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Abstract—The voltages at which Micro-Electro-Mechanical
(MEM) actuators and sensors become unstable, known as pull-
in and lift-off voltages, are critical parameters in MEMS design.
The state-of-the-art MEMS simulators compute these parameters
by simply sweeping the voltage, leading to either excessively large
computational cost, or to convergence failure near the pull-in or
lift-off points. This paper proposes to simulate the behavior at
pull-in and lift-off employing two continuation-based algorithms.
The first algorithm appropriately adapts standard continuation
methods, providing a complete set of static solutions. The second
algorithm uses continuation to trace two kinds of curves and
generates the sweep-up or sweep-down curves, which can provide
more intuition to MEMS designers. The algorithms presented in
this paper are robust and suitable for general-purpose industrial
MEMS designs. Our algorithms have been implemented in a
commercial MEMS/IC co-design tool, and their effectiveness is
validated by comparisons against measurement data and the
commercial FEM/BEM solver CoventorWare.

Index Terms—MEMS CAD, pull-in, lift-off, continuation

I. I NTRODUCTION

A. Motivation

MEMS devices are widely used in system-on-chip (SOC)
applications such as sensors, actuators, as well as circuitfunc-
tional blocks [1]–[7]. Due to the increasing design complexity
and the emergence of MEMS/IC co-design, Electronic Design
Automation (EDA) tools are highly desired for device-level
and system-level MEMS design [8]–[15]. This paper presents
a robust and general-purpose framework to simulate two key
parameters in MEMS design: the pull-in and lift-off voltages.

It is well known that the coupling of electrostatic and
mechanical forces leads to a small set of voltage values
which are unstable and cause the device to rapidly shift from
one state to another [1]. Depending on specific applications,
such instability must be avoided or could be exploited. For
instance, when designing MEMS switches, such as those used
in RF [6], logic [2]–[5], or digital mirror [7] applications,
these instabilities are exploited: once the instability ispassed,
the device rapidly switches either from “off” to “on” as
the moving part is “pulled-in” to make contact with a fixed
surface, or from “on” to “off” as the device “lifts-off” the
fixed surface. On the other hand, for stable operations of some
MEMS devices, small perturbations in the applied voltage
bias should not produce large perturbations in the position
of the moving components. Typical examples include MEMS
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resonators, such as those used for inertial sensors [16] or
quartz replacement [17]. For these devices, the DC bias must
thus be chosen adequately far from the pull-in point to avoid
nonlinear or even unstable behavior. Therefore, pull-in and
lift-off computation is key to a wide range of MEMS designs.

There are some well-established techniques for com-
puting the pull-in voltage. Based on the formulation of
boundary-element method (BEM) and finite element analysis
(FEA) [18]–[21], these methods can be used for a wide
range of MEMS design. However, these algorithms directly
sweep the voltage (i.e., solves the static problem at a set of
monotonically increasing input voltages), and once the pull-in
point is passed, they must find a solution which is no longer
“near” the solution at the previous voltage. As a result, these
methods may fail to converge near the pull-in, or require many
iterations even if they converge by luck. Some analytical and
numerical approaches can avoid the computational issues near
pull-in for some specific devices [22]–[26], but none of them
are general or without heuristics. In [26], [27], the variable
used in the DC sweep is changed to a variable dependent
on voltage and position, such as charge. This change moves
the instability to a larger voltage value enabling robust pull-in
computation, but retains the difficulties in determining lift-off
for designs other than the ideal parallel plate. The algorithms
in [25], [26], [28] requirea priori knowledge about the path
taken by parts of the design, which limits their generality.
Standard continuation methods were employed to help esti-
mate the pull-in voltages [29]–[31] based on some simplified
MEMS models or for some specific devices. Such algorithms
have been extensively investigated by the applied mathematics
community [32]–[34] and have been successfully applied to
circuit simulation [35]. Nevertheless, standard continuation
algorithms can be unsuitable to simulate industrial MEMS
designs that are in a more general form (c.f. the end of
Section II-C). Compared with pull-in, much less attention has
been paid to the computation of lift-off, which can be as
important as pull-in for MEMS switch devices [2]–[7].

B. Summary of Contributions

By appropriately modifying standard continuation meth-
ods, we present two algorithms to simulate the pull-in/lift-
off behavior and demonstrate their application in industrial
MEMS designs. Based on a hybrid FEA/analytical-model plat-
form [36], our algorithms are applicable for general industrial
MEMS designs with little heuristics.

The first method appropriately modifies standard continua-
tion methods [32]–[34] to simulate the pull-in/lift-off effects in
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real-world MEMS designs. By properly modeling the contact
effects and modifying the stability analysis, this method can
provide a complete plot of multiple solution branches for
a practical MEMS design. The large computational cost or
failures around the pull-in and lift-off points are avoided.

The second approach is motivated by the needs of some
designers for more intuitive static solution curves of sweep-up
or sweep-down. This method uses continuation to trace two
kinds of curves. Specifically, it traces the solution curve of
the original MEMS problems before and after pull-in/lift-off
points, and it traces a newly defined curve to capture the jump
between states that occur at the instabilities. Unlike a standard
DC-sweep the convergence failures around pull-in and lift-off
can be mitigated or avoided. In this algorithm, an approach is
proposed to detect the pull-in/lift-off point with high accuracy,
which can be useful for sensitivity analysis or for analyzing
the noise tolerance in MEMS-based digital VLSI.

The proposed algorithms have been verified on industrial
MEMS designs. In this paper, we will provide the simulation
results of two practical MEMS designs, and we will also
compare our proposed methods with measurement data and
existing relaxation-based FEA/BEM-based MEMS simulator
CoventorWare [37] to validate the efficiency and effectiveness.

II. PRELIMINARIES

A. An Illustrative Example

The pull-in and lift-off effects are best illustrated by the
idealized parallel-plate electro-static actuator in Fig.1a [1].
The movable top plate is attached to a simple spring, the fixed
bottom plate is covered by a thin dielectric layer of thickness
d, and a DC voltageV is applied across the plates. The gap
between the two plates isg. The positionz of the upper plate
is restricted to move only in thez-direction. We assume that
z = 0 when the DC voltageV = 0.

Pull-In: When increasingV from 0, z will decrease
smoothly if V is not too big, sincez is a stable equilibrium
point [1]. WhenV approaches a critical valueVPI, called the
pull-in voltage, the stability of the equilibrium pointz = zPI

is lost (point A in Fig. 1b). If we further increaseV slightly,
due to instability the upper plate will abruptly crash down and
come into contact with the dielectric layer (shown by point B
in Fig. 1b). The solid green curve fromV = 0 to point A in
Fig. 1b shows the stable equilibrium solutions.

Lift-Off: Under a large inputV > VPI, the upper plate
keeps contact with the dielectric layer. AsV is reduced to a
critical valueVLO, called thelift-off voltage , the electrostatic
force is equal to the spring force and the displacementzLO
(point C of Fig 1b) becomes an unstable equilibrium point.
The upper plate will jump up and separate from the bottom
plate (point D of Fig. 1b) if the inputV is further reduced.

Hysteresis:Fig. 1b shows the pull-in/lift-off effects of this
actuator. The displacementz depends on both the inputV
and its past history. Within the hysteresis region (VLO < V <
VPI) there exists another equilibrium solution branch shown
by the dashed curve between points A and C. This branch is
an unstable equilibrium, therefore it is not practically useful,
but its connection to the two stable branches is key to the
success of the first simulation method proposed in this paper.

(a) (b)

Fig. 1: (a) Parallel-plate electro-static actuator electrostatic
actuator. (b) Hysteresis effect of this actuator.

B. Difficulties in Standard MEMS Simulators

A general MEMS design can be described by

M(x)ẍ+ K(x)ẋ+ F (x, u(t)) = 0, (1)

where x ∈ R
n denotes displacements and rotations;u(t)

denotes the inputs such as voltage sources;M(x),K(x) ∈
R

n×n are the mass matrix and damping coefficient matrix,
respectively;F (x, u(t)) denotes the net forces from inertia,
damping, electrostatic and mechanical forces. Throughoutthis
paper,x and Eq. (1) are properly scaled, such thatx is on
the order of1 and F (x, u(t)) is on the order of10−6. If
the MEMS model is included in a circuit simulator,10−6 is
consistent with theµA scale for currents.

In the static state,u(t)=u is constant,̈x = ẋ = 0 and (1)
reduces to

F (x, u) = 0. (2)

In pull-in/lift-off analysis, the state-of-the-art simulators select
a monotonic DC input sequenceuk (k = 1, 2, · · · ), and then
solveF (xk, uk) = 0 for xk by Newton’s method usingxk−1

as an initial guess. This idea works for many MEMS designs,
but it is not robust. First, selecting a good initial guess isnot
easy when state jumping occurs. Second, Eq. (2) normally has
multiple solutions, and the DC-sweep method may converge
to the wrong one. Finally, the Jacobian matrix around pull-
in/lift-off is ill-conditioned or even singular, causing Newton’s
method to fail. Sometimes the DC-sweep method can achieve
convergence around the pull-in/lift-off points “by luck”,but at
excessive large computational cost.

C. Background of Continuation Methods

Continuation algorithms have been extensively studied and
used in non-MEMS communities [32]–[34]. LetΨ(y)∈Rn

andy∈Rn+1, continuation methods try to trace the curve:

Ψ(y) = 0. (3)

Starting from a “previous” solution pointyk−1, a continuation
algorithm computes the “next” pointyk by two steps. First, it
generates a predictorpk close to the “next” exact solutionyk.
Second, starting frompk, a corrector is applied to get the exact
solutionyk located on curve (3). The predictor and corrector
together pose a constraint equationg(y) = 0 ∈ R

1. Combining
this constraint with (3) yields a determined equation

Φ(y) =

(

Ψ(y)
g(y)

)

= 0. (4)



One can solve (4) by a standard Newton’s method with
y0k = pk as an initial guess to get the exact “next point”yk.
Specifically, one updates the solution by a Newton’s iteration

solve Jm
k ∆ymk = Φ(ymk ),

get ym+1
k = ymk −∆ymk

(5)

for m = 0, 1, 2, · · · , until convergence.Jm
k ∈ R

(n+1)×(n+1)

is the Jacobian matrix ofΦ(y) at each iteration step.
1) Predictor: Tangent predictor is one of the most popular

predictor schemes [32]. Withyk−1 and its tangent vector
vk−1, one constructs a tangent predictor by

pk = yk−1 +∆s vk−1. (6)

Here∆s > 0 is a properly selected step size. Graphicallyvk
is a unit-length vector tangent to the curve (3), defined by

M(yk)vk = 0, ‖vk‖ = 1, with M(yk) =
∂Ψ(y)

∂y

∣

∣

∣

∣

y=yk

(7)

with rank (M(yk)) = n if yk is not a bifurcation point or it is
a saddle node [32]. One can first get a vectorwk by solving

(

M(yk)
vTk−1

)

wk =

(

0
1

)

(8)

and then getvk by normalization:

vk = wk/||wk||2. (9)

2) Corrector: Here we introduce the perpendicular correc-
tor and the arclength corrector, which are graphically shown
in Fig. 2 and will be used in our MEMS simulator.

With pk andvk−1, a perpendicular corrector seeksyk under
the constraint:∆yk = yk − pk is perpendicular tovk−1 [32].
Therefore, the constraint functiong(y) is constructed as

g(y) = vTk−1 (y − pk) , (10)

the Jacobian of which is

∂g(y)/∂y = vTk−1. (11)

In arclength corrector, the solution pointyk should locate
on the following sphere [32]:

C(yk−1,∆s) = {y| ‖y − yk−1‖2 = ∆s} . (12)

Consequently, the constraint function is written as

g(y) = ‖y − yk−1‖2 −∆s. (13)

The Jacobian of this constraint function is

∂g(y)/∂y =
(y − yk−1)

T

‖y − yk−1‖2
. (14)

yk-1 pk

yk

.
..

(b)

yk-1
pk

yk

.
..

(a)

Fig. 2: (a) perpendicular corrector, (b) arclength corrector. The
blue solid arrows represent∆svk−1.

3) Limitation in MEMS Simulation:Standard continuation
methods have been employed to estimate the pull-in volt-
ages [29]–[31] based on some simplified MEMS models or
for some specific devices. In [31], multiple solution points
are manually calculated to analyze the stability of a one-
dimensional MEMS model. Such applications of continuation
to MEMS simulation are limited because: 1) contact effects
are not properly modeled, leading to abrupt changes in the
structure of the governing equations; 2) existing continuation
packages (c.f. [34]) use ordinary differential equations (ODEs)
as a model description, which can correctly compute the
static solutions of MEMS described by differential algebraic
equations (DAEs) but may lead to erroneous stability analysis.
Therefore, an automatic CAD framework to simulate both
the pull-in and lift-off behavior of general industrial MEMS
designs is highly desirable.

III. T WO CONTINUATION-BASED METHODS

In our simulator, a MEMS device is constructed from
parametric component libraries. Such libraries can be be-
havior/analytical models or macromodels from high-order
FEM/BEM analysis. Based on their physical locations, the
components are automatically connected and then the 2nd-
order equation (1) is constructed based on a network analysis.
For details, we refer the readers to [38], [39].

To solve the pull-in/lift-off problem, we treat the DC input
u in (2) as an unknown variable and obtain a solution curve

Ψ(y) = F (x, u) = 0, with y = [x;u] ∈ R
n+1. (15)

which forms a connected set similar to that in Fig 1b.

A. Method 1: Complete-Plot Analysis

Our first method appropriately modifies a standard con-
tinuation method to compute the whole solution curve for
u ∈ [umin, umax], whereumin andumax are the minimum and
maximum DC inputs of interest, respectively. Doing so avoids
the discontinuity and state jumping of pull-in and lift-offthat
is challenging for previous algorithms.

1) Modeling the Contact Force:The contact force should
be modeled carefully to make the governing equation smooth
enough. The importance of smoothness has been well recog-
nized in circuit simulation, but it has not attracted enough
attention in the MEMS community. Consequently, discontinu-
ous models are frequently used in MEMS simulation, making
continuation algorithms infeasible to track the lift-off behavior.



Fig. 3: Illustration of contact softening (z < 0 means that two
layers make contact).

The contact force is applied as a pressure load that is
linearly dependent on the penetration of the two contact
layers [40]. Both materials making contact are treated as
compliant materials with elastic modulusE1, E2 and thickness
H1 and H2, respectively. The effective contact stiffness per
unit area of contact is given by

c = E1E2/(E1H2 + E2H1). (16)

This stiffness is used to compute a contact pressure (force per
unit area of contact) only when the materials are in contact
(i.e., z < 0 in Fig. 3). The pressure-displacement relationship
is shown by the blue dashed line in Fig 3, with effective
stiffness c being the slope. However, this contact force is
not differentiable atz=0. To improve the convergence of
Newton’s iterations that rely on the continuity of the first-order
derivative, the corner atz=0 is smoothed with an exponential
delay as shown by the red line. The “contact softening”
distance shown in Fig 3 is50 nm by default but can be
chosen smaller in order to be very small value compared to
the thicknesses and gaps of a given design.

2) Stability of the MEMS Static Solutions:In order to
analyze the stability of the computed static solutiony=[x;u],
one must consider the following DAE that is equivalent to (1):

E(z)ż = F(z, u), with E(z) =
[

K(x) M(x)
In 0

]

z =

[

x
ẋ

]

and F (z, u(t)) =

[

−F (x, u)
ẋ

]

.
(17)

Linearizing (17) aroundz = [x, 0]T yields a linear model:

E(z) ˙̃z = A(z)z̃, with A(z) =

[

JDC(y) 0
0 In

]

, (18)

whereJDC(y) = −dF (x,u)
dx

, andz̃ is a small deviation fromz.
The stability ofy=[x;u] is checked by computing the bounded
generalized eigenvalues of the matrix pencil(A(z),E(z)). It
is trivial to show that this matrix pencil may have positive
generalized eigenvalues even if all eigenvalues ofJDC(y) have
negative real parts. When(xk, uk) is a turning point of (15),
it is a bistable equilibrium of ODEẋ=F (x, u) and of our
MEMS equation (1). At this point,JDC (yk) is singular, and
the linear system (18) has a pole at zero. As a result, we only
need to check the stability of one point after pull-in/lift-off,
since pull-in/lift-off is a bistable point that representspossible
changes in the stability of solution branches. In practice,we
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Fig. 4: Hybrid continuation for pull-in and lift-off analysis.

only need to check the bounded generalized eigenvalue with
the largest real part (denoted asσmr).

In order to computeσmr, we first build a shifted matrix
pencil (A(z),E(z)− εA(z)), where the shift parameterε is a
small positive scalar. The shift parameter maps all unbounded
generalized eigenvalues of(A(z),E(z)) onto the left-hand
complex plane but has little influence on its bounded eigen-
values. Then we compute the generalized eigenvalue with the
maximum real part for this shifted matrix pencil, and use it as
an approximation toσmr. Some iterative algorithms [41], [42]
have been well developed based on deflated Arnoldi iterations.
Such algorithms can efficiently solve the eigenvalue problem
for the shifted matrix pencil. Therefore, the computational
overhead caused by the stability checking is negligible.

3) Implementation Issues:Our experience shows that the
perpendicular corrector can fail around pull-in/lift-offwhere
sharp turning points appear; and the arclength corrector may
cause improper branch jumping when a large step size is
used. Therefore, our simulator selects the correctors adap-
tively: when∆s ≥ ∆sth, the perpendicular corrector is used;
otherwise, we use the arclength corrector. Our simulator uses
10−3 as a default value for∆sth.

Point yk can be identified as a pull-in/lift-off point if the
voltage changes from increasing to decreasing, or vice versa:

vk+1(n+ 1)vk(n+ 1) < 0, (19)

implying that the stability may be changed when the state is
switched fromyk to yk+1.

B. Method 2: Hybrid Continuation Approach

This subsection presents an alternative approach that com-
putes the pull-in and lift-off voltages with high precisionand
then directly computes the jump in state that occurs in a
typical capacitance-voltage curve. It is motivated by some
specific needs in MEMS design: 1) many MEMS designers
prefer a solution curve from monotone DC inputs that is
physically more intuitive than the solutions generated by the
first algorithm; 2) sometimes the pull-in/lift-off points need
to be calculated with high accuracy (e.g., when analyzing the
sensitivity of pull-in/lift-off with respect to a design parameter;
3) for some devices (e.g., gyroscopes), the designers are only
interested in the pull-in behavior, and thus only sweep-up
solution curves are needed. It is hard to tell which method
is superior over the other, since their performances dependon
the designer’s needs and the specific design cases.



1) New Curve for State Jumping:Denote the pull-in point
A in Fig. 4a byyA = [xA;uA] and a point B on the solution
branch after pull-in asyB = [xB;uB], where uB = uA +
∆u and∆u > 0 is a perturbation of the DC input. Picking
an already computed point on the continuous solution branch
before point A, we form a new curve by

Ψ(y) = (1− λ)F (x, µ1) + λF (x, µ2) = 0 (20)

with y = [x;λ] ∈ R
n+1, µ1 ≤ uA and µ2 = uB. Starting

from λ = 0 and applying a continuation method, we can trace
the curvey = [x;λ] until λ = 1, obtaining pointB. Note that
curve (20) is different from that used in the two-parameter
Homotopy circuit simulator [35]. Furthermore,F (x, µ1) is a
nonlinear function rather than a linear one. Adding a linear
term does not help much in solving our MEMS problems,
which is also observed in previous circuit problems [35]. To
trace this curve we use the algorithm in Section III-A, with
the function and Jacobian evaluations modified accordingly.

2) Basic Simulation Flow:We denote the curves in (15) and
(20) asCurve 1 andCurve 2, respectively. Here is the basic
flow of pull-in analysis: 1) we first use continuation (rather
than DC sweep) to track Curve 1 until a jumping point (e.g.,
point A in Fig 4a) is approached; 2) by tracking Curve 2 with
continuation, we obtain a solution point after state jumping
(Point B in Fig 4a); 3) starting from Point B, our simulator
tracks Curve 1 again, until another jumping point appears. As
shown in Fig 4b, the only difference in lift-off analysis (if
required) is keeping DC input monotonically decreasing.

3) Accurate Detection of Pull-in/Lift-Off Points:The pull-
in/lift-off points must be automatically detected such that the
simulator can switch correctly from Curve 1 to Curve 2. Let
yk be a pull-in/lift-off point, thenrank (J(yk)) = n− 1 and

wk(n+ 1) = vk(n+ 1) = 0. (21)

Our simulator sets a small thresholdε1 > 0 and regardsyk as
a pull-in or lift-off point if

|vk(n+ 1)| < ε1. (22)

Since in this hybrid scheme we are not interested in the
unstable solutions, we shall prevent passing over the pull-
in/lift-off points when tracking Curve 1. To achieve this, the
solution pointyk is disregarded ifvk(n+1)vk−1(n) < 0, then
the step size∆s is reduced to recompute a newyk that satisfies
the constraint in (22). For some complex MEMS switches with
extremely thin dielectric layers, the curvature around thelift-
off points may be very small and the solution curve is still
rather flat after scaling. As a result, the last component ofvk
may decrease slowly even if the solution pointyk is very close
to the lift-off. In this case,yk is also regarded as a lift-off point
if the step size is below a small threshold:

∆s < ε2, with ε2 > 0. (23)

By default, we setε1=10−4 and ε2=10−5.

IV. N UMERICAL RESULTS

A. Simulation Setup

The proposed algorithms have been implemented and in-
tegrated within the commercial MEMS/IC co-design tool

MEMS+ [36], which combines high-order mechanical finite
elements with a commercial implementation of the MEMS
behavioral modeling ideas of [9]–[12]. As a hybrid finite-
element/behavioral platform, it can simulate a wide range
of MEMS devices both for MEMS design and MEMS/IC
co-design. Given a user-created “3D schematic” representing
the design and the corresponding material data, the design
tool constructs the nonlinear equations as in (1) and the
corresponding Jacobians. This system is then accessible either
for MEMS design in MATLAB, or for MEMS/IC co-design
as a component in system and IC simulators (e.g., MATLAB
Simulink [43] or Cadence Spectre [44]). Designs are typically
represented with 1 to 1000 degrees of freedom, depending on
the desired level of accuracy.

We report the simulation results for an RF-MEMS capac-
itor [45] and a 4-terminal nano-electro-mechanical (NEM)
relay [2]–[5]. To validate the proposed algorithms, we compare
the simulation results of the first example with measurement
data and the second example with CoventorWare [37]. We
compare our continuation-based simulation with the DC-
sweep simulation in MEMS+ to show the robustness and
efficiency. In MEMS+, the maximum iteration number of the
Newton’s method in continuation-based algorithms is set as5,
versus100 in the DC-sweep based simulation approach. For
stability checking, the MATLAB routine “eigs” is employed to
compute the generalized eigenvalue with the largest real part
for the shifted matrix pencil. The total CPU time required
for stability checking is below1 second for each MEMS
example. Such time is negligible compared with the overall
computational cost.

B. Tunable RF-MEMS Capacitor

We first consider a tunable RF capacitor [45]. As shown in
the left part of Fig. 5, this capacitive switch has a movable
long beam with an octagonal capacitor at the center. On one
side (left in the 3-D schematic) of the movable beam, the
top part works as an RF conducting path. On the other side
(right part of the schematic), the electrode underneath the
beam works as the primary actuation electrode, while the
remaining area not taken up by the conducting path is used as
a secondary actuation electrode. Small bumps (shown by red
in the 3-D schematic) underneath the electrodes are used to
improve the reliability and limit the contact. The bump height
influences not only the shape of the structure after contact,
but also the entire CV curve as investigated in [38]. In this
work, we consider only the design case with a0.4-µm bump
height to demonstrate the proposed algorithms. This device
is fabricated using IBM 0.18-µm CMOS process, and the die
photos are shown in the right part of Fig. 5. The fabrication
process is detailed in [46]. Since this device has a symmetric
structure, we construct a model for only half of the design with
symmetric boundary conditions. This model has one J-beam
component,15 electrode contacts and22 shell components,
leading to a nonlinear system with855 degrees of freedom.

1) Complete-Plot Continuation in MEMS+:Using the
complete-plot pull-in/lift-off simulation algorithm described in
Section III-A, the hysteresis curve is obtained after99 seconds
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Fig. 5: Left: 3-D schematic of the RF capacitor. Right: die photo and a cell of4 RF capacitors.
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and420 Newton iterations in total. This curve consists of88
data points, with smaller step sizes around the pull-in/lift-
off points. Fig. 6 compares the simulation results with the
measurement data provided by WiSpry [47]. The simulated
pull-in voltage is38.52 V, which is close to the measurement
result (between36 V and 38 V). The capacitance after pull-
in is about0.20 pF, which agrees with the measurement. The
simulated curve shows a first lift-off point at18.27 V leading
to an abrupt reduction of the capacitance to0.145 pF at18 V.
In the measurement, we observe a first lift-off between18 V
and 20 V and a capacitance value of0.139 pF at 18 V. The
secondary lift-off point from our simulation is16.16 V, after
which the movable beam is completely released. The measured
secondary lift-off point is between16 V and18 V, which again
matches our numerical simulation.

2) Hybrid Continuation in MEMS+: The hybrid contin-
uation algorithm in Section III-B generates the pull-in and
lift-off curves separately as shown in Fig 7, which is also
very close to the measurement data. The pull-in curve consists
of 39 data points with much smaller step sizes around state
jumping, which is obtained at the cost of262 seconds and484
iterations in total. The lift-off curve has57 data points, which
is obtained after382 seconds of CPU time and758 Newton
iterations. Note that the more intuitive results are obtained at
the cost of more CPU time, since in this algorithm we trace
multiple curves by continuation methods. The computed pull-
in voltage is38.634 V, and the computed first and secondary
lift-off voltages are18.061 V and 16.164 V, respectively.
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Fig. 7: Pull-in/lift-off result for the RF capacitor, usingthe
hybrid continuation method.

3) Comparison with DC Sweep in MEMS+:We use2 V
as a step size to perform a DC sweep simulation between
0∼50 V. The sweep-up simulation converges fast before pull-
in since the solution curve is very smooth and flat, but it fails
to converge at40 V. This implies a pull-in voltage between
38V and 40 V, which agrees with our continuation-based
simulations but is different from the measurement results.
The mismatch between the MEMS+ model and the practical
fabricated device is mainly caused by the fabrication process
variation. In order to obtain the lift-off curve, a sweep-down
simulation is performed, which fails at the first starting point
50 V. For this example, increasing the maximum number of
iterations does not help achieve convergence, since the updated
solution becomes unbounded.

C. 4-Terminal NEM Relay

This 4-terminal nano-electro-mechanical (NEM) relay
shown in Fig. 8 is used in ultra low-power VLSI design [2]–
[5]. It models the U-shaped springs with beam elements, the
gate with shell elements, and the electrostatics with conformal-
mapping based elements, leading to192 degrees of freedom
in total. The shells contribute most to state variables and are
necessary in order to capture the overly-driven case described
below and the effect of stress in the gate. The device is
switched by applying a voltage between gate and body to pull
the moving plate toward the substrate to make a connection
between the contact dimples and the drain/source. We set the
voltages at the drain, source and substrate (body) nodes to0V,



Fig. 8: The 3-D schematics of the 4-Terminal NEM Relay (exaggerated by10× in z-direction). The left part shows the moving
part only. The contact dimple and channel are shown in green and the gate in blue. The right part adds the fixed contact
electrodes (source and drain) in red and actuation (body) electrodes in gray.
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Fig. 9: Pull-in/lift-off result for the “properly-driven”NEM
Relay, using complete-plot pull-in/lift-off analysis.

and we consider the gate voltage as a variable. Due to the
symmetry of the device and of the inputs, the position of the
drain contact is the same as the source contact. This device
is expected to turn on under high gate voltage and turn off
under low gate voltage. Driving the gate with a higher voltage
than pull-in can improve switching times, but care must be
taken that the gate is not driven so high as to cause the gate
to collapse onto the body. To that end we investigate both
contact pull-in/lift-off and collapse pull-in/lift-off.

1) Complete-Plot Continuation in MEMS+:First we con-
sider the “properly-driven” case by settingumin = 0V and
umax = 6V (i.e., the maximum gate voltage). This simulation
costs150 seconds and479 Newton iterations, generating59
solution points. The results produced by our complete-plot
continuation show that the pull-in and lift-off voltages are
2.68V and2.44V, respectively. The pull-in and lift-off behavior
is shown in Fig. 9. The results show that the NEM relay can
be switched on and off correctly whenumax = 6V. Next we
consider the much more complicated “overly-driven” case by
setting umax = 10V. For this case, the complete-plot pull-
in/lift-off analysis generates380 solution points at the cost of
802 seconds and2886 iterations. Multiple state jumpings are
observed from the solution curve in Fig. 10. Increasing the
gate voltage from0V to 10V, the sweep-up curve is: O→ A
→ B → C → D → E→ F→ G. The bottom images of this

device are given in the right of Fig. 10. At point A, the contact
dimples do not touch drain or source and thus the device is off.
When the gate voltage is further increased, the contact dimples
touch the drain and source and turn the device on (point B).
If the gate voltage is further increased, after point C the plate
collapses onto the body electrodes while the contact dimples
rise slightly, losing contact with the drain and source (point D).
Similarly, when the gate voltage decreases from10V to 0V,
the sweep-downward curve is: G→ H → I → J → K → O,
implying that the relay is always off. This observation indicates
that to ensure correct switching, the gate voltage should not be
higher than6V. Due to the many solution branches, getting the
pull-in and lift-off curves needs some knowledge of nonlinear
dynamic theory, and thus a hybrid continuation simulation may
be necessary for some users.

2) Hybrid Continuation in MEMS+: Now we use the
hybrid continuation method to simulate both the properly and
overly driven cases. The simulation results for the properly
driven case is shown in Fig. 11, which costs383 seconds and
903 steps in total (250 seconds and491 iterations for pull-in
analysis,133 seconds and412 iterations for lift-off analysis).
The resulting pull-in and lift-off curves consist of38 and 42
points, respectively. Clearly, the devices are correctly turned
on and off by controlling the gate voltage. The pull-in and lift-
off voltages are calculated accurately without regard for the
simulator’s step size to be 2.683V and 2.442V, respectively.

For the overly-driven design, the hybrid continuation simu-
lation generate77 points at the cost of674 seconds and1260
iterations for pull-in analysis, and43 points at the cost of
886 seconds and983 iterations for lift-off simulation. The
displacement of the source dimple is intuitively shown in
Fig. 12. In this plot, it becomes obvious that:

1) When the gate voltage is increased from0V to 10V, the
contact dimples touch drain and source after2.683V.
However the contact is lost after6.091V although the
contact dimple lowers down slightly again after8.928V.

2) When the gate voltage is reduced from10V to 0V,
the contact dimples always lose contact with drain and
source. When the gate voltage reduces to1.684V, the
contact dimples rise slightly, and it suddenly jumps up
as the gate voltage reduces to1.120V.

The observed state jumpings are consistent with our results
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Fig. 10: Pull-in/lift-off result for the “overly-driven” NEM Relay, by complete-plot pull-in/lift-off analysis. Theplot in the left
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the gate voltage is monotonically increased, which is viewed from the source/drain terminal (i.e., along the channel) and is
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Fig. 11: Pull-in/lift-off result for the “properly-driven” NEM
Relay, using hybrid continuation method.

from complete-plot continuation plotted in Fig. 10.

3) Comparison with DC Sweep in MEMS+:For the
properly-driven case, the DC sweep-up fails around pull-in
when the step size is below 0.2V. For example, with a input
step size of0.1V the sweep-up simulation cannot proceed to
u=2.7V after 320s. Meanwhile, this implies that the pull-in
occurs around2.7V, which agrees with the results from our
continuation-based simulations. The sweep-down simulation
fails at the first pointu=6V after the maximum number of
iterations. The DC-sweep method cannot handle the overly-
driven case. With the input sequenceu=[0:0.5:10]V, the DC
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Fig. 12: Pull-in/lift-off result for the “overly-driven” NEM
Relay, using the hybrid continuation method.

sweep-upward simulation fails atu=6.5V. The sweep-down
simulation fails to converge for the first DC inputu=10V
regardless of the choice of the sweep step size. In addition,
when the input step size is reduced below 0.5V, it becomes
even more difficult to achieve convergence.

4) Comparison with CoventorWare:To validate the result,
we compare our algorithms with the pull-in/lift-off analysis
in the latest version of CoventorWare [37]. In Coventor-
Ware, the MEMS designs are described by a coupled finite-
element/boundary-element (FEM/BEM) formulation, which
can model the geometry in full detail for highly accurate



results. CoventorWare computed the pull-in point for the NEM
relay to be between2.74V and 2.75V. This result is slightly
different from our simulation results from complete-plot pull-
in/lift-off analysis (with pull-in at2.68V) and hybrid continu-
ation method (with pull-in at2.683V), resulting in an relative
error of 2.4%. The lift-off voltage from CoventorWare for
the properly-driven case is2.53-2.56V. Therefore, the relative
error of the results from our continuation algorithms is about
4.6%. If desired, the errors of pull-in/lift-off analysis could
be reduced by using higher-order elements in MEMS+ at the
cost of greater simulation time. The FEM/BEM formulation
in CoventorWare generates an entirely different nonlinear
system with an extremely large problem size, and thus our
FEM/behavioral hybrid MEMS+ platform will naturally be
orders of magnitude faster (seconds or minutes in MEMS+
versus several hours in CoventorWare).

Remarks. Although the complete-plot pull-in/lift-off anal-
ysis costs less CPU time over the hybrid continuation scheme
for the examples shown in this paper, but in practice it is case-
dependent. Our experience shows that for some devices with
complex solution spaces, the hybrid continuation algorithm
can be faster than the complete-plot continuation. For some
MEMS designs (such as resonators) where lift-off is not
important, the simulation can be terminated once the pull-in
is found to further reduce the simulation time.

V. CONCLUSIONS

This paper has presented two continuation-based methods
to simulate both the pull-in and lift-off behavior for indus-
trial MEMS design. These two methods are implemented in
a hybrid FEA/analytical-model platform to facilitate design
verification. The first one produces a complete plot of multiple
solution branches, and the second one produces more intuitive
single-solution curves. Both algorithms are robust and can
avoid the convergence difficulties around pull-in/lift-off that
cannot be handled by previous algorithms. Our proposed
algorithms have been tested on a tunable MEMS RF capacitor
and a 4-terminal NEM relay, showing better robustness than
the DC-sweep simulation. Our algorithms have been validated
by practical measurement data and by the commercial MEMS
simulator CoventorWare, respectively.
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