®+j (8.7)
N ]EZZ< 1—e—c1gi) (1—6—‘13qj)(1—6_0‘1—0‘2qj)(1—e““_O‘qu)>
eon_pﬁ_chZ(ion)
eimaz gmj®+j e—a2—jmaz gmj®+j (8.8)
B Z( l—e—1gd) (1—e—a&qj)(1—6_0‘1—0‘2qj)(1—e‘o‘2_0‘3qj)>

JEZ

After passing to the normalized supercharacter, equation (8.7) in coordinates (8.3)
looks as follows:

(Eéo)ch;mo)(r,zl, za,t)

27mmt E

( 27r1jm(z1+zz)627mz1qm_] +3j
JEL

627”21(]]) (89)
6—27rijm(z1+zz)e—27rizzqmj2+j

(1 _ e—27rizij)2
We denote the RHS of (8.9) by ®41l™l(1, 21, 25, ). Recall that m is a positive
integer.

Lemma 8.1.

(I)Al\l[m] (7—7 21, 227t) = DO(b[mil] (7_, 21 ZQat)7

1 0 0
Do = 2mi <821 - 8z2> ’

and ®=1 is the RHS of (5.3) with m replaced by m — 1.
Proof. Tt is straightforward, using that Doe?™%™(:1+22) — (. [

where

Next, introduce the following differential operator:

D*l 87872:1*228
Yo oni \ 02, 0% 2r Ot)°

It is immediate to check that

(D1F)|s = TD1(F|s), (8.10)
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where (cf. (4.16) and (4.17))

1
(F|S)(Tazl722,t) TlF( 21 22 . 2122>'

A T
Consider the following non-meromorphic modification of the numerator ®4111lml:
oM™l (r 20 2, 1) = D1®M (7, 2, 20, 1)

and let (see (7.7))

~ Ay [M,m; ~ 1.
\I/jllc‘lsg ’m’E](ﬂ 21, 22, t) =D1‘1’%;’:} 1’E](T, 21, Z2, t).
Theorem 8.2.  (a) If m is a positive integer, then

~ 1 21 z 212 =
A [m] < . 1’ 2,15 ! 2) _ 72<I>A1‘1[m](7, 21722’15)_
T T T T

(b) Let M and m be positive integers, such that ged(M,2m) =1 if m > 1. Let
g,e' =0 o0r1/2, and let j,k € e + Z/MZ. Then

@Am[M,m;e] ( 1z oz ; 2122)
4, ke’ 3 s 3
v T T T T
2
T _2mim (k1 bi) T AL [M,mie]
— E e~ M (ak+ ])\I/a,b;s (T, Zl,Zg,t).

a,b€e+Z/MZ

Proof. Tt follows immediately from Corollary 5.11 and Theorem 7.1, using (8.10).
O
A1 [M,mie]
- 7.k’
of admissible A;j;-modules of level K = m/M, where m and M are positive co-
prime integers, for which the corresponding partially integrable module is L(mAy).
The highest weights of these modules are admissible with respect to the simple
subsets of type S;, j = 1,2, 3,4, described in Example 3.11. These highest weights
are listed in Proposition 3.15 , and they should satisfy the additional condition
(8.1). Below we introduce a more convenient indexing of them, where k; € Z>o,
i=0,1,2,3, k1 = k3 (the last condition is equivalent to (8.1)).

Recall that

Next, we link the functions v (7, 21, 22, t) to the normalized characters

3
81:{&i:ki6+ai|i:0,172,372ki:M—1}.
=0

In coordinates (8.3) we have:

&1(11) = —27Ti(21 + le), (521 + &2)(]1) = —27Ti(22 + (kl + ]{32)7'). (8.11)
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Let j = ki1, k = k1 + k2. Then the pairs (7, k) that determine the corresponding
highest weight A,(cll) k, » Tun over the following set of pairs of integers:
k>3>0, j+kE<M-1. (8.12)

We denote the corresponding admissible highest weights by Aji, and let s = 1.
The simple subsets of the second type are

3
Sy=A{Gi=kid —0; [i=0,1,2,3, ki =M+1,k >0}
i=0
In coordinates (8.3) we have:
&1(h) = —27Ti(—2’1 + le), (521 + &2)(]1) = —27Ti(—2’2 + (1{31 + ]{32)7'). (813)
Let j = M — ki, k = M — k1 — ko. Then the pairs (j, k) that determine the

corresponding highest weight A,(fl)kz run over the following set of pairs of integers:

M-1>j>k>1, j+k>M. (8.14)
We denote the corresponding admissible highest weights by Ajj, and let s = 2.
The simple subsets of the third type are

S3 = {540 = ko0 + ap, 001 = k10 + a2, 00 = k25*042,35é3 = k30 + a3 |
S k=M -1, k2>0}.
i—0

In coordinates (8.3) we have:
ay(h) = =2mi(za + k17), (a1 + az)(h) = —2mi(z1 + (k1 + k2)7). (8.15)
Let j = k1 + k2, k = k1. Then the pairs (j, k) that determine the corresponding
highest weight AS;) r, Tun over the following set of pairs of integers:
0<k<j, j+k<M-1. (8.16)

We denote the corresponding admissible weights by A, and let s = 3.
The simple subsets of the fourth type are

Sy = {ao = ko8 — 0, @1 = k10 — @z, @y = ko + g, @y = ksl — s |
S k=M1, ko, by >0}.
i=0
In coordinates (8.3) we have:
ap(h) = =2mi(—z2 + k17), (a1 + ag)(h) = —2mi(—21 + (k1 + k2)7).  (8.17)
Let j = M —ky — ko, Kk = M — k1. Then the pairs (j, k) that determine the

corresponding highest weight A,(:i)kz run over the following set of pairs of integers:

1<j<k<M-—1, j+k>M. (8.18)

We denote the corresponding admissible weights by A, and let s = 4.
Summing up, we observe the following.
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Remark 8.3. The sets of pairs (j, k) indexing the admissible highest weights Az,
fill up without overlapping the set of pairs of integers in the square {(j, k) € Z? |
0<jk<M-—1}

Proposition 8.4. We have the following formula for the normalized supercharac-
ters of all admissible Ayj1-modules L(Ajy):

~ mj Tim - t
(Réo)ch/_\jk)(ﬂ 21, 22,t) = €5q i e (kZI”ZZ)(DAm[m](MT, 21+ jT, 29 + kT, M)’
<571)2(572)

where e, = (—1) , and the function ®411™ is given by Lemma 8.1.

Proof. Instead of proving the proposition in the same way as Proposition 7.2, we
shall use formula (3.28) for A° = mAg. For this we need to compute 3 € h*
and y € W, such that S, = tgy(S(ar)) for each s = 1,2,3,4. A straightforward
computation gives:

s=1:y=1,8= 7(k1 + ;kz)aw — k1aa;
S=2:1Y="TapTas, 8= (k?1 + ;kQ)al?, + kiao;
s=3:y=rq4,, = —(k1 + ék/’g)alg, — (k1 + k2)az;
S=4:y="ran, B= (ki + sko)aiz + (k1 + k2)as.

Now, using (3.25), we see that the highest weight coincides with the A,(jl) hyr S =

1,2, 3,4, up to adding a multiple of §, which can be ignored since it does not change
the normalized character. Applying formula (3.28) and using the correspondence

A,(i)b — Ajj gives the result after a straightforward computation in all four cases.

We use the same notation (7.9) as before for normalized untwisted and twisted
characters and supercharacters, and use £ given by (8.2) for the twisted characters
and supercharacters, given by (4.7). Then, as in Section 7, we get from Proposition
8.4, after the change of notation, similar to (7.9), the following unified formula for
normalized characters and supercharacters of all admissible twisted and untwisted
Aqji-modules (e,e’ =0 or 3, j, k € e’ +7):

(]?Eg)ch(e) )(7, 21, 22, )

Ajkse’

(8.19)

— 5Sqn}ékezﬁm(kzl+j22)q)f41\1[m] (]\4’7—7 21+ e+ 1,20 + €+ kT, M)
In view of this formula, we introduce the modified (super)characters of untwisted
and twisted A;j;-modules by the formula (g, = 0 or ;; jkee +7Z,0<j k<
M):

~ﬁ;L2EM’m;€] (Ta 21, %2, t)

ﬁg:) (T7 21, 22)
where the denominators are given by (8.4). Recalling Lemma 8.1, we see that
the modification amounts to replacing the meromorphic function olm=1 by its
non-meromorphic modification &~ (as in the case of sly;), and, furthermore,
putting the operator Dy in front and replacing it by D; (and dropping the unessen-
tial sign e5).
The following theorem follows immediately from (8.5) and Theorem 8.2.

~ Aq1[M,mse]

ket (1,21, 22,t) =

)
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Theorem 8.5. Let M and m be positive integers, such that ged(M,2m) = 1 if
m > 1. Lete,e’ =0 or } and let j,k € & + Z/MZ. Then:

~A1‘1[M,m;5]( 1 21 29 " 2’122)
Cl; g s — -
7,k;e 7_3 7_7 7_3 .
27r1m ~ Ay [M,m;e’]
_ 25 £ aker 11
—(=1)% )” E e 7) ch, p.c (7,21, 22, t).

a b€s+Z/JWZ
Remark 8.6. In the case m = 1 we have:

EIV)AHI[I](T7 2’1,22,0) _ @Al\l[l](r, 21722,0)

n(1)*011(7, 21 + 22)

= Dy®® T, 21, 22,0 —1D .
0 ( b=z ) 01911(7' 2’1)1911(7' ZQ)

Hence, in view of Lemma 8.1 and formula (8.4), the supercharacter formula (8.9)
for m = 1 becomes:

R (7, 21, 20)chy, (1, 21, 22,0) = Do(RY (7, 21, 22)),

where
1011 (T, 21 — 22)011 (T, 21 + 22)

7(0) =
By (mz22) =m0y 200 (7, 2)?

In the remainder of this section we shall study the partially integrable A\1|1_
modules L(—mAg) where m is a positive integer, and the corresponding admissible
gm—modules of level K = —m/M, where M is a positive integer, coprime with m.

We introduce coordinates, different from (8.3):

h =2mi(—7Ag — (21 — 22)a1 — 21002 + t0). (8.20)

In these coordinates the normalized supercharacter of L(—mAg) looks exactly like
the RHS of (8.9) (except for the sign change of t):

(E(()O)Ch:m/\o)(,n 215 %2, t)

—27szt §

( 27r1jm(z1+zz)627mz1qm_] +3j
JEL

]_ _ 627”21(]]) (821)
6727rim(21+22)6727ri22 qmj2+j >

(1 _ e—27rizij)2

Note that the RHS of this equation is the function ®411[™)(7, 2, 25, —t). Note also
that passing from coordinates (8.3) to coordinates (8.20) amounts to the change
of sign of z3, hence the normalized affine denominators (8.4) remain unchanged.
Next, we derive a formula for normalized supercharacters of level K = —m/M,
where m and M are positive coprime integers, for which the corresponding partially
integrable module is L(—mAy). As in the case of positive level K, there are four
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types of such modules, with highest weights A](;) k, (5 =1,2,3,4) given by the same
formulae as in Proposition 3.15 except that m is replaced by —m. We consider
the same reparametrization A, of these highest weights (cf. (8.12), (8.14), (8.16),
(8.18)), so that, according to Remark 8.3, the set of pairs (j, k), indexing these
admissible highest weights, is the set of integer points in the square 0 < z,y <
M —1.

As in the case of the positive level, we use formula (3.28) in order to compute

the normalized superhcaracters ch™ A© of level —m/M in coordinates (8.20). We
kl k2

get:

(R ch () (7,21, 2,1)

kl ko

= e,q Mk TH" (Shatize) (D glm 1) (8.22)

X(MT,2’1+].T,2’27]CT,* if s=1 or 3.

t
M)
By Lemma 5.1(b),(c) and by formula (3.28), we have:

(R eh=y )(7y21,22,1)

—q M Nk (kutka) o 2™ (k1 +k2) 21—k 22)

D0 (o b )

= egq~ $i G=ME=D) 57" (—(k=M)z1+(=M)z2) ( Dy plm—11)

X (M7'721 +(j—M)r, 290 — (k—M)T,f]\Z).

A similar calculation shows that an analogous formula holds also for Ak o (for
the corresponding values of j and k). Combining this with (8.22), we obtain the
following unified formula for s = 1,2, 3,4:

)(T7 21,22, t)

2mim

= £4q Mj/k/e M (_k/Z1+j/Z2) (823)

t

X (Doq)[m_l]) (MT’Zl + 57, 20 — KT, —M),

where j' = j, k" = k in cases s = 1,3, and j' = j — M, k' = k— M in cases s = 2,4.

Next, we compute the normalized supercharacters of all twisted admissible Ay;-

modules of negative level K = —m/M. For this, consider the following automor-
phism of the Cartan subalgebra b of g = A

w=1t_ lasTas
Choosing a hftlng Ta, Of T4, in the correspondlng SL2(C), we can lift w to an

isomorphism w = t_ a2r v, 1 @™ 5 G, cf. Section 4. As in Section 4, via this
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isomorphism, the g-module L(A) becomes a g*V -module L™ (A), with the highest
weight A™ = w(A), and the character and supercharacter ChfLEtw ) = w(chf( A))-

We have in coordinates (8.20):
w_l(T7Z1;227t) = (7-7—22 — 72-’_2;1 _ 72-’24:_ ZL- _ 21 ‘;ZQ) 7

hence the normalized twisted character of an admissible twisted ﬁm—module
L™ (A) is computed by the following formula:

(R ™), 21, 20,1) = e e 8 G (RO (20— 7 —o1 — 1 1),
2
Using this formula, we derive from (8.23) the following formula for the nor-
malized twisted supercharacter (by making use of the properties of ®[™ given by
Lemma 5.1(b), (c), (d)):
(R(O)ch N (T, 21, 22, )
2

()
AN ks

= ey MDD PR (G = )R ) 22) (8.24)

X (DO(b[mil])(MT, 21+ (k/ + %)Ta 22 + (]/ - ;)T771\t/[) :

As in the case of positive level K = m/M considered above, we express the
normalized characters of non-twisted and twisted admissible A;j;-modules of neg-

ative level K = —m/M via their normalized supercharacters, given by (8.23) and
(8.24), and we use for them a similar notation ch i }C‘IEM’_WE]. Similarly, we define

their non-holomorphic modifications (¢ = 0 or 2, i kel :

~ A 1[M —m; ] m
(R(E) h‘7 k‘o 6)(7—7213227 ) Dl BA{kO IE](T32172237t);
5(e) 7 Ar [M,—mie] GIM.m—1:] (8.25)
(R hk+2,j 11 )(T,Zl,z% ) D, v k+l,—j+ 1 1(7—7213227*15)'

Since the pairs (4, k) fill up all the integral points in the square 0 < j,k < M,
consider the sets (¢/ =0 or }):

O = {(k) | ke +Z 0<j<M;-1<k<M-1}

This set parametrizes the normalized modified characters and supercharacters in
the non-twisted case when ¢’ = 0 and in the twisted case when ¢’ = 1/2. Then
the numerators of the modified non-twisted characters and supercharacters are:

DyUM T 2y t), (k) € Q1

and that of the twisted ones are:

\I/[M;:L1 Bel(r, 21,20, —1), (G k) € QA”1
In the same way as above we obtained in Theorem 8.5 a modular transformation
formula in the case of the positive level K = m/M, we obtain now a similar formula

in the case of the negative level K = —m/M.
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Theorem 8.7. Let M and m be positive integers, such that ged(M,2m) = 1 if
m>1. Lete,e’ =0 or 1/2 and let j, k € Qg”l. Then

~A1\1[M,—M;8]( 1 21 2 2’12’2)
i ke’ ) ) 7t
Jokie T T T + T
’ Tim N~ A M,— ;/
= (~1)2==) T Z Y (““b])cha,ﬁ,‘;{ mie ](T’ S
a,bEe+Z/MZ
Remark 8.8. In coordinates (8.3) we have, for z = — (21 + 22)a1 — z102 ¢ (2|2) =
221292, while in coordinates (8.20) we have, for z = — (21 — 22)a;1 — 102 : (2]2) =

—22125. Thus, the modular transformations of Theorem 8.5 and 8.7 are consistent
with the usual action of S = ({ 7}) € SL.(Z), given by formula (4.16).

Remark 8.9. Each summand of the RHS of the transformation formulae for the
modified characters in Theorems 8.5 and 8.7 remains unchanged after adding to a
or b an integer multiple of M, but this is not the case for the modified characters
in these summands.

9 Modular transformation formulae for modified characters
of admissible N = 2 modules

Let g = sly; or Ay (= psly2), and let b be its Cartan subalgebra; recall that
f := dimbh = 2 in both cases. Let z = 59 € h* = b, where 0 is the highest
root, which we assume to be even. With respect to ad x we have the following
eigenspace decomposition:

g=g-1t9g_1+0g +g:+01,

where gi1 = Ceuy, g1 are purely odd, and go = Cx + g#, where g# is the
orthogonal complement to = in go with respect to (.|.). The subalgebra g# is
spanned by the element Jo = aa — a1 in the case of g = sly|;. The subalgebra ia
is isomorphic to sfz in the case g = Ay|;, and g# N b is spanned by the element
Jo = —Q9.

Recall that the quantum Hamiltonian reduction associates to a g-module L(A),
such that K + hY # 0, a module H(A) over the corresponding superconformal
algebra, which is N = 2 (resp. N = 4) algebra if g = sfy; (resp. g = Ay);), for
which the following properties hold, [KRW], [KW5], [A1]:

(i) the module H(A) is either 0 or an irreducible positive energy module over
the superconformal algebra;
(i) H(A) = 0 iff (Alao) € Zso:
(iii) the irreducible module H(A) is characterized by three numbers:
() the central charge

Ksdim g

ck =c¢(K)—6K +hY —4, where ¢(K) = PR

(9.1)
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(8) the lowest energy (i.e., the minimal eigenvalue of Lg)

ha = (2/2; iﬁ}'ﬁ; (e +dJA), 9.2)
(7v) the spin
sa = A(Jo); (9.3)

(iv) the (super)character of the module H(A) is given by the following formula:

Chi(/\) (1, 2) == tr i(A)qLo—Z{f e2mizJo

. N+ (9.4)
= (Richf) (T, -1z + Joz, 72-(9:|9:))R (r,2)7,
where

- HOCEA+ (1 _ qn716727riza(Jg))(1 _ qne27rizo<(,]0))
N+ ¢ a(z)=0
R (r,2) = () I] .

Tl aeas (1 ¢ Beamentn)

a(z)=1/2

is the N superconformal algebra denominator and superdenominator.

It is easy to rewrite these denominators in terms of the four Jacobi theta func-
tions, using (A.7). We have:

q2d6721d1/2 eQTrizo(JU)ida_ll}Izi (7, 2)
Moea, u1(r.za()
—datd a(z)=0 (95)
— (r)fdotdr/241 "
H aEA L 190a(7—7 ZQ(JO))’

a(z)=1/2, a(Jo)>0

where @ = 0 (resp. 1) in the case of + (resp. —). Here and further we assume that
a(Jy) #0 for all € Ag, which is the case for N=2 or 4 (but not for N=1 and 3).

Now we turn to the Ramond twisted sector. For each av € A4 choose an integer
if v is even (resp. (1/2)+ integer if «v is odd), denoted by sa, cf. (4.3), such that
sg =0 and s, + s9—o =0 if a, § —a € A7 ;. Recall [KW6], [A1] that, given such
a suitable choice of s,’s, the twisted Hamiltonian reduction associates to a gtV -
module L™ (A) of non-critical level (i.e., A(K)+h" # 0), a positive energy module
H™ (A) over the corresponding Ramond twisted superconformal algebra, for which
the properties (i) and (ii) hold with H replaced by H*"W. ([A1] can be extended to
the twisted case.) The irreducible module H™ (A) is again characterized by three
numbers: the same central charge cg, given by (9.1), the lowest energy (i.e., the
minimal eigenvalue of L§" )

(Atw + 2)’5’5\)\/ |Atw)

1
N — dA™) — i .

and the spin
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acA
a(z)=1/2

Furthermore, the (super)character of the module H"™ (A) is given by the following
formula:
tw _CK g gtw
chT.., (T 2) =tr T (A)qL0 21 2200

-~ Ntw, + (98)
= (Rtw’ichf\w’i) (7‘7 -1z + Joz, ;(m|a:))R (r,2)7 1,

where

o HOéEA+ (]_ _ qn71+sa6727riza(Jo))(]_ — g 627riza(J0))

‘ a(x)=0
T,2) =n(T Il I > i
( ) 77( ) ach, (1iqn7275a62ﬂ'1za(¢]0))
a(@)=1/2

Ntw, +
R

n=1

is the N superconformal algebra twisted denominator and superdenominator. It
is easy to rewrite these denominators in terms of the four Jacobi theta functions,
using (A.7). We have:

,L-da—l(71)ZQEA(L+ Saeﬂ'iz(ZaeAiw+,sa>0 a(JU)fza€A+,a(z):o(2sa*1)0‘(JO))

dg—1-d7/2 Ntw, +
xq o (1,2) (9.9)
[Taea, V11(7,2a(Jp)) .
(T)ﬁfd(j+di/2+1 a(z)=0
[I cea,  Dia(r,2a(Jo))’
a(z)=1/2,s,>0

=n

where a = 0 (resp. 1) in the case of + (resp. —). The right hand sides of
fomulas (9.5) (resp. (9.9)) are called the normalized untwisted (resp. twisted) N
superconformal algebra denominators (for +) and superdenominators (for —).

In order to write down modular transformation formulae for these normalized

denominators, we denote them by g; (1,2), where e,&’ = 0 or 1/2, and, as before,
the superscript refers to the normalized denominator (resp. superdenominator) if
e =1/2 (resp. € = 0), and the subscript refers to the untwisted case, also called the
Neveu-Schwarz sector (resp. to the twisted case, also called the Ramond sector),
if, not as before, ¢’ = 1/2 (resp. ¢’ =0.) Then we have

HaEA(),Jr 1911(7—7 ZOé(Jo))

N(e) Z
R, (1,2) = n(r 04+1—dg+d7 /2 a(z)=0 . 9.10
c ( ) 7]( ) HoueAi+ 191725',1725(7’ ZOZ(JO)) ( )
54>0

Using (9.10) and Propositon A.7 we deduce the following modular transformation
formulae for these denominators:
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Proposition 9.1.
NED 1oz N dg—1—(1—2¢)(1—2¢")d1 /2 \E/2
(@) R. (= .0) =(=i)% /2(~i7)

)
T T

Tr'iz2 v N
e 27 (h"(JolJo)+2aeag a(JU)Z)RS)(Tvz)'
N E) i (dim go—dim N(8
(b) B (4 1,2) = (BCmoo—dimay) 5
N(S) 7 (dim L dim N(l - 6)
R (T-‘rLZ):en(d gty d gé)R 2 (T,Z)-
1 2

For the rest of this section we shall consider the case g = sfy);. Let L(A) be an
admissible g-module of level K = ((m + 1)/M) — 1, where M is a positive integer,
m is a non-negative integer, and ged(M,2m + 2) = 1 if m > 0 (see Section 7).
As a result of a quantum Hamiltonian reduction of the g-module L(A), where
A = moAo + mi1A1 + maAs, we obtain a positive energy module H(A) over the
Neveu-Schwarz type N = 2 superconformal algebra. Recall that H(A) = 0 iff
mo € Z>o, and that H(A) is irreducible otherwise.

If M = 1, then the g-module is partially integrable, hence mg € Z>¢, and
therefore H(A) = 0. If M > 1, then it follows from Proposition 3.14 that for an
admissible A we have mg € Z> iff kg = 0. Thus, in what follows we may assume
that M > 2 and kg # 0. Then H(A) is an irreducible module over the NS type
N = 2 superconformal algebra. The corresponding three characteristic numbers
are easy to compute:

2m + 2
cK:fGKfS:S(l— I ) (9.11)
Mmimo mi 4+ mo
hpy = — 9.12
A m+1 2 (9-12)
SA = M1 — Ma. (9.13)

As has been pointed out in Section 4, in order to get a modular invariant family
of characters and supercharacters, we need to introduce the Ramond twisted sector,
for which we need a choice of £ € h*, satisfying (4.3). However, in order to apply
the twisted quantum Hamiltonian reduction we need a more special choice of £
(cf. [KW6]). In the case g = sfy; we made the choice (7.1) of { which gave
nice formulae for twisted characters and supercharacters, but unfortunately, is not
compatible with the twisted quantum Hamiltonian reduction. Instead we make
the choice

¢ = (a1 —ag) (9.14)
and let s = —(¢'|a), @ € A4. Then we have in coordinates (7.2):
T T Zo—2z1 T

tog (T 21,22,1) = (7,21-5-2722—2,??-&- 22 ' —4) (9.15)

While the non-twisted normalized denominators and super-denominators remain
as given in formula (7.4) for ¢’ = 0, the twisted ones change, namely, we let

ﬁﬂ? (h) == R\ (t_¢ (h)).
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The obtained denominators differ only by a sign from (7.4), and only when e =
e = ;, so we keep for them the same notation in the hope that no confusion may

arise. The modular transformation formulae differ from (7.5) and (7.6) also by a
sign:

o~ 1 zZ1 %2 ’ 2miz) 29 o~/ _/
RS) ( EURIEE ,t) = (=1)*re = "RE(1, 21, 29,1); (9.16)
ﬁS) (T4 1,21,29,t) = e*”gﬁgsﬂl‘)(r, 21,29, t). (9.17)

Using the above notation for the denominators, the same notation as (7.9) for the
characters, and the same proof as that of Proposition 7.2, we obtain the following
analogue of it for the choice of £’ instead of &.

Proposition 9.2.
(a) If A =A%)

Sk where j,k € Z, 0 < 5, k,7+k <M — 1, then

(ES)Ch&iL/) (7,21, 20, ) = ‘I’BAJ:[;T;;_]E/;E, (7,21, 22, ).

(b) If A= AV), where j,k € Z, 1 < j,k,j +k < M, then
(ﬁif)Chg\E,)gl) (7-7 21,22, t) = _\II[AJJW_;_@;i]j,M_E/_k;E/ (7-7 21,22, t)

For the twisted g-module L™ (A) the highest weight is A™ = t¢/(A), and the
quantum Hamiltonian reduction produces a module H*"¥ (A) over the Ramond type
N = 2 superconformal algebra. As in the non-twisted case, H" (A) =0 if M =1,
and if M > 1 and mo = 0. Otherwise H*"W (A) is an irreducible positive energy
module with central charge (9.1), the remaining two characteristic numbers being

w Mmimo m-+1 1
M= T (9.18)
m+1 1

(9.19)

tw
SA =M1 — Mg — M 2

It follows from the description of admissible weights of level K given in Propo-
sition 3.14 that the list of A, for which H(A) # 0 (resp. H™ (A) # 0), consists of
two sets:

A(l) = {A](cll{k2 | ki,ko € Zzo, ki +ko <M — 2}7 (920)
.A(Q) = {Al(ch),kz | ki,ko € Zzh ki + ko < M}
Note that we have the following bijective map:

1 2
|7 A(l) — A(Q)a V(A](Cl),lw) = Al(€2)+1,k1+1'

It is immediate to see that
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for A}(€11) ks € AW and the same holds for A" and s . Hence for the quantum

Hamiltonian reduction it suffices to consider only the highest weights A,(Cll) Ky € A,
In order to compute the characters and supercharacters of the corresponding
N =2 modules H(A) and H™ (A) we use formulae (9.4) and (9.8).
First, we have from (9.10)

2(¢) 77(7)3(_1)(1—25)(1—25’)

R_, = 9.21
c (T’ z) 191725/,1725(Ta Z) ( )

Using (9.21) and Proposition A.7 (or Proposition 9.2) we deduce the following
modular transformation formulae of the N = 2 normalized denominators.

Lemma 9.3.

@ £ (=1 7) mimee o 1 ),

€ 7T

-
(v) ;%(25)(7“,2):}%55)(7,2), O RS ()

Let M € Zs>o, and let m € Z>o be such that ged(M,2m +2) =1 if m > 0.
Recall that we have irreducible positive energy N = 2 modules H (A,(cll) ky) (TESD.
H™Y (Al(cll),w)) in the Neveu-Schwarz (resp. Ramond) sector with central charge
ck = 3(1—((2m+2)/M)), obtained by the quantum Hamiltonian reduction from
the ,9A€2|1—modules L(A,(Cll),b) (resp. L'V (A,(Cll)kz)) of level K = ((m+1)/M) — 1,
where A,i?y,w € AW,

It will be convenient to introduce the following two reindexings of the set of
weights AM):

ANS:{Ajk:A(.l)l ! | j. k€ é-i—Zzo,j—&-k’SM—l},
—2F g
AR:{Ajk:AS‘l—)l,k|j7k€Z20,j>0,j+k§M71}.
We let

Hys(A) = HAY, 1) gk e Avss Hr(Ap) = HAY, ), j.k € Ag.

32’2

It follows from (9.12)—(9.19) that the lowest energy and the spin of these N = 2
modules with central charge cx = 3 (1 — ((2m + 2)/M)) are as follows:

Ns _m+1. m—+1 Ns _ m+1 N,
hix” = M ik — AM Sik = g (k—3); (9.22)
m+1, m—+1 1 R_m+1 . 1

— _ — A — . 2

Introduce the following notation for the characters and supercharacters of these
N =2 modules:

N=2[M,m;
h]k il (r, 2) = ehigy o, (T2 2)s Mg € Ans;

N=2[M,m;
Ch]ko[ “lr, z) = ch w(he) (T 2)s Ajik € Ar.
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Formulae (9.4) and (9.8) imply the following expressions for these characters:

e .
(Ri, )chjvk S,M i E]) (1,2) = \I,%:;s} (1,—2,2,0), (9.24)

where the functions ‘llg ke,; }(7'7 21, 22,t) are defined by (7.7) and j,k € €’ + Z>o,

subject to restrictions j+k < M —1, 7 > 0.
Introduce the modified N = 2 characters and supercharacters, letting

2(g) ~ N=2 M,m;
(Ri/ )Ch [ el

J,kse’

)(7‘7 z) = {IVIEAZ?S} (1,—2,2,0),
where the modification ¥ of ¥ was introduced in Section 7 (after (7.7)). Theo-
rem 7.1 along with Lemma 9.3 give the following modular transformation proper-
ties of the modified N = 2 characters and supercharacters.

Theorem 9.4. Let M € Z>2 and let m € Zxq be such that ged(M,2m +2) =1
if m>0. Let capm =3 (1 — ((2m +2)/M)). Lete,e’ =0 or 1/2, and let Q") =
{(j,k) € (e+Z>0)* | j+k <M~—1, j>0}. Then we have the following modular

~N= 2[JVI m; E] . (M)
transformation formulae for ch; ;... J ke Qy

~ N=2[M,m; 1 TICN m 52 m, N 2[M,m;
(1) T s e

ke T G50, (at) abie
(a,b)et™

where

S[M mee’] _ (— i)(1_25)(1_25/) 2 ewi(TAr/LI+1) (G-k)(a=b) gipy m+1 G+ k)@ + by

(4:k),(a,b) M M
~ N=2[M,m; 27'r1 m+1 rie! ~ N=2[M,m;
cth;E,[ ° (T+1,2)= PRI ch . E,[ o H(T,Z).
2[M,m; 2[M,m;
Remark 9.5. (a) Letting ch] kE[ E](T z,t) = e2riterm ch kg,[ “ (1,2), we

can rewrite the transformation formula in Theorem 9.4 in a more suggestive form:

~ N=2[M,m;e] 1 =2 2’2 [A{mea]""N 2[M,m;e’]
Chj7k;8/ (7 T’ T’ti 67‘) - Z S(]k )(a,b) habe (7, 2,1).

(a,b)EQgM)

(b) If m = 0, we have the well-known N = 2 unitary discrete series modules
with central charge 3(1 — (2/M)) and their well-known modular transformation
properties (with tilde in Theorem 9.4 removed), see, e.g., [KW3].

10 Modular transformation formulae for modified charac-
ters of admissible N = 4 modules

In this section we study quantum Hamiltonian reduction of admissible A\l‘l—modu—
les of negative level K = —m /M, where m and M are coprime positive integers. As
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we have seen in Section 8, S-invariance of modified characters holds for arbitrary
non-zero level (Theorems 8.5 and 8.7); however, the T = (} 1)-invariance fails
due to the fact that the operator Dy is not translation (7 — 7 + 1) invariant).
Moreover, for K > 0 translation invariance still fails after the reduction, but, as
we shall see, for K < 0, after the quantum Hamiltonian reduction the translation
invariance gets restored.

Consider an /Tm—module L(A) of negative level K = —m/M with the highest
weight

A= (K —2my + m2)Ao + mi (A1 + Ag) + mals.

It follows from the remarks in the beginning of Section 9 that the module H(A) over
the N = 4 superconformal algebra of Neveu-Schwarz type, obtained from L(A) by
the quantum Hamiltonian reduction, is either 0 (which happens iff K —2m,+ms €
Z>p), or is irreducible. In the latter case the characteristic numbers of H(A) are
obtained from formulae (9.1)—(9.3):

m
cK:6(M—1), (10.1)
M —mg—1
hy = Mmalmi—me —1) e (10.2)
m 2
SA = M. (10.3)

The same holds in the Ramond type case; also, the central charge cx is the same,
and the remaining two characteristic numbers are obtained from (9.6) and (9.7):

Mml(ml—mgfl) Mfm

o oy — 10.4

ha m T M (10-4)
M —

W= —my — Mm' (10.5)

In order to compute the characters and supercharacters of the corresponding
N = 4 modules H(A) and H™ (A), we use formulas (9.4) and (9.8) in the case
g=A.

First, we have from (9.10):

4(5) 3 ’l911(7’7 22:)

R., (1,2z) =n(T) D1 oo 12 (12 2)2" (10.6)

€

From (10.6) and Proposition A.7 (or from Proposition 9.1) we deduce the following
transformation formulae for N = 4 normalized denominators, where we use the
notation © ©
4(e 3
R ! El

€

4
(1,2,t) = e~2mitp

(1, 2).
Lemma 10.1.
1 z 22 3 o, 4
(a) R, (— t 4 ):7(,1)(1 2e)(1-2¢") . p
€ 7_77_7 T

4 L 4le—¢€
(b) RS)(T+ 1,2,1) = emie RQE €l (. 2,1).

S) (1,2,t).
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Next, formulae (9.4) and (9.8) for characters and supercharacters of N = 4
non-twisted and twisted modules are respectively:

4+ ~ T T
(R Chfl(A))(T,z,t) = (RAl\lichf) (T,z+ g1 27 2,t) ; (10.7)
4tw, £ ~ T T
’ + 11tw, w,t
(R chiew (A))(T,z,t) = (RA nt ichﬁ\ ) (T,z+ 0% 2,t) . (10.8)
As before, we now change notation by letting ¢ = 1/2 (resp. = 0) in the case
of + (resp. —), and ¢’ = 1/2 (resp. = 0) in the non-twisted (resp. twisted) case.
dtw+ 45
For example, R =R;.
Applying formulae (10.7) and (10.8) to A = A](;)b (s = 1,2,3,4) and using

the modification (8.25) of the numerators of the admissible characters of /Alm, we
obtain the following partially modified N = 4 characters:

(e)  (oy = [M,m—13] T T
(Ré ChH(Ai?,kz))(T’z’t) = Di¥; Do (T’Z+ 27" T _t) ;

4(e) () T [M,m—1;€] T T
(RO by (Aﬁff,kz))(T’Z’t) =Dy i (T’ZJr 2% 2’715) '
The modified N = 4 characters are obtained from the partially modified ones by
the shifts j — j + ;, ke—k+ %, and the corresponding shifts z +— 2 4+ 7. Namely,
we let

4(8) Y (5) M,m;
(Ré ChH(Agfl),kQ) ) (1,2,t) = G£‘+7§,7—El]c—§;é (1,2,t); (10.9)
4(e) ~ (o) M,m;
(RO Mo (a9, ) ) (r,2,8) = G (7, 2,0), (10.10)
where _
GUT N (2, t) = Dy UL T (2 2 ), (10.11)
Remark 10.2. (a) One can replace Dy by Dy in (10.11).
(b) We have:
D \II[M,m;E] + T T ) = TZXT D \II[J\I,m;E] ( —t)
15 ke T,z 27Z 27 =q 1 j+%,fk7%;é7€’ T, %2, %, ’

and the same identity holds for 0. Hence passing from the partial modification to
the modification of the N = 4 characters amounts to removing the factor qrg‘]t,l .

Since the action of SLy(Z) commutes with D;, we deduce from Theorem 7.1
modular transformation formulae for the numerators of the modified N = 4 char-
acters:

. 1 2 2 27wim ; el
M < Py ” > TS R gm0 gy (10.12)
T

7,k;e’ T a,b;e
a,bee+7Z/MZ
M,m;e 2mimik M, m;|le—e’
G 1zt = T G 2 ), (10.13)
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We rewrite formula (10.12), using that GLMTZ;E] changes sign if we permute k
and j. Permuting a and b in the RHS of (10.12) and adding the obtained equation
to (10.12) we obtain, after some simple manipulations:
2
Mme) (1 2 z
G ke (7 T’ T,t+ T )
» o » (10.14)
_iT Z o= " (a=b) (k) gip 7;\7;(@ +0)(j+ k)GT_’ll‘fée ](7—7 2, t).
a,b€e+2/MZ
We have used above the parametrization of the admissible weights A,(i) r, Dy the
pairs (4, k), given by (8.12), (8.14), (8.16), and (8.18). In order to write down a

unified formula for modified N = 4 characters, it is convenient to introduce new
parameters:

J=j+ 5 k=k+ 5 in the non-twisted case, (10.15)
Ji=k+1, k= j in the twisted case. (10.16)
Then (10.9) and (10.10) can be written in a unified way:

4(e) ~ N=4 M,m; m:
(Ri/ )Ch;;,g;s/[ 8]) (r,2,1) = G275 (7,2, 1) (10.17)

We describe below the precise parametrization of these modified N = 4 char-
acters. First, the following lemma is obtained by a direct calculation from (10.2)—
(10.5).

Lemma 10.3. Let A = A](;),]Q be an admissible weight of level K = —m/M for

Elll' Assume that H(A) # 0, so that the N = 4 superconformal algebra mod-
ules H(A) and H™ (A) are irreducible. Then their lowest energies and spins are

described by the following formulae in the parameters (}7 E) given by (10.15):

s=lm = KRG -1 T s = k(-7
ey N ()t
5:2;hA:K(MfE)(MJIEHMf}fKZ?, sa=K(k—j) -2,
hﬁ\W:K(Mf})(M*E)JerEkal, sh = K(k—j)+1;
s:S:hA:K}//%—&-%—K:Q, SAZK(E_})_Z
Wy = Kik g -t s = KT
5:4:hA:K(M*})(M—E)JerEfK:% s = K(k— ),
htszK(M—E')(M—%)JrM—}—KZl, s =K(k—j)—1.

Since the positive energy irreducible modules over the N = 4 superconformal
algebras are determined by their characteristic numbers, we obtain the following
corollary.
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Corollary 10.4. We have the following isomorphisms of modules over the N = 4
superconformal algebra of Neveu-Schwarz type:

1 4 3 2
HAY )~ HAY, ), HAD, )~ HAP, ),

and similar isomorphims for the N = 4 superconformal algebra of Ramond type,
replacing H by H*Y .

Now we turn to modular transformation formulae for the modified N = 4 char-
acters, defined by (10.17). Using Lemma 10.1(a) and (10.14), we obtain:

~hN:4[M,m;e]( 1z . 22)

e T’ T
_ _(_1\(1=2e)(1-2¢") ir
(-=1) M (10.18)
_wim (G ~ ~ N=4[M,m;¢’]
XZ e @bk gy " M( —&—b)(j—i—k)chabs (7, 2,1).

@,bee+Z/ M7,

In order to obtain the final modular transformation formulae we need the following
remarks.

=4[M,m;0] rimG-F) ~ N=4[M,m;}] ) )
Remark 10.5. (a) ch] g o ande m ch.- | remain unchanged if we
~ 7.kse
add to j and to k some integer multiples of M.
~ N=4[M,m;e] ~ N=4[M m;e]
(b) h},% g’ - 7Ch—%,—3;8’
< N=AMmge] o~
(c) chy g =0if j+ ke MZ. N
(d) The (@, b) coefficient and the (M — b, M — @) coefficient in (10.18) are equal.
~ N=4[M ,m;e] 9 N*4[M m;e ] ~ N=4[M ,m;e] ~
(e) chg 7.0 = —e™"chy, 700  hence chyzg for 0 < k < M can
~ N=4[M,m;e]
be replaced in (10.18) by chJ 0:0 ,0<j <M.
Claims (a) and (b) follow, by (10.11), from the corresponding properties of
the functions \Il%g L E](T, z,z,t). For (c), letting k = —j in (b), we obtain
4[M,m; ~ ~
that ch~ _3[8/ E] = 0. Hence, if K+ j = nM with n € Z, we have, by (a):
~ N= 4[JVI m;e] ~ N=4[M m;e] ~ N=4[M,m;e] . .
= et =ch; -G =chy 5. = 0. The proof of (d) is straightfor-

ward. Claim (e) is obtained by letting j = 0 in (b) and using (a).

Letting, as before, ¢ = 1/2 in the Neveu—Schwarz case and £ = 0 in the Ramond
case, introduce the following subsets in the j, k-plane:

QN=AM) (G R e (e+2)? | 0<j,j+k<MO0<k<M}

It follows from Remark 10.5 and Corollary 10.4 that these subsets parametrize
the non-zero modified characters of irreducible modules over the Neveu—Schwarz
type and the Ramond type N = 4 superconformal algebras, obtained by the quan-

tum Hamiltonian reduction from all the admissible Em—modules L(A,(jl),b) and

v (A(S) k). As aresult, we can rewrite (10.18) as in the following theorem. The
T- transformation formula in this theorem follows from Lemma 10.1(b) and (10.13).
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Theorem 10.6. Let M and m be positive coprime integers, such that M > 2
and ged(M,2m) =1 if m > 1, and let e,¢' =0 or 1/2. Let ¢ hJ k:,[MmE](T,z,t),
(j, k:) € Qg, 4(M), be the modified characters and supercharacters of modules over
the N = 4 Neveu-Schwarz (resp. Ramond) type superconformal algebras if € =
1/2 (resp. & = 0), obtained by the quantum Hamiltonian reduction from level
K = —m/M admissible Elll' modules (resp. twisted modules). Then

2

~ N=4[M,m;e] 1 z 27\ (1-26)(1-2 /)21'7
chs . (f ,T,t+ T) = —(—1)1-2% e "
o= @DGR) gin ™™ (@ L DG N=A{Mmie'] :
x> sin M(a+b)(]+k) chy .. (7,2, 1);
(@b =11
~ N=4[M,m; wimj =4[M,m;
Ch}ge,[ E](T—‘r 1,2,t) = 6_2 M F—mie’ h],k 8/[ e H( ,2,t).

Remark 10.7. Note that H(—mAy), where m € Z>1, is a non-zero N = 4 module
with M = 1, whose modified character is zero. For example, the numerator of
ch”, is equal to D1 (normalization factorxq)[o]), which gives 0 when we apply the
quantum Hamiltonian reduction. (It is easy to show that such a situation may
occur only if s =1 or 3 and}—i—%: M.)

Remark 10.8. If m = 1, we obtain a family of positive energy N = 4 modules with
central charge 6((1/M) — 1), where M is a positive integer. It is easy to deduce
from our calculations in Section 10 the following formulae for their characters:

4(e) ~ N=4[M,1;¢
(Ril)ch] k:[ ])(T,z,t)

= —i(—l)QEe_ JT(/ILtq ]‘\/162]\7:/(-7 k)z

( n(M7)3911(MT, 21 + 22 + (} — %)T) )

Y1 (M, 21 + }T + &)1 (M, 29 — kT + €) ) lsymra=z
In order to obtain the corresponding modified characters (hence a modular invari-
ant family), one has to add to the RHS the expression:

er + ke_2X1it q_}% 2 (F_T)z ’17(]\47‘)31911(]\47'7 2z + (j — 1{3)7’)

Me M

(-1 ~ . .
) M 1M,z + jT+ )9 (MT,z — kT + ¢€)

A Appendix. A brief review of theta functions

In this appendix we review some basic facts about theta functions (rather Jacobi
forms), following the exposition in [K2, Chap. 13].

Let L be a positive definite integral lattice of rank ¢ with a positive definite
symmetric bilinear form (.|.). Let h = C ®z L be the complexification of L with
the bilinear form (.|.), extended from L by bilinearity. Let h = b & CK @& Cd be
an (¢ + 2)-dimensional vector space over C with the (non-degenerate) symmetric
bilinear form (.|.), extended from b by letting h L (CK + Cd), (K|K) = 0,
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(d|d) = 0, (K|d) = 1. We shall identify b with h*, using this bilinear form, so that
any h € b defines a linear function I, on § via l,(hy) = (h|h1) .

Let X = {h € h|Re(K]|h) > 0}. Define the following action of the additive
group of the vector space h on b (cf. (2.11)):

(ala)

ta(h) = h+ (K|na — ((aln) + )

(K|h))K, ach.

This action leaves the bilinear form (.| .) on § invariant and fixes K, hence leaves
the domain X invariant.
A theta function (rather Jacobi form) of degree k € Zx>¢ is a holomorphic
function F' in the domain X, satisfying the following four properties:
(i) F(ta(h)) = F(h) for all a € L;
(ii) F(h+ 2mia) = F(h) for all a € L;
(iii) F(h+aK) = ek F(h) for all a € C;
(iv) DF =0, where D is the Laplace operator on b , associated to (.])-
Denote by Thy, k € Z>q, the vector space over C of all theta functions of
degree k. R
Let P, = {\€ b | (A\K)=kand X\ € L*}, where \ stands for the projection of
Aon b and L* C b is the dual lattice of the lattice L. Given \ € Py, where k is a
positive integer, let
O, = e K Z ete®),
a€cl

This series converges to a holomorphic function in the domain X, which is an
example of a theta function of degree k > 0 (properties (i)—(iii) are obvious, and
property (iv) holds since De* = (A|A)e?). Note that

9/\+ka+aK:®/\ for a € L, a €C.

Proposition A.1. The set {O) | A € P, mod (kL + CK)} is a C-basis of Thy,
if k is a positive integer, and Thy = C.
Proof. See the proof of Proposition 13.3 and Lemma 13.2 in [K2]. O

Introduce coordinates (7, z,t) on b by (3.27), so that X = {(r,2,¢) | Im 7 > 0}
and g := €™ = ¢~ X In these coordinates we have the usual formula for a Jacobi
form Oy, A € Py, of degree k € Z~y:

@)\(T,Z,t) — g2mikt Z qk (7;’) 627rik(~y|z)' (A].)

vEL+}

Proposition A.2. One has the following elliptic transformation formula of a Ja-
cobi form ©y of degree k € Z>q for a € iL*:

O\(T,z + ar,t) = qig(a‘o‘)672”k(°“z)@>\+m(r, z,t).



452 VICTOR G. KAC, MINORU WAKIMOTO

Proof. 1t is straightforward. [

Recall the action of the group SLy(R) in the domain X and the action of the
corresponding metaplectic group on the space of meromorphic functions on X,
given in Section 4.

Proposition A.3. One has the following modular transformation formulae of a
Jacobi form ©y of degree k € Z~qg, \ € Py:

1 =z (Z|Z) . 3 « 1 _2mi (;‘Ii)
(a) O, (—T, T,t— o ) = (—it)z|L*/kL|" 2 Z e YO, (T, 2,1).
pE P mod (kL+CK)

(b) Oa(t+1,2,t)=¢ O\ (T, 2,t), provided that k(a|a) € 2Z for all « € L
(in particular, provided that the lattice L is even).

(¢) The space Thy, is invariant with respect to the (right)action of the group
SL2(Z), provided that k(a|a) € 2Z for all o € L.

Proof. The proof of (a) is based on the formula (see (4.16) and (4.17) for notation):

WL()\‘)\)

(DF)|4 = (ct + d)>D(F|4), where A= (‘C‘ 2) € SLy(R). (A.2)
The rest is straightforward. See [K2, Thm. 13.5]. O

Remark A.4. Note that Py = {kd + X+ aK | A\ € L*, a € C}. Hence we may use
a slightly different notation:
O\ = @X,kv

so that the basis {O) | A € Pymod kL + CK} of Thy is identified with the basis
{Oxr | A€ L*/kL}.

Example A.5. Let L = Z with the bilinear form (alb) = 2ab, so that L* =
éZ. Then for a positive integer k we have the following basis of Thy (7,z,t €
C,Im 7 >0):

Os(r, 2 t) = €27kt N7 gntermibnz e 7 007, (A.3)
"EZ+2k

The elliptic transformation formula is as follows (n € Z):

O, k(T z+n7,t)=q" " e_mk"z@jJrkn k(T 2,t). (A.4)

The modular transformation formulae are (cf. [K2, (13.5.6)], which should be cor-
rected):

1
1 =z 22 —17\ 2 _ wijj’
O (_r’ ol 4r> - ( 2% ) D e F Opulmat), (A)

§E€L/2KT.

Ojk(T + 1, 2,1) = e 2 ©4(7, 2, 1), (A.6)
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Especially important are the celebrated four Jacobi theta functions of degree
two (we put ¢ = 0 here) [M]:

P0=022+0g2, Vo1=—022+602, V19=012+0_12, V11=i012—10_12.

Due to the Jacobi triple product identity, the following infinite products can be
expressed in terms of the four Jacobi theta functions and the n-function n(r) =

g2 [0, (1— ")

> . 1 _ - _1 1 1900(7’72)
(1 +627”an 2)(1 te 27mzqn 2) =g
nl;[l n(7)
s . _1 —2miz m—1 1 Y T,Z
(1_ 2mzqn 2)(1_ 2 q 2):(124 01( )
oot n(r) A
ad I ; _ _1 1910(7‘, Z) '
(1 Te 27T’qun)(1 + 627r1z n 1) =q 1o pTIZ ;
nl;[l n(r)
- —omi s . i U11(T, 2)
(1 —e 27mzqn)(1 o e27rzzqn 1) =g 12 e
nl;[l n(7)

Proposition A.6 ([M]). For a,b=0 or 1 and n € Z one has:

n2 ;
Yap(T,2 + 1) = (fl)b"q_ 2 e_gmmﬂab(r, z2).

Proof. Tt follows from (A.4). O
Proposition A.7 ([M, p. 36]). Fora,b=0 or 1 one has:

1 = Na L1 miz2
19@17(— , )z(—z) b(—zr)2e T Opa(T, 2);

T T

Yoa(T +1,2) = Dop(7,2), where a # b
Via(T+1,2) = eziﬁla(r, 2).

Proof. Tt follows from (A.5), (A.6). (Note that the RHS of the last formula in
Table V of [M, p. 36] should be multiplied by 7.) O
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