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Abstract

The first examples of catalyst-controlled stereoselective macrocyclic ring-closing metathesis 

reactions that generate Z-enoates as well as (E,Z)- or (Z,E)-dienoates are disclosed. Reactions 

promoted by 3.0–10 mol % of a Mo-based monoaryloxide pyrrolide complex proceed to 

completion within 2–6 h at room temperature. The desired macrocycles are formed in 79:21 to 

>98:2 Z/E selectivity; stereoisomerically pure products can be obtained in 43–75% yield after 

chromatography. Utility is demonstrated by application to a concise formal synthesis of the natural 

product (+)-aspicilin.

Macrocyclic structures containing a carbonyl unit conjugated to one or more alkenes are 

present in many biologically active molecules.1 Other than ester bond-forming reactions, 

Horner–Emmons-type transformations and catalytic ring-closing metathesis (RCM) are two 

distinct approaches that allow access to large-ring E-enoates. Reactions between an 

aldehyde and a stabilized phosphonium ylide represent a reliable way of synthesizing 

macrocycles; RCM, however, obviates the need for protecting group manipulations and/or 

oxidation state adjustments that often accompany the involvement of a carbonyl group. 

Macrocyclic Z-enoates can be obtained by reactions performed under modified Horner–

Emmons conditions,2 through the use of Still–Gennari-type phosphonate esters3 or by partial 

hydrogenation of ynoates.4 Catalyst-controlled Z-selective RCM has the potential to give 

macrocyclic Z-enoates efficiently, facilitating synthesis of molecules such as 

callyspongiolide5 (Scheme 1a).6 Further, RCM offers an attractive option for preparing 

macrocyclic (E,Z)-7 or (Z,E)-dienoates; macrolactin A8 is an example of a natural product 
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that contains such a moiety (Scheme 1b). Alternatively, the dienoate unit may be site-

selectively and diastereoselectively functionalized;9 the case corresponding to preparation of 

aspicilin10 is representative (Scheme 1b). Despite the above considerations, macrocyclic 

RCM processes that deliver large ring enoates and/or dienoates containing a Z-alkene are yet 

to be disclosed. Here we report catalytic RCM reactions that generate such entities 

efficiently and stereo-selectively.

We first examined the ability of Ru, Mo, and W complexes, commonly used and/or shown 

to be effective in Z-selective macrocyclic RCM,6 to promote the formation of 14-membered-

ring Z-enoate 2 (Table 1). Reaction with dichloro-Ru complex 3 was efficient (87% conv, 12 

h), generating the lower energy E isomer selectively (5:95 Z/E, entry 1). Under conditions 

similar to those reported for RCM of unactivated dienes,6c there was no detectable 

transformation after 12 h in the presence of 10 mol% bidentate Ru complex 4 (entry 2). With 

bis-alkoxide 5 (entry 3), only 42% conv was observed, presumably due to competitive 

catalyst deactivation/decomposition; E-2 was again formed preferentially (16:84 Z/E).

We then turned to examining monoaryloxide pyrrolide (MAP) complexes under conditions 

that allow for relatively facile reaction (100 Torr, C6H6, 22 °C).6a,b Use of W or 

Moalkylidenes 6 and 7a led to minimal reaction11 (entries 4 and 5, Table 1). Based on 

computational investigations indicating that a more electron withdrawing imido group can 

impart electronic stabilization of the metallacyclobutane intermediates to increase 

efficiency,6d we probed the activity of 2-(trifluoromethyl)-phenylimido complex 7b (entry 

6). After 2 h, 24% of 2 was formed with 72:28 Z/E selectivity. To enhance selectivity, we 

opted for a more sizable aryloxide ligand according to our original stereochemical model.12 

However, use of MAP complex 8 led to complete loss of activity.

At this point, we chose to prepare and examine MAP alkylidenes 9a,b, complexes that have 

not been previously utilized. This was based on the hypothesis that electronic activation 

imposed by the comparatively diminutive pentafluorophenylimido ligand might improve 

catalyst performance6d while giving rise to elevated Z selectivity by residing opposite to the 

sterically demanding aryloxides in the metallacyclobutane intermediates. In the event, when 

9a was used, 60% conv to 2 was observed along with 89:11 Z/E selectivity (entry 8). When 

the aryloxide substituents were altered from 2,4,6-trimethylphenyl in 9a to a 2,4,6-

tri(isopropyl)phenyl moiety, catalyst activity disappeared entirely (entry 9). Optimization 

studies indicated that 3.0–5.0 mol% of the in situ-generated MAP complex 9a is sufficient to 

bring about considerable conversion under 100 Torr of pressure, at ambient temperature and 

after 2 h (Scheme 2). Longer reaction times did not lead to further transformation.

Different macrocyclic Z-enoates, from 14- to 19-membered rings (2, 10–14, Scheme 2), can 

be synthesized in 79:21–90:10 Z/E selectivity. As the formation of 24-membered-ring 15a 
indicates, the catalytic protocol may be extended to larger macrocyclic compounds. After 

silica gel chromatography, pure Z product isomers were isolated in 43–70% yield. Ring 

closures are often more efficient for ring sizes larger than 15. Consistent with this trend, our 

efforts to obtain a 12-membered Z-enoate proved unsuccessful (<2% desired product). 

Depending on the ring size and/or the nature of the substituents, RCM of an acyclic diene 

precursor that contains additional functionality might result in improved or diminished 
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efficiency.13 Thus, reactions leading to 16- and 17-membered-ring products 11b and 12b 
proceeded to higher conversion and afforded the Z-enoates in better yield compared to 11a 
and 12a.

Attempts to promote reactions that produce different α,β-unsaturated amides led to 

negligible transformation (Scheme 3). The disparity between the reactions of ester and 

amide substrates might arise from the ability of the latter to form Mo alkylidenes that can be 

unreactive because of stronger chelation of the amide carbonyl with the transition metal 

and/or A(1,3)-strain when R = Bn or Boc.14 Moreover, unlike Boc amide substituents or 

unprotected indole units, the presence of a primary carbamate, such as that in the expected 

product 15b, leads to substantial activity loss; this might arise from association of the Lewis 

basic unit with the Mo center and/or the acidity of the said substituent.

Macrocyclic dienoates of diverse ring sizes can be prepared through the use of 5.0–10 mol% 

of 9a (Scheme 4). In cases involving E-dienoate as substrates (e.g., 16, Scheme 4a), unlike 

transformations that afford Z-enoates, cyclizations proceed with complete control of 

stereoselectivity (>98:2 Z/E) for up to 18-membered rings. In contrast, 20 is formed in 91:9 

Z:E selectivity. RCM with Ru complexes represented by 3 and 4 proved inefficient (e.g., 

<10% conv to 18 with 10 mol% complex after 12 h). With the more active Mo bis-alkoxide 

5, 20 mol% loading was required to achieve 50% and 34% conv to 18 and 19, respectively 

(<10% conv with 10 mol%). In the latter cases, whereas 18 was generated with complete Z 

selectivity (similar to when 9a was used), there was minimal preference in the case of 19 
(65% Z). Catalytic RCM leading to isomeric (Z,E)-dienoates was performed with E-diene 

substrates (e.g., 21, Scheme 4b).15 Stereoselectivity was lower in these latter systems (cf. 22, 

23 vs products in Scheme 4a), but isomerically pure macrocyclic dienoates were obtained 

after chromatography. Use of Ru dichloride 3 or Mo bis-alkoxide 5 did not yield any desired 

product. Such disparities underscore the unique ability of Mo MAP complexes to deliver the 

appropriate balance of longevity and reactivity.

The transformations in Scheme 5 were carried out to demonstrate utility of the approach. 

Conversion of 2416 to 25 (80% yield) was followed by RCM with 10 mol% 9a afforded 

stereoisomerically pure (E,Z)-dienoate 26 in 69% yield. Oxidative removal of the p-

methoxybenzyl group generated 27 (91% yield), which has been converted to aspicilin.17

For cyclic (E,Z)-dienoates (Scheme 4a) that are ≤18-membered, RCM processes are 

completely Z-selective regardless of the type of Mo alkylidene used (5 or 9a); for 19-

membered ring 20, better Z selectivity is obtained with 9a, suggesting considerable catalyst 

control. This is unlike cyclizations that lead to enoates (Scheme 2) or (Z,E)-dienoates 

(Scheme 4b). To gain insight regarding the above trends, we calculated (DFT) the 

thermodynamic stereochemical preferences for unfunctionalized cyclic alkenes (Figure 1, 

A),6b–d cyclic enoates (B; cf. Scheme 2); cyclic dienoates with an (E)-α,β-unsaturated 

carbonyl and a (Z)-γ,δ-alkene (C; cf. Scheme 4a), and those that bear a (Z)-α,β-unsaturated 

enoate and an (E)- γ,δ-alkene (D; cf. Scheme 4b). With a sufficiently large ring, the 

thermodynamic preference approaches that of acyclic systems. However, while the energy 

difference [ΔG(E) – ΔG(Z)] for type A and C rings does not exceed ~1 kcal/mol (A′ and C′, 

Figure 1), the E isomer can be significantly more stable in type B and D olefins (ΔΔG ≈ 2 
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kcal/mol; cf. B′ and D′). For enoates and dienoates, the thermodynamic preference for the E 

isomer is reached at larger ring sizes compared to the less functionalized variants (A) for 

which the turning point is at about the 11-membered ring system (13–18-membered rings in 

B–D). With the less extensive conjugation in a macrocyclic α,β-unsaturated ester, the E 

alkenes containing more than 13 atoms become favored (B). On the contrary, preference for 

(E,E)-dienoates is reached when 18–19-membered rings are being generated (C and D, 

Figure 1). The ΔΔG value in the case of (Z,E)-dienoates (D′) is larger (by ~1 kcal/mol) for 

ring sizes above ~18 atoms [vs (E,Z)-dienoates in C′], consistent with the weaker drive for 

formation of E alkenes in RCM that furnish (E,Z)-dienoates (C) vs Z,E isomers (D).

These studies expand the applicability of Z-selective olefin metathesis to include a set of 

transformations that is likely to find substantial utility in chemical synthesis. Development 

of related cross-metathesis reactions18 and studies on the impact of the resulting Z-enoates 

and dienoates on the design of multistep routes for preparation of complex biologically 

active molecules6e,18e are in progrees.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Financial support was provided by the NIH (GM-59426). We thank T. J. Mann and A. W. H. Speed for helpful 
discussions.

References

1. Review on biologically active macrocyclic compounds: Yu X, Sun D. Molecules. 2013; 18:6230. 
[PubMed: 23708234] 

2. Representative reports: Williams DR, Kiryanov AA, Emde U, Clark MP, Berliner MA, Reeves JT. 
Angew Chem, Int Ed. 2003; 42:1258.Lucas BS, Gopalsamuthiram V, Burke SD. Angew Chem, Int 
Ed. 2007; 46:769.

3. Examples: Forsyth CJ, Ahmed F, Cink RD, Lee CS. J Am Chem Soc. 1998; 120:5597.Smith AB III, 
Minbiole KP, Verhoest PR, Schelhaas M. J Am Chem Soc. 2001; 123:10942. [PubMed: 11686698] 
O’Neil GW, Phillips AJ. J Am Chem Soc. 2006; 128:5340. [PubMed: 16620095] 

4. Selected cases: Evans DA, Fitch DM, Smith TE, Cee VJ. J Am Chem Soc. 2000; 
122:10033.Wender PA, Hegde SG, Hubbard RD, Zhang L. J Am Chem Soc. 2002; 124:4956. 
[PubMed: 11982349] Nelson SG, Cheung WS, Kassick AJ, Hilfiker MA. J Am Chem Soc. 2002; 
124:13654. [PubMed: 12431077] 

5. Pham CD, Hartmann R, Böhler P, Stork B, Wesselborg S, Lin W, Lai D, Proksch P. Org Lett. 2014; 
16:266. [PubMed: 24329175] 

6. Reports on Z-selective macrocyclic RCM and applications to natural product synthesis: Yu M, 
Wang C, Kyle AF, Jakubec P, Dixon DJ, Schrock RR, Hoveyda AH. Nature. 2011; 479:88. 
[PubMed: 22051677] Wang C, Yu M, Kyle AF, Jakubec P, Dixon DJ, Schrock RR, Hoveyda AH. 
Chem—Eur J. 2013; 19:2726. [PubMed: 23345004] Rosebrugh LE, Herbert MB, Marx VM, Keitz 
BK, Grubbs RH. J Am Chem Soc. 2013; 135:1276. [PubMed: 23317178] Wang C, Haeffner F, 
Schrock RR, Hoveyda AH. Angew Chem, Int Ed. 2013; 52:1939.Yu M, Schrock RR, Hoveyda AH. 
Angew Chem, Int Ed. 201410.1002/anie.201409120.

7. Synthesis of acyclic (E,Z)-dienoates by Still–Gennari conditions: Chemler SR, Coffey DS, Roush 
WR. Tetrahedron Lett. 1999; 40:1269.

Zhang et al. Page 4

J Am Chem Soc. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



8. Report on synthesis of macrolactin A (does not involve macrocyclic RCM): Smith AB III, Ott GR. J 
Am Chem Soc. 1996; 118:13095.For selected other natural products containing the same (Z,E)-
enoate unit, see: Shin Y, Fournier JH, Fukui Y, Brückner AM, Curran DP. Angew Chem, Int Ed. 
2004; 43:4634.Bishara A, Rudi A, Aknin M, Neumann D, Ben-Califa N, Kashman Y. Tetrahedron 
Lett. 2008; 49:4355.

9. For instance: den Hartog T, Harutyunyan SR, Font D, Minnaard AJ, Feringa BL. Angew Chem, Int 
Ed. 2008; 47:398.Uraguchi D, Yoshioka K, Ueki Y, Ooi T. J Am Chem Soc. 2012; 134:19370. 
[PubMed: 23145913] Lee, K-s; Wu, H.; Haeffner, F.; Hoveyda, AH. Organometallics. 2012; 
31:7823. [PubMed: 23264716] Luo Y, Roy ID, Madec AGE, Lam HW. Angew Chem, Int Ed. 2014; 
53:4186.

10. Selected disclosures on total synthesis of aspicilin (none involve macrocyclic RCM): Enders D, 
Prokopenko OF. Liebigs Ann. 1995:1185.Kobayashi Y, Nakano M, Kumar GB, Kishihara K. J 
Org Chem. 1998; 63:7505. [PubMed: 11672404] Dixon DJ, Foster AC, Ley SV. Org Lett. 2000; 
2:123. [PubMed: 10814262] Gandi VR. Tetrahedron. 2013; 69:6507.

11. The less reactive W MAP complexes typically require longer reaction times than Mo alkylidenes.

12. (a) Ibrahem I, Yu M, Schrock RR, Hoveyda AH. J Am Chem Soc. 2009; 131:3844. [PubMed: 
19249833] (b) Meek SJ, O’Brien RV, Llaveria J, Schrock RR, Hoveyda AH. Nature. 2011; 
471:461. [PubMed: 21430774] 

13. An early study regarding the influence of substituents on the facility of a macrocyclic RCM 
reaction promoted by a Mo alkylidene: Xu Z, Johannes CW, Houri AF, La DS, Cogan DA, 
Hofilena GE, Hoveyda AH. J Am Chem Soc. 1997; 119:10302.

14. Amide complexes derived from Mo complexes and their structure/activity relationships: Sattely 
ES, Cortez GA, Moebius DC, Schrock RR, Hoveyda AH. J Am Chem Soc. 2005; 127:8526. 
[PubMed: 15941288] Townsend EM, Kilyanek SM, Schrock RR, Müller P, Smith SJ, Hoveyda 
AH. Organometallics. 2013; 32:4612. [PubMed: 24082360] 

15. With 5.0 mol%9a after 2 h, ~70% conv was observed, but since 21 and 22 are not easily separable, 
conditions that lead to higher conv were used.

16. See the SI for preparation of alkene 24.

17. Quinkert G, Heim N, Glenneberg J, Billhardt UM, Autze V, Bats JW, Dürner G. Angew Chem, Int 
Ed Engl. 1987; 26:362.

18. Representative Z-selective cross-metathesis reactions: (a) Ref 12b. Kiesewetter ET, O’Brien RV, 
Yu EC, Meek SJ, Schrock RR, Hoveyda AH. J Am Chem Soc. 2013; 135:6026. [PubMed: 
23586708] Mann TJ, Speed AWH, Schrock RR, Hoveyda AH. Angew Chem, Int Ed. 2013; 
52:8395.(d) Ref 6e Speed AWH, Mann TJ, O’Brien RV, Schrock RR, Hoveyda AH. J Am Chem 
Soc. 201410.1021/ja509973rHerbert MB, Marx VM, Pederson RL, Grubbs RH. Angew Chem, Int 
Ed. 2013; 52:310.Quigley BL, Grubbs RH. Chem Sci. 2014; 5:501.

Zhang et al. Page 5

J Am Chem Soc. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Variations in the thermodynamic preferences of different unsaturated macrocyclic alkenes. 

See the SI for details of calculations.
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Scheme 1. 
Synthesis of Macrocyclic Enoates by Z-Selective RCM
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Scheme 2. Z-Selective Macrocyclic Enoate RCMa

aReactions leading to 2, 10a,b, and 11a performed at 1.0 mM. Conv = formation of desired 

macrocycle. See the SI for details.
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Scheme 3a

a See the SI for details. nd = not determined.
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Scheme 4. Z-Selective Formation of Macrocyclic Dienoates by RCMa

aConv = formation of the desired macrocycle. See the SI for details.
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Scheme 5. Application to Formal Synthesis of (+)-Aspicilina

aConditions: (a) pentadienoic acid, pivaloyl chloride, DMAP, Et3N. (b) 10 mol% 9a, C6H6, 

22 °C, 100 Torr, 6 h. (c) DDQ, CH2Cl2/H2O, 0 °C, 1 h. Conv = formation of desired 

macrocycle. See the SI for details.
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Table 1

Screening of Ru, Mo, and W Complexesa

entry complex condition time (h); conv (%);b conv to 2 (%)b Z/Eb

1 3 ambient; CH2CI2 12; 92; 87 5:95c

2 4 100 torr; CI(CH2)2CI 12; <5; na nd

3 5 ambient; C6H6 12; 61; 42 16:84c

4 6 100 torr; C6H6 12; <5; na nd

5 7a 100 torr; C6H6 2; <10; na nd

6 7b 100 torr; C6H6 2; 30; 24 72:28

7 8 100 torr; C6H6 2; <10; na nd

8 9a 100 torr; C6H6 2; 79; 60 89:11

9 9b 100 torr; C6H6 2; <5; na nd

a
Reactions were performed under N2 atmosphere.

b
Conversion (total consumption of 1) and Z:E ratios (±2%) were determined by analysis of 1H NMR spectra of unpurified mixtures.
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c
Product mixture contained ca. 50% of the dimeric macrocycle. See the Supporting Information (SI) for details. Mes = 2,4,6-(Me)3C6H2; na = not 

applicable; nd = not determined.
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