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Abstract We consider the Ehrhart h∗-vector for the hypersimplex. It is well-known
that the sum of the h∗

i is the normalized volume which equals the Eulerian numbers.
The main result is a proof of a conjecture by R. Stanley which gives an interpretation
of the h∗

i coefficients in terms of descents and exceedances. Our proof is geometric
using a careful book-keeping of a shelling of a unimodular triangulation. We gener-
alize this result to other closely related polytopes.

Keywords hypersimplex · h∗-Vector · Shellable triangulation

1 Introduction

Hypersimplices appear naturally in algebraic and geometric contexts. For example,
they can be considered as moment polytopes for torus actions on Grassmannians
or weight polytopes of the fundamental representations of the general linear groups
GLn. Fix two integers 0 < k ≤ n. The (k, n)-th hypersimplex is defined as follows

�k,n = {
(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ 1; x1 + · · · + xn = k

}
,

or equivalently,

�k,n = {
(x1, . . . , xn−1) | 0 ≤ x1, . . . , xn−1 ≤ 1; k − 1 ≤ x1 + · · · + xn−1 ≤ k

}
.

They can be considered as the slice of the hypercube [0,1]n−1 located between the
two hyperplanes

∑
xi = k − 1 and

∑
xi = k.

For a permutation w ∈ Sn, we call i ∈ [n − 1] a descent of w, if w(i) > w(i + 1).
We define des(w) to be the number of descents of w. We call Ak,n−1 the Eulerian
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number, which equals the number of permutations in Sn−1 with des(w) = k −1. The
following result is well-known (see for example, [8, Exercise 4.59(b)]).

Theorem 1.1 (Laplace) The normalized volume of �k,n is the Eulerian number
Ak,n−1.

Let Sk,n be the set of all points (x1, . . . , xn−1) ∈ [0,1]n−1 for which xi < xi+1 for
exactly k − 1 values of i (including by convention i = 0). Foata asked whether there
is some explicit measure-preserving map that sends Sk,n to �k,n. Stanley [5] gave
such a map, which gave a triangulation of the hypersimplex into Ak,n−1 unit sim-
plices and provided a geometric proof of Theorem 1.1. Sturmfels [9] gave another
triangulation of �k,n, which naturally appears in the context of Gröbner bases. Lam
and Postnikov [4] compared these two triangulations together with the alcove trian-
gulation and the circuit triangulation. They showed that these four triangulations are
identical. We call a triangulation of a convex polytope unimodular if every simplex in
the triangulation has normalized volume one. It is clear that the above triangulations
of the hypersimplex are unimodular.

Let P ∈ Z
N be any n-dimensional integral polytope (its vertices are given by in-

tegers). Then Ehrhart’s theorem tells us that the function

i(P , r) := #
(
rP ∩ Z

N
)

is a polynomial in r , and

∑

r≥0

i(P , r)tr = h∗(t)
(1 − t)n+1

,

where h∗(t) is a polynomial in t with degree ≤ n. We call h∗(t) the h∗-polynomial
of P , and the vector (h∗

0, . . . , h
∗
n), where h∗

i is the coefficient of t i in h∗(t), is called

the h∗-vector of P . We know that the sum
∑i=n

i=0 h∗
i (P ) equals the normalized volume

of P .
Katzman [3] proved the following formula for the h∗-vector of the hypersim-

plex �k,n. In particular, we see that
∑i=n

i=0 h∗
i (�k,n) = Ak,n−1. Write

(
n
r

)
�

to denote
the coefficient of t r in (1 + t + t2 + · · · + t�−1)n. Then the h∗-vector of �k,n is
(h∗

0(�k,n), . . . , h
∗
n−1(�k,n)), where for d = 0, . . . , n − 1

h∗
d(�k,n) =

k−1∑

i=0

(−1)i
(

n

i

)(
n

(k − i)d − i

)

k−i

. (1.1)

Moreover, since all the h∗
i (�k,n) are nonnegative integers [6] (this is not clear from

(1.1)), it will be interesting to give a combinatorial interpretation of the h∗
i (�k,n).

The half-open hypersimplex �′
k,n is defined as follows. If k > 1,

�′
k,n = {

(x1, . . . , xn−1) | 0 ≤ x1, . . . , xn−1 ≤ 1; k − 1 < x1 + · · · + xn−1 ≤ k
}
,

and

�′
1,n = �1,n.
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We call �′
k,n “half-open” because it is basically the normal hypersimplex with the

“lower” facet removed. From the definitions, it is clear that the volume formula and
triangulations of the usual hypersimplex �k,n also work for the half-open hyper-
simplex �′

k,n, and it is nice that for fixed n, the half-open hypersimplices �′
k,n, for

k = 1, . . . , n − 1, form a disjoint union of the hypercube [0,1]n−1. From the follow-
ing formula for the h∗-polynomial of the half-open hypersimplices, we can compute
the h∗-polynomial of the usual hypersimplices inductively. Also, we can compute its
Ehrhart polynomial.

For a permutation w, we call i an exceedance of w if w(i) > i (a reversed ex-
ceedance if w(i) < i). We denote by exc(w) the number of exceedances of w. The
main theorems of the paper are the following.

Theorem 1.2 The h∗-polynomial of the half-open hypersimplex �′
k,n is given by,

∑

w∈Sn−1
exc(w)=k−1

tdes(w).

We prove this theorem first by a generating function method (in Sect. 2) and sec-
ond by a geometric method, i.e., giving a shellable triangulation of the hypersimplex
(in Sects. 3, 4 and 5).

We can define a different shelling order on the triangulation of �′
k,n, and get an-

other expression of its h∗-polynomial using descents and a new permutation statistic
called cover (see its definition in Lemma 6.5).

Theorem 1.3 The h∗-polynomial of �′
k,n is

∑

w∈Sn−1
des(w)=k−1

tcover(w).

Combine Theorem 1.3 with Theorem 1.2, we have the equal distribution of
(exc,des) and (des, cover):

Corollary 1.4
∑

w∈Sn

tdes(w)xcover(w) =
∑

w∈Sn

texc(w)xdes(w).

Finally, we study the generalized hypersimplex �k,α (Sect. 7). This polytope is
related to algebras of Veronese type. For example, it is known [1] that every algebra
of Veronese type coincides with the Ehrhart ring of a polytope �k,α . We can extend
this second shelling to the generalized hypersimplex �′

k,α (defined in (7.1)), and ex-
press its h∗-polynomial in terms of a colored version of descents and covers (see
Theorem 7.3).
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2 Proof of Theorem 1.2 by Generating Functions

Here is a proof of this theorem using generating functions.

Proof Suppose we can show that

∑

r≥0

∑

k≥0

∑

n≥0

i
(
�′

k+1,n+1, r
)
unsktr =

∑

n≥0

∑

σ∈Sn

tdes(σ )sexc(σ ) un

(1 − t)n+1
. (2.1)

By considering the coefficient of unsk in (2.1), we have

∑

r≥0

i
(
�′

k+1,n+1, r
)
t r = (1 − t)−(n+1)

( ∑

w∈Sn
exc(w)=k

tdes(w)

)
,

which implies Theorem 1.2. By the following equation due to Foata and Han
[2, Eq. (1.15)]:

∑

n≥0

∑

σ∈Sn

tdes(σ )sexc(σ ) un

(1 − t)n+1
=

∑

r≥0

t r
1 − s

(1 − u)r+1(1 − us)−r − s(1 − u)
,

we only need to show that

∑

k≥0

∑

n≥0

i
(
�′

k+1,n+1, r
)
unsk = 1 − s

(1 − u)r+1(1 − us)−r − s(1 − u)
.

By the definition of the half-open hypersimplex, we have, for any r ∈ Z≥0,

r�′
k+1,n+1

= {
(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ r, rk + 1 ≤ x1 + · · · + xn ≤ (k + 1)r

}
,

if k > 0, and for k = 0,

r�′
1,n+1 = {

(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ r,0 ≤ x1 + · · · + xn ≤ r
}
.

So

i
(
�′

k+1,n+1, r
) = ([

xkr+1] + · · · + [
x(k+1)r

])(1 − xr+1

1 − x

)n

, (2.2)

if k > 0, and when k = 0, we have

i
(
�′

1,n+1, r
) = ([

x0] + [x] + · · · + [
xr

])(1 − xr+1

1 − x

)n

. (2.3)

Notice that the case of k = 0 is different from k > 0 and i(�′
1,n+1, r) is obtained by

evaluating k = 0 in (2.2) plus an extra term [x0]( 1−xr+1

1−x
)n. Since the coefficient of xk
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of a function f (x) equals the constant term of f (x)

xk , we have

([
xkr+1] + · · · + [

x(k+1)r
])(1 − xr+1

1 − x

)n

= [
x0]

(
1 − xr+1

1 − x

)n(
x−kr−1 + · · · + x−(k+1)r

)

= [
xkr

](1 − xr+1

1 − x

)n(
x−kr−1 + · · · + x−(k+1)r

)
xkr

= [
xkr

] (1 − xr)(1 − xr+1)n

(1 − x)n+1xr
.

So we have, for k > 0,

∑

n≥0

i
(
�′

k+1,n+1, r
)
un =

∑

n≥0

[
xkr

] (1 − xr)(1 − xr+1)n

(1 − x)n+1xr
un

= [
xkr

] (1 − xr)

(1 − x)xr

∑

n≥0

(
(1 − xr+1)u

1 − x

)n

= [
xkr

] xr − 1

xr(u − uxr+1 − 1 + x)
.

For k = 0, based on the difference between (2.2) and (2.3) observed above, we have

∑

n≥0

i
(
�′

1,n+1, r
)
un =

∑

n≥0

[
x0] (1 − xr)(1 − xr+1)n

(1 − x)n+1xr
un

+
∑

n≥0

[
x0]

(
1 − xr+1

1 − x

)n

un

=
([

x0] xr − 1

xr(u − uxr+1 − 1 + x)

)
+ 1

1 − u
.

So

∑

k≥0

∑

n≥0

i
(
�′

k+1,n+1, r
)
unsk =

(∑

k≥0

[
xkr

] xr − 1

xr(u − uxr+1 − 1 + x)
sk

)
+ 1

1 − u
.

Let y = xr . We have

∑

k≥0

∑

n≥0

i
(
�′

k+1,n+1, r
)
unsk =

∑

k≥0

[
xkr

] y − 1

y(u − uxy − 1 + x)
sk + 1

1 − u
.
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Expand y−1
y(u−uxy−1+x)

in powers of x, we have

y − 1

y(u − uxy − 1 + x)
= y − 1

y
· 1

u − 1 − (uxy − x)

= y − 1

y(u − 1)
· 1

1 − x(uy−1)
u−1

= 1 − y

y(1 − u)

∑

i≥0

(
(1 − uy)x

1 − u

)i

.

Since we only want the coefficient of xi such that r divides i, we get

1 − y

y(1 − u)

∑

j≥0

(
(1 − uy)x

1 − u

)rj

= 1 − y

y(1 − u)
· 1

1 − (1−uy)rxr

(1−u)r

= 1 − y

y(1 − u)
· (1 − u)r

(1 − u)r − (1 − uy)rxr

= (1 − u)r−1(1 − y)

y(1 − u)r − y2(1 − yu)r
.

So

∑

k≥0

∑

n≥0

i
(
�′

k+1,n+1, r
)
unsk =

(∑

k≥0

sk
[
yk

] (1 − u)r−1(1 − y)

y(1 − u)r − y2(1 − yu)r

)
+ 1

1 − u
.

To remove all negative powers of y, we do the following expansion:

(1 − u)r−1(1 − y)

y(1 − u)r − y2(1 − yu)r
= 1 − y

(1 − u)y
· 1

1 − y(1−yu)r

(1−u)r

=
∑

i≥0

(
yi−1(1 − uy)ri

(1 − u)ri+1
− yi(1 − uy)ri

(1 − u)ri+1

)

= 1

1 − u
y−1 + nonnegative powers of y.

Notice that
∑

k≥0 sk[yk] (1−u)r−1(1−y)

y(1−u)r−y2(1−yu)r
is obtained by taking the sum of nonnega-

tive powers of y in (1−u)r−1(1−y)

y(1−u)r−y2(1−yu)r
and replacing y by s. So

∑

k≥0

sk
[
yk

] (1 − u)r−1(1 − y)

y(1 − u)r − y2(1 − yu)r
= (1 − u)r−1(1 − s)

s(1 − u)r − s2(1 − su)r
− 1

s(1 − u)
.
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Therefore,

∑

k≥0

∑

n≥0

i
(
�′

k+1,n+1, r
)
unsk = (1 − u)r−1(1 − s)

s(1 − u)r − s2(1 − su)r
− 1

s(1 − u)
+ 1

1 − u

= 1 − s

(1 − u)r+1(1 − us)−r − s(1 − u)
. �

3 Background

3.1 Shellable Triangulation and the h∗-Polynomial

Let Γ be a triangulation of an n-dimensional polytope P , and let α1, . . . , αs be an or-
dering of the simplices (maximal faces) of Γ . We call (α1, . . . , αs) a shelling of Γ [6],
if for each 2 ≤ i ≤ s, αi ∩ (α1 ∪ · · · ∪ αi−1) is a union of facets ((n − 1)-dimensional
faces) of αi . For example (ignore the letters A, B , and C for now) Γ1 is a shelling,
while any order starting with Γ2 cannot be a shelling:

An equivalent condition (see e.g., [7]) for a shelling is that every simplex has a unique
minimal non-face, where by a “non-face”, we mean a face that has not appeared in
previous simplices. For example, for α2 ∈ Γ1, the vertex A is its unique minimal non-
face, while for α2 ∈ Γ2, both B and C are minimal and have not appeared before α2.
We call a triangulation with a shelling a shellable triangulation. Given a shellable
triangulation Γ and a simplex α ∈ Γ , define the shelling number of α (denoted by
#(α)) to be the number of facets shared by α and some simplex preceding α in the
shelling order. For example, in Γ1, we have

#(α1) = 0, #(α2) = 1, #(α3) = 1, #(α4) = 2.

The benefit of having a shelling order for Theorem 1.2 comes from the following
result.

Theorem 3.1 ([6] Shelling and Ehrhart Polynomial) Let Γ be a unimodular shellable
triangulation of an n-dimensional polytope P . Then

∑

r≥0

i(P , r)tr =
(∑

α∈Γ

t#(α)

)
(1 − t)−(n+1).

To be self-contained, we include a short proof here.

Proof Given a shellable triangulation, we get a partition of P : for any simplex α, let
α′ ⊂ α be obtained from α by removing the facets that α shares with the simplices
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preceding it in the shelling order. The fact that Γ is shellable will guarantee that this
is a well-defined partition, i.e., there is no overlap and no missing area. So we can
sum over all the parts to compute i(P , r) (the number of integer points of rP ). If F
is a d-dimensional simplex, then

∑

r≥0

i(F , r)tr = 1

(1 − t)d+1
.

Since the triangulation is unimodular, α is an n-dimensional simplex. Let k := #(α).
Since α′ is obtained from α by removing k simplices of dimension n − 1 from α, the
inclusion-exclusion formula implies that

∑

r≥0

i
(
α′, r

)
t r = (1 − t)−(n+1)

(
k∑

i=0

(−1)i
(

k

i

)
(1 − t)i

)

= t#(α)

(1 − t)n+1
.

�

For example, Γ1 in the previous example gives us a partition as shown above, and
we have

∑

r≥0

i
(
α′

1, r
)
t r = 1

(1 − t)3
,

∑

r≥0

i
(
α′

2, r
)
t r = 1

(1 − t)3
− 1

(1 − t)2
= t

(1 − t)3
,

and

∑

r≥0

i
(
α′

4, r
)
t r = 1

(1 − t)3
− 2

1

(1 − t)2
+ 1

(1 − t)
= t2

(1 − t)3
.

3.2 Exceedances and Descents

Let w ∈ Sn. Define its standard representation of cycle notation to be a cycle notation
of w such that the first element in each cycle is its largest element and the cycles are
ordered with their largest elements increasing. We define the cycle type of w to be the
composition of n: C(w) = (c1, . . . , ck) where ci is the length of the ith cycle in its
standard representation. The Foata map F : w → ŵ maps w to ŵ obtained from w by
removing parentheses from the standard representation of w. For example, consider
a permutation w : [5] → [5] given by w(1) = 5, w(2) = 1, w(3) = 4, w(4) = 3 and
w(5) = 2 or in one line notation w = 51432. Its standard representation of cycle
notation is (43)(521), so ŵ = 43521. The inverse Foata map F−1 : ŵ → w allows us
to go back from ŵ to w as follows: first insert a left parenthesis before every left-to-
right maximum and then close each cycle by inserting a right parenthesis accordingly.
In the example, the left-to-right maximums of ŵ = 43521 are 4 and 5, so we get
back (43)(521). Based on the Foata map, we have the following result for the equal
distribution of exceedances and descents.
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Theorem 3.2 (Exceedances and Descents) The number of permutations in Sn with
k exceedances equals the number of permutations in Sn with k descents.

Proof First notice that we can change a permutation with k exceedances u to a per-
mutation w with k reverse exceedances and vice versa by applying a reverse map:
first reverse the letters by changing u(i) to n + 1 − u(i), then reverse the positions
by defining n + 1 − u(i) to be w(n + 1 − i). This way, i is an exceedance of u if and
only if n + 1 − i is a reverse exceedance of w. Then the hard part is the connection
between descents and reverse exceedances, which will involve the Foata map.

Let ŵ be a permutation with k descents {(ŵ(i1), ŵ(i1 + 1)), . . . , (ŵ(ik),

ŵ(ik + 1))} with ŵ(is) > ŵ(is + 1) for s = 1, . . . , k. We want to find its preimage
w in the above map. After inserting parentheses in ŵ, each pair (ŵ(is), ŵ(is + 1))

lies in the same cycle. So in w, we have w(ŵ(is)) = ŵ(is + 1) < ŵ(is), therefore,
ŵ(is) is a reverse exceedance of w. We also find that each reverse exceedance of w

corresponds to a descent in ŵ by the definition of the Foata map. This finishes the
proof. �

For example, to change a permutation with three exceedances to a permutation
with three descents, first

4̇3̇25̇1
(6−)−−→ 2̇3̇41̇5

reverse−−−−→
position

51̇43̇2̇,

changes an exceedance in position i to a reverse exceedance in position 6 − i, and
then

51̇43̇2̇
standard representation−−−−−−−−−−−−→

of cycle structure
(43)(521)

remove parentheses−−−−−−−−−−→ 43 521,

changes a reverse exceedance in position i to a descent with the first letter i. The
above two maps are both reversible.

3.3 Triangulation of the Hypersimplex

We start form a unimodular triangulation {tw | w ∈ Sn} of the hypercube, where

tw = {
(y1, . . . , yn) ∈ [0,1]n | 0 ≤ yw1 ≤ ywn ≤ · · · ≤ ywn

}
.

It is easy to see that tw has the following n + 1 vertices: v0 = (0, . . . ,0), and vi =
(y1, . . . , yn) given by yw1 = · · · = ywn−i

= 0 and ywn−i+1 = · · · = ywn = 1. It is clear
that vi+1 = vi + ewn−i

. Now define the map ϕ [4, 5] that maps tw to sw , sending
(y1, . . . , yn) to (x1, . . . , xn), where

xi =
{

yi − yi−1, if (w−1)i > (w−1)i−1,

1 + yi − yi−1, if (w−1)i < (w−1)i−1,
(3.1)

where we set y0 = 0. For each point (x1, . . . , xn) ∈ sw , set xn+1 = k + 1 −
(x1 + · · · + xn). Since vi+1 and vi only differ in ywn−i

, by (3.1), ϕ(vi) and ϕ(vi+1)

only differ in xwn−i
and xwn−i+1. More explicitly, we have
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Lemma 3.3 Denote wn−i by r . For ϕ(vi), we have xrxr+1 = 01 and for ϕ(vi+1),
we have xrxr+1 = 10. In other words, from ϕ(vi) to ϕ(vi+1), we move a 1 from the
(r + 1)th coordinate forward by one coordinate.

Proof First, we want to show that for ϕ(vi), we have xr = 0 and xr+1 = 1. We need
to look at the segment yr−1yryr+1, of vi . We know that yr = 0, so there are four cases
for yr−1yryr+1: 000, 001, 100, 101. If yr−1yryr+1 = 000 for vi , then yr−1yryr+1 =
010 for vi+1. Therefore, w−1

r−1 < w−1
r > w−1

r+1. Then by (3.1), we have xrxr+1 = 01.
Similarly, we can check in the other three cases that xrxr+1 = 01 for ϕ(vi).

Similarly, we can check the four cases for yr−1yryr+1: 010, 011, 110, 111 in
ϕ(vi+1) and get xrxr+1 = 10 in all cases. �

Let des(w−1) = k. It follows from Lemma 3.3 that the sum of the coordinates∑n
i=1 xi for each vertex ϕ(vi) of sw is either k or k + 1. So we have the triangulation

[5] of the hypersimplex �k+1,n+1: Γk+1,n+1 = {sw | w ∈ Sn,des(w−1) = k}.
Now we consider a graph Gk+1,n+1 on the set of simplices in the triangulation

of �k+1,n+1. There is an edge between two simplices s and t if and only if they are
adjacent (they share a common facet). We can represent each vertex of Gk+1,n+1 by
a permutation and describe each edge of Gk+1,n+1 in terms of permutations [4]. We
call this new graph Γk+1,n+1. It is clear that Γk+1,n+1 is isomorphic to Gk+1,n+1.

Proposition 3.4 [4, Lemma 6.1 and Theorem 7.1] The graph Γk+1,n+1 can be de-
scribed as follows: its vertices are permutations u=u1 · · ·un ∈Sn with des(u−1)= k.
There is an edge between u and v, if and only if one of the following two holds:

1. (type one edge) ui − ui+1 �= ±1 for some i ∈ {1, . . . , n − 1}, and v is obtained
from u by exchanging ui, ui+1.

2. (type two edge) un �= 1, n, and v is obtained from u by moving un to the front of
u1, i.e., v = unu1 · · ·un−1; or this holds with u and v switched.

Example 3.5 Here is the graph Γ3,5 for �′
3,5.

In the above graph, the edge α between u = 2413 and v = 4213 is a type one edge
with i = 1, since 4−2 �= ±1 and one is obtained from the other by switching 2 and 4;
the edge β between u = 4312 and v = 2431 is a type two edge, since u4 = 2 �= 1,4
and v = u4u1u2u3. The dotted line attached to a simplex s indicates that s is adjacent
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to some simplex t in �2,5. Since we are considering the half-open hypersimplices,
the common facet s ∩ t is removed from s.

4 Proof of Theorem 1.2 by a Shellable Triangulation

We want to show that the h∗-polynomial of �′
k+1,n+1 is

∑

w∈Sn
exc(w)=k

tdes(w).

Compare this to Theorem 3.1: if �′
k+1,n+1 has a shellable unimodular triangulation

Γk+1,n+1, then its h∗-polynomial is

∑

α∈Γk+1,n+1

t#(α).

We will define a shellable unimodular triangulation Γk+1,n+1 for �′
k+1,n+1, label

each simplex α ∈ Γk+1,n+1 by a permutation wα ∈ Sn with exc(wα) = k. Then show
that #(α) = des(wα).

We start from the triangulation Γk+1,n+1 studied in Sect. 3.3. By Theorem 3.4,
each simplex is labeled by a permutation u ∈ Sn with des(u−1) = k. Based on the
Foata map defined in Sect. 3.2, after the following maps, the vertices of Sk+1,n+1 are
permutations in Sn with k exceedances:

Γk+1,n+1
rev−→ Rk+1,n+1

−1−→ Pk+1,n+1
F−1−−→ Qk+1,n+1

rev−→ Sk+1,n+1, (4.1)

where the map F−1 : Pk+1,n+1 → Qk+1,n+1 sending ŵ to w is the inverse of the
Foata map and the map “rev” is the reverse map we defined in the proof of Theo-
rem 3.2, reversing both the letters and positions of a permutation.

Example 4.1 For an example of the above map from Γ3,5 to S3,5, consider u = 3241.
It is in Γ3,5 since u−1 = 4213 has exactly two descents. Applying the above map to u,
we have

3241
rev−→ 4132

−1−→ 2431
F−1−−→ 4213

rev−→ 2431,

where 2431 has 2 exceedances.

Apply the above maps to vertices of Γk+1,n+1, we call the new graph Sk+1,n+1. We
will define the shelling order on the simplices in the triangulation by orienting each
edge in the graph Sk+1,n+1. If we orient an edge (u, v) such that the arrow points
to u, then in the shelling, let the simplex labeled by u be after the simplex labeled
by v. We can orient each edge of Sk+1,n+1 (see Definition 4.7) such that the directed
graph is acyclic (Corollary 4.18). This digraph therefore defines a partial order on the
simplices of the triangulation. We will prove that any linear extension of this partial
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order gives a shelling order (Theorem 4.21). Given any linear extension obtained
from the digraph, the shelling number of each simplex is the number of incoming
edges. Let wα be the permutation in Sk+1,n+1 corresponding to the simplex α. Then
we can show that for each simplex, its number of incoming edges equals des(wα)

(Theorem 4.12).

Example 4.2 Here is the graph S3,5 for �′
3,5 with each edge oriented according to

Definition 4.7.

For example, the vertex labeled by 3412 with des(3412) = 1 has one incoming edge.
Another example, consider the vertex labeled by 3142. It has two incoming edges
(including the dotted edge), which is the same as its number of descents. So we can
see that it is crucial here that we are looking at the half-open hypersimplex instead of
the usual hypersimplex.

In the following three subsections, we will first define how we orient each edge
in Sk+1,n+1 and each vertex has the correct number of incoming edges, then we will
show that the digraph is acyclic, and finally, any linear extension gives a shelling.

4.1 Correct Shelling Number

We need a closer look of each graph Rk+1,n+1,Pk+1,n+1,Qk+1,n+1 obtained in the
process of getting Sk+1,n+1 from Γk+1,n+1. First, from the description of Γk+1,n+1
(Proposition 3.4) and the maps in (4.1):

Rk+1,n+1: its vertices are u ∈ Sn with des(u−1) = k. There are two types of edge:

1. type one edge is the same as in Γ ;
2. u and v has a type two edge if and only if u1 �= 1, n, and v is obtained

from u by moving u1 to the end of un, i.e., v = u2 · · ·unu1; or switch
the role of u and v.

Pk+1,n+1: its vertices are u ∈ Sn with des(u) = k. There are two types of edge:

1. (u, v) is a type one edge if and only if the numbers i and i + 1 are not
next to each other in u, and v is obtained from u by exchanging the
numbers i and i + 1. We label this edge ei .

2. (u, v) is a type two edge if and only if u1 �= 1 and un �= 1, and vi =
ui − 1 (modn) for i = 1, . . . , n (we denote this by v = u− 1 (modn)),
or switch the role of u and v. We label this edge e0.
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Example 4.3 Here are the graphs R3,5 and P3,5 for �′
3,5.

In the graph R3,5 above, the edge labeled α is of type one switching 1 and 3; and β is
of type two, with u = 3421 and v = u2u3u4u1 = 4213. In the above graph P3,5, the
edge e3 is an edge of type one between u = 4132 and 3142 switching 3 and 4 since
they are not next to each other; and the edge e1 between u = 4312 and v = 3241 =
u − 1 (mod 4) is of type two.

Definition 4.4 Let w ∈ Sn. Define its descent set to be Des(w) = {i ∈ [n − 1] |
wi > wi+1} its leading descent set to be the actual numbers on these positions,
LdDes(w) = {wi | i ∈ Des(w)}.

For w ∈ Pk+1,n+1, since des(w) = k, we have Des(w) = {i1, . . . , ik}. By the de-
scription of edges in Pk+1,n+1, we have the following relation of Des and LdDes for
an edge in Pk+1,n+1:

Lemma 4.5 Let v be a vertex in Pk+1,n+1.

1. Define u by v = u − 1 (modn). There are three cases depending on the position
of the letter n in v:
(a) if v1 = n, then Des(u) = Des(v)\{1}, thus u ∈ Pk,n+1;
(b) if vn = n, then Des(u) = Des(v) ∪ {n − 1} and u ∈ Pk+2,n+1;
(c) if vi = n with i �= 1, n, then Des(u) = Des(v) ∪ {i − 1}\{i} and u ∈ Pk+1,n+1.

2. Let ei = (u, v) be a type one edge in Pk+1,n+1. Then we have Des(u) = Des(v).
In this case, we also compare LdDes(u) and LdDes(v):
(a) if i, i +1 ∈ LdDes(u) or i, i +1 /∈ LdDes(u), we have LdDes(u) = LdDes(v);
(b) otherwise, if i ∈ LdDes(u) and i + 1 /∈ LdDes(u), we have LdDes(v) =

LdDes(u) ∪ {i + 1}\{i}.

Now consider the map from Pk+1,n+1 to Sk+1,n+1. Notice that this map is the
same as defined in Theorem 3.2. Therefore, we have

Corollary 4.6 Vertices in Qk+1,n+1 are permutations w ∈ Sn with k reverse ex-
ceedances (i such that wi < i), and vertices in Sk+1,n+1 are permutation v ∈ Sn

with exc(v) = k. Moreover, the reverse exceedances set in w ∈ Qk+1,n+1, denoted by
Rexc(w) = {i | wi < i} is the same as LdDes(ŵ), where ŵ = F(w) ∈ Pk+1,n+1. So
part 2 of Lemma 4.5 for LdDes(ŵ) also apply for Rexc(w).
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For w ∈ Q, decompose [n − 1] by Aw ∪ Bw ∪ Cw (disjoint union), where

Aw = {
i ∈ [n − 1] | i /∈ Rexc(w), i + 1 ∈ Rexc(w)

}
, (4.2)

Bw = {
i ∈ [n − 1] | i + 1 /∈ Rexc(w), i ∈ Rexc(w)

}
, and (4.3)

Cw = {
i ∈ [n − 1] | i, i + 1 /∈ Rexc(w) or i, i + 1 ∈ Rexc(w)

}
. (4.4)

For example, consider v = 541̇2̇63̇87̇9, where the dotted positions are in Rexc(v).
Then Av = {2,5,7}, Bv = {4,8,6} and Cv = {1,3}.

For an edge (u, v) ∈ Qk+1,n+1, we label it ei according to the labeling of the
corresponding edge ei = (û, v̂) ∈ Pk+1,n+1. Then we orient each edge in Qk+1,n+1

in the following way:

Definition 4.7 Let ei = (u, v) be an edge in Qk+1,n+1.

1. For type one edge (i �= 0),
(a) if Rexc(u) �= Rexc(v), then define u → v if and only if i ∈ Rexc(v) (this

implies i /∈ Rexc(u) by Lemma 4.5, part 2(b));
(b) if Rexc(u) = Rexc(v), then define u → v if and only if vi > vi+1 (this implies

ui < ui+1 by Corollary 4.15).
2. For type two edge (i = 0), define u → v if and only if v̂ = û − 1 (modn), where

(û, v̂) is the corresponding edge in Pk+1,n+1.

Based on the above definition and the Foata map, we have the following descrip-
tion of incoming edges for v ∈ Qk+1,n+1.

Lemma 4.8 Let v be a vertex in Qk+1,n+1. Then

1. v has an incoming type one edge (ei with i �= 0) if and only if one of the following
two holds:
(a) i ∈ Bv ;
(b) i ∈ Cv ∩ Des(v).

2. v has an incoming type two edge (e0) if and only if vn �= n.

Proof

1. First, by Definition 4.7, and Lemma 4.5, it is clear that if there exists an edge ei

with i �= 0, u → v for some u ∈ Qk+1,n+1, then v satisfies one of conditions
(a) and (b). On the other hand, we need to show that, if (a) or (b) is true for v,
then there exists an edge ei = (u, v) ∈ Qk+1,n+1. Then, by Definition 4.7, the
edge will be oriented as u → v. In fact, consider the corresponding permutation
v̂ ∈ Pk+1,n+1. From the description of Pk+1,n+1, v̂ has a type one edge ei if and
only if i and i + 1 are not next to each other in v̂. But with a careful look at the
inverse Foata map, we can see that if (a) or (b) is true for v, then neither the case
v̂ = · · · i(i + 1) · · · nor v̂ = · · · (i + 1)i · · · can be true.

2. Let û = v̂ + 1 (modn) in Pk+1,n+1. If des(û) = des(v̂), then we have û ∈
Pk+1,n+1, so v̂ has a type two edge, and this edge points to v by Definition 4.7.
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If des(û) = des(v̂) − 1, then v̂ still has an incoming edge e1, since we are consid-
ering the half-open hypersimplex and this edge indicates that the common facet
u ∩ v is removed from v. Then by Lemma 4.5, part 1, des(û) ≤ des(v̂) if and
only if case (b) does not happen, i.e., v̂n �= n in P . This is equivalent to vn �= n in
Qk+1,n+1 by the inverse Foata map. �

Definition 4.9 Let I, J ⊂ [n − 1]. Define a big block of Qk+1,n+1 to be bI =
{w ∈ Qk+1,n+1 | Des(ŵ) = I }, where ŵ = F(w) ∈ Pk+1,n+1. Define a small block
sI,J = {w ∈ bI | Rexc(w) = J }. We say the small block sI,J is smaller than sI ′,J ′ if
(1) I < I ′ or (2) I = I ′ and J > J ′.

For two different sets I, I ′ ⊂ [n−1] with I = {i1 ≤ · · · ≤ ik} and I ′ = {i′1 ≤ · · · ≤ i′�},
we define I < I ′ if 1) k < � or 2) k = � and ij ≤ i′j for all j = 1, . . . , k. Then by
Lemmas 4.5 and 4.8, we have

Corollary 4.10 For an edge ei = u → v ∈ Qk+1,n+1 with u ∈ sI,J and v ∈ sI ′,J ′ ,

1. if i = 0, then I ′ > I ;
2. if i �= 0 and i ∈ Bv , then I = I ′ and J ′ < J ;
3. if i �= 0 and i ∈ Cv , then I = I ′ and J = J ′.

Example 4.11 Here is an example of Definition 4.7, Lemma 4.8 and Corollary 4.10,
with a type one edge drawn in Q3,5 and a type two (e0) in P3,5 for �′

3,5.

It is clear from the graph P3,5 that v̂ ∈ P3,5 has an incoming e0 if and only if v̂4 �= 4,
which is equivalent to v4 �= 4 in Q3,5. Consider v = 4321 ∈ Q3,5. It has Rexc(v) =
{3,4}. Since v4 �= 4, it has an incoming e0 edge (shown in P3,5); since v with i = 1,3
satisfies condition (b) in Lemma 4.8, there are two incoming edges e1 and e3 of type
two, and these are all the incoming edges of v.

Consider the edge e0 = u → v ∈ Q3,5 whose corresponding edge in P3,5 is be-
tween û = 4312 and v̂ = 3241. We have I = Des(û) = {1,2} and I ′ = Des(v̂) =
{1,3}, with I ′ > I . Consider the edge e2 = u → v ∈ Q3,5 with u = 341̇2̇ and
v = 21̇43̇, where the dotted positions are in Rexc. Since 2 ∈ Bv , we have J =
Rexc(u) = {3,4} and J ′ = Rexc(v) = {2,4} with J > J ′. Finally, consider e1 = u →
v ∈ Q3,5 with u = 342̇1̇ and v = 431̇2̇. Since 1 ∈ Cv , we have Rexc(u) = {3,4} =
Rexc(v).
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With the orientation of Qk+1,n+1 by Definition 4.7, we have

Theorem 4.12 For each vertex v ∈ Qk+1,n+1, the number of its incoming edges
equals des(v).

Proof First, notice that if i ∈ Bv , then i /∈ Des(v); and if j ∈ Av , then j ∈ Des(v).
So Des(v) = Av ∪ (Cv ∩ Des(v)). Now we will define a bijection between the set
Des(v) and the set of incoming edges of v as listed in Lemma 4.8. First notice that i ∈
Des(v)∩Cv corresponds to an incoming edge ei described in case (b) of Lemma 4.8.
Then we need to match Av with the set of incoming edges in Lemma 4.8, parts 1(a)
and 2. There are two cases:

1. If vn = n, by Lemma 4.8, v does not have a type two incoming edge. Then we
have a bijection between the sets Av and Bv by matching i ∈ A to min{j ∈ B |
j > i}. For example, v = 541̇2̇63̇87̇9 where the dotted positions are in Rexc(v).
Then Av = {2,5,7} is in bijection with Bv = {4,8,6}. This gives us the desired
bijection since the set of i’s such that ei is a type one incoming edge of case 1(a)
is exactly Bv .

2. If vn �= n, Av has one element more than Bv , since the largest number in Av does
not have image in Bv . But since in this case, v has a type two incoming edge by
Lemma 4.8, the extra descent can be taken care by this incoming edge. �

4.2 Acyclicity

We want to show that the digraph defined in the previous subsection gives a shelling
order. First, we need to show that any linear extension of the above ordering is well
defined, i.e., there is no cycle in the directed graph Sk+1,n+1 (equivalently, Qk+1,n+1
is acyclic). In this section, we restrict to the connected component of a small block of
Qk+1,n+1, i.e., the subgraph of Qk+1,n+1 consisting of permutations with the same
Rexc, or equivalently, the subgraph of Pk+1,n+1 consisting of permutations with the
same LdDes. By Lemmas 4.5 and 4.8, ei = (u, v) ∈ Qk+1,n+1 with u and v in the
same small block if and only i ∈ Cu, where Cu is defined in (4.4). We want to show
that there is no directed cycle in each small block of Qk+1,n+1.

For a permutation w, let ti (w) be the permutation obtained by switching letters i

and i + 1 in w, and si(w) be the permutation obtained by switching letters in posi-
tions i and i + 1. Now consider ei = (u, v) ∈ Qk+1,n+1 and the corresponding edge
(û, v̂) ∈ P . By definition of Pk+1,n+1, we have û = ti v̂. Then in Qk+1,n+1, we have

Lemma 4.13 Let ei = (u, v) ∈ Qk+1,n+1 and i ∈ Cu. Then

u =
{

si(v), C(u) �= C(v),

tisi(v), C(u) = C(v),

where C(w) stands for the cycle type of w defined in Sect. 3.2.

Proof In Pk+1,n+1, we have û = · · · i · · · (i + 1) · · · and v̂ = · · · (i + 1) · · · i · · · . By
the inverse Foata map and the condition that u and v are in the same small block,
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i.e., LdDes(u) = LdDes(v), we can see that the only case when C(u) �= C(v) is u =
· · · (i · · · )((i+1) · · · ) · · · and v = · · · ((i+1) · · · i · · · ) · · · (in standard cycle notation).
Then the conclusion follows from the inverse Foata map. �

Example 4.14 Consider u = 4321 ∈ Q3,5 with standard cycle notation u = (32)(41)

in Example 4.11. For e3 = (u, v) with v = 4312 = (4231), since C(u) �= C(v), we
have u = s3(v). For e1 = (u, v′) with v′ = 3412 = (31)(42), since C(u) = C(v), we
have u = t3s3(v), i.e., u is obtained from v′ by switching 3 and 4, which is 4312, and
then switching v′

3 and v′
4, which is 4321 = u.

For a permutation w, define its inversion set to be inv(w) = {(wi,wj ) | i〈j,wi〉wj }
and denote # inv(w) by i(w). By Lemma 4.13, we have

Corollary 4.15 For ei = (u, v) ∈ Qk+1,n+1 with i ∈ Des(u) and i ∈ Cu, we have
i /∈ Des(v) and i(v) ≤ i(u).

Now consider a sequence of edges E in a small block of Qk+1,n+1: u ← ·· · ← v.
By Corollary 4.15, we have i(v) ≤ i(u). In order to show that there is no cycle in
each small block, we find an invariant that strictly decreases along any directed path.
We define the E-inversion set to be

invE(w) = {
(wi,wj ) ∈ inv(w) | {ei, . . . , ej−1} ⊂ E

}
(4.5)

and claim that iE(w) = # invE(w) is such an invariance (Lemma 4.17).

Example 4.16 For w = 361452798 and E = {ei | i ∈ {2,3,5}}, we first cut w into
blocks (indicated by lines):

w = 3 614 52 7 9 8,

with the property that each block can be permutated arbitrarily by {si | i ∈ {2,3,5}}.
Then invE(w) = {(6,1), (6,4), (5,2)}, i.e., (wi,wj ) ∈ inv(w) with wi,wj in the
same block. This is the same as in (4.5).

Here are three extremal examples. If E = {ei | i ∈ [n−1]}, then invE(w) = inv(w)

for all w ∈ Sn. If E = {ei} and ei = u ← v ∈ Q, then iE(u) = 1 and iE(v) = 0. If
E = {ei | i ∈ I ⊂ [n − 1]} and i /∈ Des(w) for all i ∈ I , then iE(w) = 0. This is the
situation in Lemma 4.17.

Lemma 4.17 Let u ← ·· · ← v be a sequence of edges in a small block of Qk+1,n+1
with edge set E. Then iE(v) < iE(u).

Proof By Lemmas 4.13 and 4.8, part 1, we have iE(v) ≤ iE(u). Suppose we have
iE(v) = iE(u). We will show that no edge can belong to E. First, we show that en−1
cannot be in E. Let w be any permutation in the above path from v to u. If n−1 /∈ Cw ,
then certainly en−1 /∈ E. Suppose n − 1 ∈ Cw . Let ŵ′ = tn−1(ŵ) in P . Notice that
we always have C(w′) �= C(w). Then by Lemma 4.13, we have w′ = si(w), and thus
iE(w′) < iE(w). So en−1 /∈ E.
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Now consider u. Notice that the last cycle of u in its standard cycle notation must
start with n. Let the cycle be (na1 a2 · · ·ak). We claim that ea1 /∈ E. First, for u, since
un = a1 and en−1 /∈ E, all pairs (ui, un) are not in invE(u) by definition of invE

in (4.5). Let û′ = ta1(û) in P . Independent of the fact that C(u) = C(u′), we have
iE(u′) < iE(u). Now consider any w appearing in the path from v to u. Suppose all
edges before w are not ea1 . Then we still have wn = a1. Let ŵ′ = ta1(ŵ). Then again
consider both cases C(w) = C(w′) or not, by Lemma 4.13, we have iE(w′) < iE(w).
Therefore, ea1 /∈ E.

With the same argument, we can show that ea2 /∈ E, . . . , eak
/∈ E. Then we can

move to the previous cycle, until we have ei /∈ E for all i ∈ [n − 1]. �

Corollary 4.18 Qk+1,n+1 is acyclic.

Proof First it is not hard to see that there is no cycle that involves vertices in different
small blocks, since both big blocks and small blocks have the structure of a poset,
and edges between two small/big blocks all have the same direction. Therefore, if
Qk+1,n+1 has a cycle, it has to be within a small block.

Suppose there is a directed cycle within a small block with edge set E. Consider
some w in the cycle and let w1 = w2 = w in Lemma 4.17, we will have iE(w) <

iE(w), a contradiction. �

4.3 Shellable Triangulation

In this section, we will show that any linear extension of the ordering of the simplices
in Qk+1,n+1 is shellable. We will prove this by showing that each simplex has a
unique minimal nonface (see Sect. 3.1).

Let us first assign a face F to each simplex. Each incoming edge α
ei←− αi defines a

unique vertex Mi of α that α has but αi does not have. Then let F = {Mi} be given by
all the incoming edges of α. We want to show that F is the unique minimal nonface
of α. First, let us assume F is a nonface, i.e., it has not appeared before α in a given
order of simplices. We can see that F is the unique minimal nonface, i.e., any proper
subface of F has appeared before. In fact, let Mi be a vertex in F but not in F ′ ⊂ F .
Then we have F ′ ⊂ αi since αi has every vertex of α except for Mi .

In the rest of this section, we will show that F is a nonface. To show this, let QF

be the (connected) component of Qk+1,n+1 consisting of all simplices containing F .
Then it suffices to show that α is the only source of QF , and any other simplices are
reachable by α, i.e., there exists a directed path from α to that simplex. We will first
show this within each small block and then connect different small blocks.

Let QF,s be a (connected) component of Qk+1,n+1 consisting of all simplices
in a small block s containing F . In Sect. 5, we define a “vertex expression” for each
simplex in �. Let the vertex expression of two simplices be α = M1 · · ·Mn+1 and β =
M ′

1 · · ·M ′
n+1. Assume α and β are connected by an edge ei . Then by Corollary 5.3,

α and β differs only by the (i + 1)th vertex, i.e., Mi+1 �= M ′
i+1 and Mj = M ′

j for all
j �= i + 1. Then it follows that there exists an edge set E for QF,s , such that QF,s is
closed under this edge set: if β is connected to α by an edge e ∈ E and α ∈ QF,s , then
β ∈ QF,s . In fact, let α ∈ QF,s and say the vertices of F are in the positions J ⊂ [n]
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of α. Then we have E = {ei | i /∈ J, i ∈ Cu, for any u ∈ s}. To show the nonface
property for each small block (Corollary 4.20), we need the following lemma about
the Foata map.

Lemma 4.19 Let I ⊂ {1,2, . . . , n − 1}. For a permutation w ∈ Sn, consider the set
E(w) of all the permutations obtained by applying any sequence of ti , (i ∈ I ) to w,
i.e.,

E(w) = {
u = ti1 · · · tik (w) | ij ∈ I for some k

}
.

Then there exists a unique u ∈ E(w) such that F−1(u) has ascents in I .

Proof We can describe an algorithm to determine this u uniquely. First, notice that
the group generated by ti , (i ∈ I ) is a subset of the symmetric group Sn, and has the
form Sa1 × Sa2 × · · · × Sak

, where a = (a1, a2, . . . , ak) is a composition of n. For
example, if n = 9, and I = {2,3,5,7,8}, then a = (1,3,2,3). A composition in k

parts divides the numbers 1,2, . . . , n into k parts, and numbers in each region can be
permuted freely by ti , (i ∈ I ).

Now in the given w, replace numbers in each region by a letter and order the letters
by the linear order of the regions. In the previous example, replace {1}, {2,3,4},
{5,6} and {7,8,9} by a, b, c, d respectively and we have the order a < b < c < d .
For example, if w = 253496187, then we get a word bcbbdcadd .

Next, add parentheses to the word in front of each left-to-right maximum, as in
the inverse Foata map. For bcbbdcadd , we have (b)(cbb)(dcadd). Notice that we
do not have parentheses before the second and third d . No matter how we standardize
this word, the cycles we get will be a refinement of the cycles for the word.

Now comes the most important part. We want to standardize the word in a way
such that v = F−1(w) is increasing in all positions of I . To do this, we look at a
letter in the word and compare it to the next word it goes to in the cycle notation. For
example, consider the b’s in (b1)(cb2b3)(dcadd). vb1 = b1 ∈ {2,3,4}, vb2 = b3 ∈
{2,3,4} and vb3 ∈ {5,6}. Since vb3 > vb1 and vb2 , to keep v increasing in positions
{2,3,4}, we have b3 > b1 and b2, so b3 = 4. Now continue to compare b1 and b2.
Since vb2 = b3 > vb1 = b1, we have b1 < b2, and thus b1 = 2, b2 = 3. Notice that if
there are no periodic cycles, then we can always choose a unique way to standardize
the letters to a permutation with the required property. For a periodic cycle, there is
still a unique way to standardize them, which is to standardize each letter in the cycle
increasingly. For example, for (baba), (3142) is the unique way. This completes the
algorithm and proof. �

Corollary 4.20 (Small Block Shelling) For any face F ⊂ �′, if QF,s �= ∅, then QF,s

has only one source and any other simplices are reachable by that source.

Proof Let E be the edge set corresponding to QF,s . By Lemma 4.8, part 1(b), if α

is a source in QF,s , then iE(α) = 0. First, by Lemma 4.17, we know that there exists
at least one such source. In fact, let α ∈ QF,s . If iE(α) �= 0, then by Lemma 4.8,
part 1(b), we can keep going along the incoming edges of QF,s . Since there is no
cycle within the small block and there are only finitely many simplices in QF,s , we
will reach a source.
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Now by Lemma 4.19, there is at most one source for QF,s . Then the proposition is
proved since the above “tracing back along arrows” will guarantee that each simplex
in QF,s is reachable by that unique source. �

Theorem 4.21 Any linear extension of the above defined ordering between adjacent
simplices will give a shelling order for the half-open hypersimplex.

Proof It suffices to show that for each face F in �′, QF has only one source and any
other simplices are reachable by that source. First by Proposition 5.5, QF starts with a
unique minimal connected small block. By Lemma 4.8, parts 1(b) and 2, each simplex
in �′ has an incoming edge from a simplex in a smaller small block. Therefore, the
source αF in the unique minimal small block of QF is the unique source of QF , and
each simplex in QF is reachable from αF via the unique source in each QF,s . �

5 Vertex Expression for Simplices in the Triangulation

Let zi = x1 + · · · + xi , we have an equivalent definition for �k+1,n+1:

�k+1,n+1 = {
(z1, . . . , zn) | 0 ≤ z1, z2 − z1, . . . , zn − zn−1 ≤ 1; k ≤ zn ≤ k + 1

}
.

In this new coordinate system, the triangulation of �k+1,n+1 is called the alcoved
triangulation [4].

Now all the integral points will be vertices of some simplex in the triangulation.
Denote the set of all the integral points in �k+1,n+1 by Vk+1,n+1 = {Zn ∩�k+1,n+1}.
Now we define a partial order on Vk+1,n+1 (we will drop the indices from now on).
For M = (m1, . . . ,mn),N = (m′

1, . . . ,m
′
n) ∈ V , we define M > N if and only if

mi ≥ m′
i for i = 1, . . . , n. If M = N + ei , where ei is the vector with 1 in the ith

position and 0 elsewhere, then label this edge in the Hasse diagram by n + 1 − i. We
still call the Hasse diagram of this poset on Vk+1,n+1 by Vk+1,n+1 itself. Here is an
example of V3,5.

Lemma 5.1 n+1 points of Vk+1,n+1 form a simplex in the triangulation of �k+1,n+1
if and only if these points form an n-chain in the poset V and the labels of edges are
distinct. Moveover, vertex expressions with the same starting letter will also have the
same ending letter.
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For example, HFCBA is a simplex in �3,5, since the labels along the path form
a permutation 4132.

Proof Starting with a point in V3,5, for example H = (0,1,2,2), we need to add one
to each coordinate, in order to get a simplex. It always end up with A = (1,2,3,3). �

For each simplex, we define its vertex expression to be the expression formed by
its n + 1 vertices (from small to large in the poset Vk+1,n+1). For example, HFCBA

is a vertex expression.
We denote the set of all such simplices in their vertex expressions by Lk+1,n+1, and

denote the corresponding permutations read from the paths of Vk+1,n+1 by R′
k+1,n+1.

Since two simplices are adjacent if and only if their vertices differ by one vertex,
we can add a graph structure on Lk+1,n+1 (and thus on R′

k+1,n+1): we connect two
simplices if and only if their vertex expressions differ by one vertex. For example,
from L3,5, we get R′

3,5 by reading the labels of the corresponding paths in V3,5:

Notice that in V3,5, since the vertices E, F , H , G, I , L have z4 = 2, they lie on the
lower facet of �3,5. Therefore, we have a dotted line attached to each of the simplices
IHFEB , LIHFC, LIGFC and IGFEB , indicating that these simplices have a
lower facet removed.

We have the following connections between the vertex expressions (graph
Lk+1,n+1 and R′

k+1,n+1) and the graphs Rk+1,n+1 (and Pk+1,n+1, Qk+1,n+1) we
studied in Sect. 3. For example, compare R′

3,5 above with R3,5 in Sect. 3.

Proposition 5.2 R′
k+1,n+1 = Rk+1,n+1.

Proof Since the permutations r ∈ Rk+1,n+1 are {r ∈ Sn | des(r−1) = k}, we first
need to show that the permutations in R′

k+1,n+1 have the same property. For a
simplex α, let M1 · · ·Mn+1 be its vertex expression, with M1 = (m1, . . . ,mn) and
Mn+1 = (m′

1, . . . ,m
′
n) = M1 + ∑n

i=1 ei . Let r ′
α = a1a2 · · ·an be the permutation in

R′
k+1,n+1 corresponding to this simplex α. Then we have Mi+1 = Mi + en+1−ai

.
Because of the restriction that k ≤ zn ≤ k + 1 and 0 ≤ z1 ≤ 1 for both M1 and

Mn+1, we have m1 = 0 and mn = k. By the other restrictions that 0 ≤ zi+1 − zi ≤ 1,
we need to go up by 1 k times from m1 to mn. So there exists a set I ⊂ [n] with
#I = k, such that mi+1 = mi + 1, for each i ∈ I , and mj+1 = mj for j ∈ [n]\I .



868 Discrete Comput Geom (2012) 48:847–878

To keep the above restrictions for each Mi , i = 1, . . . , n, we need to add ei before
ei+1 for i ∈ I , and add ej before ej+1 for j ∈ [n]\I . Then by the way we defined r ′

α ,
we have Des(r ′−1

α ) = n + 1 − I and thus des(r ′−1
α ) = #I = k.

Now we want to show that the edges in the graph R′
k+1,n+1 are the same as in

Rk+1,n+1. Since each edge in Lk+1,n+1 corresponds to a vertex-exchange, there are
two types of edge in Lk+1,n+1.

First, exchange a vertex in the middle without touching the other vertices. An
edge in Lk+1,n+1 changing the ith vertex with i �= 1 and i �= n + 1 corresponds to
an edge in R′

k+1,n+1 exchanging the (i − 1)th and the ith letters of the permutation
r ′ ∈ R′

k+1,n+1. By the restrictions 0 ≤ zj+1 − zj ≤ 1, we can make such a change if
and only r ′

i−1 and r ′
i are not consecutive numbers. Therefore, this edge is the type

one edge in Rk+1,n+1.
Second, remove the first vertex and attach to the end another vertex. This edge

in Lk+1,n+1 corresponds to the edge in R′
k+1,n+1 changing r ′ = a1a2 · · ·an to s′ =

a2 · · ·ana1. We claim that we can make such a change if and only if a1 �= 1 and
a1 �= n. In fact, if a1 = n, then for the second vertex of the simplex corresponding
to r ′, we have z1 = 1. Since the vertex expression of s′ is obtained from that of r ′
by removing the first vertex of r ′ and attaching to the end another vertex, the first
vertex of s′ is the same as the second vertex of r ′. So for the first vertex of s′, we
have z1 = 1, but then we cannot add e1 to s′ any more, since we require 0 ≤ z1 ≤ 1; if
a1 = 1, then zn = k + 1 for the first vertex of the simplex corresponding to s′, so we
cannot add en to s′ any more, since we require k ≤ zn ≤ k + 1. Therefore, this edge
is the type two edge in Rk+1,n+1. �

Corollary 5.3

1. Two simplices are in the same big block if and only if the first vertices in their
vertex expression (Lk+1,n+1) is the same. This implies that their last vertices are
also the same.

2. Two simplices only differ by the (i + 1)th vertex in the vertex expression, if and
only if they are connected by an edge ei .

For J ⊂ [n], we call ei a backward move if i ∈ J and i + 1 /∈ J ; and call it a
forward move if i /∈ J and i + 1 ∈ J . Let t ∈ sI,J for some I ⊂ [n]. When we apply
ei to t , we get a simplex in a smaller small block if ei is a backward move and in a
bigger small block if ei is a forward move. We call both backward and forward moves
movable edges.

For any face F in �k+1,n+1, consider the subgraph of Qk+1,n+1 with all simplices
containing F , denoted by QF , and its restriction to a small block s, denoted by QF,s .

Lemma 5.4 For any connected small block s, QF,s is connected. In particular,
QF,sI,J0

is connected, where J0 = {n − k + 1, . . . , n}.

Proof For any two simplices t1, t2 ∈ QF,s , let t1 = M1 · · ·Mn+1 and t2 = N1 · · ·Nn+1
be their vertex expressions. Since s is connected, there exists a path from t1 to t2
without any movable edges. So Mi = Ni for all movable edges ei . On the other hand,
there exists a path from t1 to t2 using only edges ej where Mj �= Nj , this path is
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in QF . Since j is not those movable edges, this path is also in s, and thus t1 to t2 is
connected by a path in QF,s .

We only need to show that sI,J0 is connected, then by the first statement, QF,sI,J0
is connected.

For any fixed big block I , each permutation w ∈ Pk+1,n+1 is obtained by a set
partition of [n − k] and J0 according to I , since I = Des(w) and J0 = LdDes(w).
For example, for n = 9, k = 4 and I = {1,2,5,6}, each w ∈ P is obtained as fol-
lows. We first choose two from J0 = {6,7,8,9} to be w1w2 and the other two to be
w5w6. Within each of the two 2-blocks, numbers need to be decreasing. Then choose
two from {1,2,3,4,5} to be w3w4 and the other three to be w7w8w9. Within each
block, numbers need to be increasing. Then it is not hard to see that any two such
permutations can be obtained from each other without using an en−k-edge, so sI,J0 is
connected. �

Proposition 5.5 QF starts with a unique minimal connected small block.

Proof Suppose not. Let t1 ∈ sI,J , t2 ∈ sI ′,J ′ in two disconnected minimal small
blocks in QF . Write them in vertex expression, we have t1 = M1 · · ·Mn+1 and
t2 = N1 · · ·Nn+1.

If I �= I ′ and they are incomparable, then there exists another simplex t ∈ bI ′′
in QF with I ′′ < I ′ and I ′′ < I . In fact, looking at the poset Vk+1,n+1, both t1, t2
are some n + 1-chains in Vk+1,n+1, their common vertices contain F , and they have
different ending points Mn+1,Nn+1. Let E ∈ t1 ∩ t2 be the maximal element of t1 ∩ t2
in V , and let t be the chain ending at E and passing through t1 ∩ t2. Then t has the
desired property. So t1, t2 are not in minimal small blocks.

Now we assume I = I ′. If J = J ′, then by Lemma 5.4, J �= J0, so J has a back-
ward move. We can show that there exists a backward move i of J such that Mi �= Ni .
First, it is easy to see that there exists a movable edge ei such that Mi �= Ni , other-
wise sI,J is connected. Then by symmetry, it is impossible that all of these movable
edges are forward moves. Then let t be the simplex obtained from t1 by an ei move.
Since Mi �= Ni , we have Mi /∈ F . Therefore, t ∈ QF and t is in a smaller small block,
which contradicts the assumption that sI,J is a minimal small block in QF .

Now assume J �= J ′ and they are incomparable. By Lemma 4.5, part 2, we need
to apply a sequence of moves to get from sI,J to sI,J ′ . Since J,J ′ are incomparable,
there exists a backward move for J , which is a necessary move from sI,J to sI,J ′ . It
follows that there exists such a move ei with Mi �= Ni . Then we can apply this move
to t1 and get a smaller small block in QF than sI,J . �

6 Proof of Theorem 1.3: Second Shelling

We want to show that the h∗-polynomial of �′
k+1,n+1 is also given by

∑

w∈Sn
des(w)=k

tcover(w),
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we will define cover in a minute. Compare this to Theorem 3.1: if �′
k+1,n+1 has a

shellable unimodular triangulation Γk+1,n+1, then its h∗-polynomial is
∑

α∈Γk+1,n+1

t#(α).

Similar to Theorem 1.2, we will define shellable unimodular triangulation for
�′

k+1,n+1, but this shelling is different from the one we use for Theorem 1.2. La-
bel each simplex α ∈ Γk+1,n+1 by a permutation wα ∈ Sn with des(wα) = k. Then
show that #(α) = cover(wα).

We start from the graph Γk+1,n+1 studied in Sect. 3.3. Define a graph Mk+1,n+1
such that v ∈ V (Mk+1,n+1) if and only if v−1 ∈ V (Γk+1,n+1) and (u, v) ∈
E(Mk+1,n+1) if and only if (u−1, v−1) ∈ E(Γk+1,n+1). By Proposition 3.4, we have

V (Mk+1,n+1) = {
w ∈ Sn | des(w) = k

}
,

and (w,u) ∈ E(Mk+1,n+1) if and only if w and u are related in one of the following
ways:

1. type one: exchanging the letters i and i + 1 if these two letters are not adjacent in
w and u

2. type two: one is obtained by subtracting 1 from each letter of the other (1 becomes
n − 1).

Now we want to orient the edges of Mk+1,n+1 to make it a digraph. Consider e =
(w,u) ∈ E(Mk+1,n+1).

1. if e is of type one, and i is before i + 1 in w, i.e., inv(w) = inv(u) − 1, then orient
the edge as w ← u.

2. if edge (w,u) is of type two, and v is obtained by subtracting 1 from each letter
of u (1 becomes n − 1), then orient the edge as w ← u.

Example 6.1 Here is the directed graph M3,5 for �′
3,5:

Lemma 6.2 There is no cycle in the directed graph Mk+1,n+1.

Proof Let us call the subgraph of Mk+1,n+1 connected by only type one edges a
component. Then there is no cycle involving type two edges since they all point in the
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same direction from one component to another. Then there is no cycle involving only
type one edges either, since the number of inversions decreases along the directed
path of type one edges. �

Therefore, Mk+1,n+1 defines a poset on V (Mk+1,n+1) and Mk+1,n+1 is the Hasse
diagraph of the poset, which we still denote as Mk+1,n+1. This poset can be seen as a
variation of the poset of the weak Bruhat order.

For an element in the poset Mk+1,n+1, the larger its rank is, the further its
corresponding simplex is from the origin. More precisely, notice that each v =
(x1, . . . , xn) ∈ Vk+1,n+1 = �k+1,n+1 ∩ Z

n has |v| = ∑n
i=1 xi = k or k + 1. For

u ∈ Mk+1,n+1, by which we mean u ∈ V (Mk+1,n+1), define

Au = #
{
v is a vertex of the simplex su−1 | |v| = k + 1

}
.

Proposition 6.3 Let w > u in the above poset Mk+1,n+1. Then Aw ≥ Au.

This proposition follows from the following lemma and the definition of the two
types of directed edge.

Lemma 6.4 Au = un.

Proof Let w = u−1 and use the notations in section 2. Vertices of sw are ϕ(vi) for
i = 0, . . . , n. Since v0 = (0, . . . ,0), by (3.1), |ϕ(v0)| = k, so xn+1 = 1 for ϕ(v0).
By Lemma 3.3, from ϕ(vn−un) to ϕ(vn−un+1), xnxn+1 is changed from 01 to 10.
Moreover xn+1 = 1, thus |ϕ(vi)| = ∑n

j=1 xj = k for i = 0, . . . , n−un, and xn+1 = 0,
thus |ϕ(vi)| = k + 1 for i = n − un + 1, . . . , n. Therefore, there are un vertices with
|ϕ(vi)| = k + 1, thus Au = un. �

We define cover of a permutation w ∈ Mk+1,n+1 to be the number of permuta-
tions v ∈ Mk+1,n+1 it covers, i.e., the number of incoming edges of w in the graph
Mk+1,n+1. From the above definition, we have the following, (in the half-open set-
ting):

Lemma 6.5

1. If w1 = 1, then cover(w) = #{i ∈ [n − 1] | (w−1)i + 1 < (w−1)i+1};
2. if w1 �= 1, then cover(w) = #{i ∈ [n − 1] | (w−1)i + 1 < (w−1)i+1} + 1.

Proof The elements in {i ∈ [n − 1] | (w−1)i + 1 < (w−1)i+1} correspond to the type
one edges pointing to w. So we need to show that w has an incoming type two edge
in the graph for �′

k,n if and only if w1 �= 1. Let u be the permutation obtained by
subtracting one from each letter of w (1 becomes n − 1).

1. If w1 �= 1 and wn−1 �= 1, then des(u) = des(w), so u ∈ Mk,n.
2. If wn−1 = 1, then des(u) = des(w) − 1, so u ∈ Mk−1,n. Since we are considering

the half-open setting, this incoming edge is still in �′
k,n. This corresponds to the

waved edges in the above example of �′
3,5.

3. If w1 = 1, then des(u) = des(w) + 1, so this edge is not in �′
k,n. �
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Recall the graph Rk+1,n+1 defined in Sect. 4 is obtained by

Mk+1,n+1
w−1−−→ Γk+1,n+1

rev−→ Rk+1,n+1.

By Proposition 5.2, Rk+1,n+1 is also obtained from the n-chain expression of each
simplex in �k+1,n+1. We can describe the same orientation of edges (u,w) in
Rk+1,n+1 with n-chain expression u = L1 < · · · < Ln+1 and w = I1 < · · · < In+1:

1. type one edge ei : if ui < ui+1, then u ← w. We have Li+1 �= Ii+1 with
rank(Li+1) = rank(Ii+1) in the poset V and Lj = Ij for all j �= i + 1. ui < ui+1
if and only if the vector Li+1 = (z1, . . . , zn) < Ii+1 = (z′

1, . . . , z
′
n) in dominance

order, i.e., zn + · · · + zn−� ≥ z′
n + · · · + z′

n−� for all �. Note that by definition, we
have zn ≥ zn−1 ≥ · · · ≥ z1 and z′

n ≥ z′
n−1 ≥ · · · ≥ z′

1.
2. type two edge: if w = u2 · · ·unu1, then w ← u. This corresponds to the case w =

L2 < · · · < Ln+1 < L1 in the poset Vk+1,n+1.

With the above ordering on the n-chain expressions of simplices in �k+1,n+1, we
can prove the following:

Proposition 6.6 Any linear extension of the above ordering gives a shelling order on
the triangulation of �′

k+1,n+1.

Proof We want to show that for any linear extension of the order in Mk+1,n+1, every
simplex has a unique minimal nonface (see definitions in Sect. 3.1).

For each simplex α ∈ �k+1,n+1, assign to it a face F ⊂ α in the following way.

Each incoming edge α
ei←− αi defines a unique vertex Li of α that α has but αi does

not have. Then let F = {Li} be given by all the incoming edges of α. We want to
show that F is the unique minimal face of α and it has never appeared before in any
linear extension of the ordering given by the directed graph.

First, assume F has never appeared before, then it is clear that F is the unique
minimal face, i.e., any proper subface of F has appeared before. In fact, let Li be a
vertex in F but not in F ′ ⊂ F . Then we have F ′ ⊂ αi since αi has every vertex of α

except for Li .
Now we will show that F has never appeared before α in any linear extension,

i.e., for any other β which also has F , there exists a directed path from α to β . It
suffices to show the following: for any face F ⊂ �k+1,n+1, the component MF of
simplices containing F has a unique source, and any other simplex is reachable from
that source (there exists a directed path from α to β).

In MF , let us first consider the subgraph of simplices starting with the same let-
ter, say A, denoted by MF,A. We want to prove that MF,A has a unique source,
and any other simplex is reachable from that source. By the description of edges
in Mk+1,n+1, simplices in MF,A are connected by type one edges. For any edge
eiH = H1 · · ·Hn+1 → W = W1 · · ·Wn+1, we have i �= 0, n, Hi+1 �= Wi+1 and
Hj = Wj for all j �= i + 1. Now let F ∪{A,B} = {F1 < F2 < · · · < F�} ordered as in
the poset Vk+1,n+1. It is clear that all simplices MF,A are (n+1)-chain in the interval
[A,B], where B = A+∑n

i=1 ei passing through F1, . . . ,F�. Now order the letters of
the same rank in each of the intervals [Fi,Fi+1] by dominance order. We claim that
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the unique source is the chain obtained by choosing the dominant maximal element in
each rank. First, notice that in the interval [Fi,Fi+1], if rank(A1) = rank(A2)+1 = k

and both A1 and A2 are maximal in dominance order compared to other element in
[Fi,Fi+1] with ranks k and k − 1 respectively, then we have A1 > A2. So the dom-
inant maximal elements in each rank of [Fi,Fi+1] and F ∪ {A,B} form a chain.
Moreover, for any other chain in MF,A, we can apply a simple move to change one
vertex to a larger element in dominant order until we reach the chain with dominant
maximal in each rank. Then the reachability also follows.

Now consider the whole MF . We claim that the ending point of the source is the
maximal element in F , denoted by Fh. Any chain β not ending with Fh ends with
some letter larger than Fh in the poset Vk+1,n+1, then by moving down steps, there
exists a simplex γ ∈ MF,F ′

h
, where F ′

h = Fh − ∑n
i=1 ei such that there is a directed

path from γ to β . We know that MF,F ′
h

has its unique source α, which connects to γ

by a directed path towards γ . Thus we have a directed path from α to β via γ . �

It is clear that the shelling number of the simplex corresponding to w is cover(w).
Then by Theorem 3.1 and Proposition 6.6, we have a proof of Theorem 1.3. Combine
the above with Theorem 1.2, we have an indirect proof of Corollary 1.4.

We want a direct combinatorial proof, which will give another proof of Theo-
rem 1.2, and help us find a colored version of exceedance by Theorem 7.3 in the next
section.

7 The h∗-Polynomial for Generalized Half-Open Hypersimplex

We want to extend Theorem 1.3 to the hyperbox B = [0, a1] × · · · × [0, an]. Write
α = (a1, . . . , ad) and define the generalized half-open hypersimplex as

�′
k,α = {

(x1, . . . , xn) | 0 ≤ xi ≤ ai; k − 1 < x1 + · · · + xn ≤ k
}
. (7.1)

Note that the above polytope is a multi-hypersimplex studied in [4]. For a nonnegative
integral vector β = (b1, . . . , bn), let Cβ = β + [0,1]n be the cube translated from the
unit cube by the vector β . We call β the color of Cβ .

We extend the triangulation of the unit cube to B by translation and assign to each
simplex in B a colored permutation

wβ ∈ Sα = {
w ∈ Sn | bi < ai, i = 1, . . . , n

}
.

Let Fi = {xi = 0} ∩ [0,1]n for i = 1, . . . , n. Define the exposed facets for the sim-
plex su−1 in [0,1]n, with u ∈ M , to be Expose(u) = {i | su−1 ∩ Fi is a facet of su−1}.

We can compute Expose(u) explicitly as follows

Lemma 7.1 Set u0 = 0. Then Expose(u) = {i ∈ [n] | ui−1 + 1 = ui}.

Proof Denote u−1 = w. Let ϕ(vi), i = 0, . . . , n be the vertices of sw . Then i ∈
Expose(u) if and only if xi = 0 for n vertices of sw . By the description of vertices of
sw in Lemma 3.3, from ϕ(vn−ui

) to ϕ(vn−ui+1), we change xixi+1 from 01 to 10; and
from ϕ(vn−ui−1) to ϕ(vn−ui−1+1), we change xi−1xi from 01 to 10. If ui−1 + 1 = ui ,
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we have vn−ui−1 = vn−ui+1. Then 1 will pass through xi quickly and thus xi = 1 for
only one vertex ϕ(vn−ui+1) of sw . Otherwise, xi = 1 for more than one vertex. �

Now we want to extend the shelling on the unit cube to the larger rectangle. In this
extension, Fi will be removed from Cβ if bi �= 0. Therefore, for the simplex swβ , we
will remove the facet Fi ∩ swβ for each i ∈ Expose(w) ∩ {i | bi �= 0} as well as the
cover(wβ) facets for neighbors within Cβ . We call this set Expose(w) ∩ {i | bi �= 0}
the colored exposed facet (cef), denoted by cef(wβ), for each colored permutation
wβ = (w,β).

Based on the above extended shelling, with some modifications of Proposition 6.6,
we can show that the above order is a shelling order. We show the idea of the proof
by the following example.

Example 7.2 Consider �′
k,α for α = (1,2,2) and k = 3. In z-coordinates, where

zi = x1 + · · · + xi , we have

V3,{1,2,2} = {
A(0,0,2),B(0,1,2),C(1,1,2),F (0,2,2),G(1,2,2),D(0,1,3),

E(1,1,3),H(0,2,3), I (1,2,3),L(1,3,3)
}
.

Drawing them in the poset as described in Sect. 5, we have the following poset on the
left. The simplices in the triangulation of �k,α are 3-chains of V3,{1,2,2} with distinct
labels along the chain. We draw these 3-chains on the right with an edge between
each pair of adjacent simplices.

If two simplices are in the same cube, then we orient the edges as in Sect. 3. If
not, then the arrow points to the one whose permutation has fewer descents. With this
extension, we can still compare two simplices that only differ by the (i +1)th vertices
Li+1 and Ii+1 by comparing Li+1 and Ii+1 in the dominance order. So the proof of
Proposition 6.6 holds for �k,α too.
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Table 1 des(w) = 0

w cover(w) Expose(w) cef(w(0,0,1,3)) cef(w(0,1,0,3)) cef(w(0,1,1,2))

1234 0 {1,2,3,4} 2 2 3

Table 2 des(w) = 1

w cover(w) Expose(w) cef(w(0,0,0,3)) cef(w(0,0,1,2)) cef(w(0,1,0,2)) cef(w(0,1,1,1))

1243 1 {1,2} 0 0 1 1

1342 1 {1,3} 0 1 0 1

1423 1 {1,4} 1 1 1 1

2341 1 {2,3} 0 1 1 2

3412 1 {2,4} 1 1 2 2

4123 1 {3,4} 1 2 1 2

1324 2 {1} 0 0 0 0

2314 2 {2} 0 0 1 1

3124 2 {3} 0 1 0 1

2134 2 {4} 1 1 1 1

2413 2 {} 0 0 0 0

Then, by Theorem 3.1 and the fact that the shelling number for wβ is cover(wβ)+
cef(wβ), we have the following theorem.

Theorem 7.3 The h∗-polynomial for �′
k,α is

∑

wβ∈Sα

des(w)+|β|=k−1

tcover(wβ)+cef(wβ).

Example 7.4 Consider n = 5, k = 5 and α = (1,2,2,4). We want to compute the
h∗-polynomial of �′

5,(1,2,2,4) by Theorem 7.3, where the sum is over all (w,β) with
w ∈ S4, β = (b1, . . . , b4) with b1 = 0, 0 ≤ b2 < 2, 0 ≤ b3 < 2, 0 ≤ b4 < 4 and
des(w) + |β| = 4.

1. If des(w) = 0, we have w = 1234, and the color β with |β| = 4 is one
of (0,0,1,3), (0,1,0,3) and (0,1,1,2). From Table 1, we have

∑

des(w)=0,|β|=4

tcover(wβ)+cef(wβ) = 2t2 + t3.

2. If des(w) = 1, the color β with |β| = 3 is one of (0,0,0,3), (0,0,1,2), (0,1,0,2)

and (0,1,1,1). From Table 2, we have
∑

des(w)=1,|β|=3

tcover(wβ)+cef(wβ) = 5t + 26t2 + 13t3.
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Table 3 des(w) = 2

w cover(w) Expose(w) cef(w(0,0,0,2)) cef(w(0,0,1,1)) cef(w(0,1,0,1)) cef(w(0,1,1,0))

1432 1 {1} 0 0 0 0

3421 1 {2} 0 0 1 1

4231 1 {3} 0 1 0 1

4312 1 {4} 1 1 1 0

2143 2 {} 0 0 0 0

2431 2 {} 0 0 0 0

3214 2 {} 0 0 0 0

3241 2 {} 0 0 0 0

4132 2 {} 0 0 0 0

4213 2 {} 0 0 0 0

3142 3 {} 0 0 0 0

Table 4 des(w) = 3

w cover(w) Expose(w) cef(w(0,1,0,0)) cef(w(0,0,1,0)) cef(w(0,0,0,1))

4321 1 {} 0 0 0

3. If des(w) = 2, the color β with |β| = 2 is one of (0,0,0,2), (0,0,1,1), (0,1,0,1)

and (0,1,1,0). From Table 3, we have
∑

des(w)=2,|β|=2

tcover(wβ)+cef(wβ) = 9t + 31t2 + 4t3.

4. If des(w) = 3, we have w = 4321, and the color β with |β| = 1 is one of
(0,1,0,0), (0,0,1,0) and (0,0,0,1). From Table 4, we have

∑

des(w)=3,|β|=1

tcover(wβ)+cef(wβ) = 3t.

To sum up, the h∗-polynomial of �′
5,(1,2,2,4) is 17t + 59t2 + 18t3.

8 Some Identities

Proposition 8.1 For any k ∈ [n − 1], we have

1. #{w ∈ Sn | exc(w) = k,des(w) = 1} = (
n

k+1

)
.

2. {w ∈ Sn | des(w) = k, cover(w) = 1} = {w ∈ Sn | # Expose(w) = n − (k + 1)}.
3. #{w ∈ Sn | des(w) = k, cover(w) = 1,Expose(w) = S} = 1, for any S ⊂ [n] with

|S| = n − (k + 1).
4. #{w ∈ Sn | des(w) = k, cover(w) = 1} = (

n
k+1

)
.
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Proof

1. Notice that if i is an exceedance and i + 1 is not, then i is a descent. Since
des(w) = 1, all exceedances are next to each other. Let i be the first exceedance.
Then it suffices to choose i < wi < wi+1 < · · · < wn−k+1 to determine w.

2. Let i0 be the smallest i such that i /∈ Expose(w). Notice that this i0 will cause
one cover. In fact, if i0 = 1, then w1 �= 1; if i0 > 1, then wi0 − 1 is before wi0

and they are not adjacent. Since cover(w) = 1, after the i0th position of w, there
is no j · · · (j + 1). Then it follows that for each i /∈ Expose(w) with i �= i0, i − 1
is a descent of w. On the other hand, if j ∈ Expose(w), j − 1 is not a descent.
Therefore, to make des(w) = k, we need k elements other than i0 that are not in
Expose(w).

3. Let S = {a1, . . . , ak+1}. It is easy to check that the only w satisfying the con-
dition is the following: w1 · · ·wa1−1 = 1 · · · (a1 − 1), wa1 > wa2 > · · · > wak+1

and wj+1 = wj + 1 for j = ai, ai + 1, . . . , ai+1 − 2 if ai+1 − ai > 1 for i =
1,2, . . . , k + 1, where we set ak+1 = n + 1. For example, if S = {2,3,5,7} for
n = 9, then w = 197856234.

4. Follows from (2) and (3). �

Proposition 8.2 For any 1 < i < n, we have

1. #{w ∈ Sn | exc(w) = 1,des(w) = k} = (
n+1
2k

)
.

2. #{w ∈ Sn | des(w) = 1,# Expose(w) = n − 2k or n + 1 − 2k} = 1
3. {w ∈ Sn | des(w) = 1,# Expose(w) = n − 2k or n + 1 − 2k} ⊂ {w ∈ Sn |

cover(w) = k}.
4. #{w ∈ Sn | des(w) = 1, cover(w) = k} = (

n
2k

) + (
n

2k−1

) = (
n+1
2k

)
.

Proof

1. Let the unique exceedance be i and assume wi = j > i. First, we have w� = � for
� < i and � > j , also w� ≤ � for i < � < j . Now notice that if i < � ∈ Des(w),
then we must have w� = �, otherwise, we cannot have wh ≤ h for all i < h < �.
Then, we can show that a 2k-subset {i < i1 < j1 + 1 < i2 < j2 + 1 < · · · < ik−1 <

jk−1 + 1 < j + 1} ⊂ [n + 1] corresponds to a unique such permutation w in the
following way: ws = s for i� ≤ s ≤ j�, for all 1 ≤ � ≤ k − 1 and then fill the gaps
with the left numbers increasingly. We see that Des(w) = {i, j1, j2, . . . , jk−1}. For
example, consider {2,3,4,6,8,9} for n = 9. First we have w1 = 1, w9 = 9; then
we have w2 = 8, w3 = 3, w6w7 = 67. Finally we fill the positions w4,w5,w8
with the rest of the numbers 2,4,5, and get w = 183246759 with exc(w) = 1 and
Des(w) = {2,3,7}. Conversely, it is easy to define a unique 2k-subset as above
for a given w.

2. Let [n] − Expose(w) = {i1, . . . , i�}, where � = 2k − 1 or 2k. It is not very hard to
see that in order to make sure des(w) = 1, w has to be the following one. Define
wi = i for 1 ≤ i < i1. Then let r = � �

2�, define Bj = wij · · ·wij+1−1 for 1 ≤ j ≤ r

and Aj = wir+j
· · ·wir+j+1−1 for 1 ≤ j ≤ � − r , where we set i�+1 = n + 1. Then

we put numbers i1, i1 + 1, . . . , n into the positions A1B1A2B2 · · ·ArBr(Ar+1)

alternatively. For example, Let [n]− Expose(w) = {3,4,6,8,9} with n = 9. Then
w = 125893467.



878 Discrete Comput Geom (2012) 48:847–878

3. It is clear from the construction in (2), that w has k covers.
4. Follows from (2) and (3). �

See the relations between cover and Exposed set shown in Tables 2 and 3 for an
example of the above two propositions.

Acknowledgements N. Li was partially supported by the US National Science Foundation under Grant
DMS-0604423.

I thank my advisor Richard Stanley for introducing me to the problem and giving me help and en-
couragement, Ira Gessel for helpful communication about the generating function proof, Yan Zhang for
a nice idea for the proof of Lemma 4.19, Dorian Croitoru and Steven Sam for helpful discussions and
reading the draft carefully. I am also very grateful to the anonymous reviewer for very helpful comments
and instructions.

References

1. De Negri, E., Hibi, T.: Gorenstein algebras of Veronese type. J. Algebra 193, 629–639 (1997)
2. Foata, D., Han, G.: Fix-mahonian calculus III; a quadruple distribution. Monatshefte Math. 154, 177–

197 (2008)
3. Katzmann, M.: The Hilbert series of algebras of Veronese type. Commun. Algebra 33, 1141–1146

(2005). doi:10.1081/AGB-200053828
4. Lam, T., Postnikov, A.: Alcoved polytopes I. Discrete Comput. Geom. 38(3), 453–478 (2007)
5. Stanley, R.: Eulerian partitions of a unit hypercube. In: Aigner, M. (ed.) Higher Combinatorics, p. 49.

Reidel, Dordrecht (1977)
6. Stanley, R.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980)
7. Stanley, R.: Combinatorics and Commutative Algebra, 2nd edn. Progress in Mathematics, vol. 41.

Birkhauser, Boston (1996)
8. Stanley, R.: Enumerative Combinatorics. Volume 1. Cambridge Studies in Advanced Mathematics,

vol. 49. Cambridge University Press, Cambridge (1997)
9. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. Am. Math. Soc.,

Providence (1996)

http://dx.doi.org/10.1081/AGB-200053828

	Ehrhart h*-Vectors of Hypersimplices
	Abstract
	Introduction
	Proof of Theorem 1.2 by Generating Functions
	Background
	Shellable Triangulation and the h*-Polynomial
	Exceedances and Descents
	Triangulation of the Hypersimplex

	Proof of Theorem 1.2 by a Shellable Triangulation
	Correct Shelling Number
	Acyclicity
	Shellable Triangulation

	Vertex Expression for Simplices in the Triangulation
	Proof of Theorem 1.3: Second Shelling
	The h*-Polynomial for Generalized Half-Open Hypersimplex
	Some Identities
	Acknowledgements
	References


