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Abstract—This paper presents a method for the model order
reduction of fully parameterized linear dynamic systems. In a
fully parameterized system, not only the state matrices, but also
can the input/output matrices be parameterized. This algorithm is
based on neither conventional moment-matching nor balanced-
truncation ideas; instead, it uses “optimal (block) vectors” to
construct the projection matrix such that the system errors in the
whole parameter space could be minimized. This minimization
problem is formulated as a recursive least square (RLS) optimiza-
tion and then solved at a low cost. Our algorithm is tested by a
set of multi-port multi-parameter cases with both intermediate
and large parameter variations. The numerical results show that
high accuracy is guaranteed, and that very compact models can
be obtained for multi-parameter models due to the fact that the
ROM size is independent of the parameter number in our flow.

I. I NTRODUCTION

Design and process parameter variations need very care-
ful consideration in submicron digital, mixed-signal and RF
analog integrated circuit design. Parameterized model order
reduction (PMOR) techniques can generate compact models
reflecting the impact induced by design or process variations.
Such techniques have become highly desirable in the EDA
community in order to accelerate the time-consuming design
space exploration, sensitivity analysis and automatic synthesis.

Several PMOR techniques have been developed for both
linear and nonlinear circuits. Most are based on moment
matching techniques [1]–[11] due to the numerical efficiency.
These algorithms normally assume that the closed forms of
the parameterized state-space models are given, or that the
parameters’ statistical distributions are known. With similar
assumptions, the positive-real balanced truncation method [12]
has been modified for parameterized interconnect model re-
duction [13], [14]. In many cases the designers do not know
the exact symbolic forms of the parameterized circuit equa-
tions. As a result, neither moment matching nor positive-
real balanced truncation can be used in the PMOR flow. A
numerically efficient and flexible method is the variational
PMTBR scheme [15], which starts from the state-space model
and uses a cheap sampling scheme to approximate the Gramian
matrix. This approach is capable of preserving passivity for
symmetric systems (such asRC circuits), but not for general
RLC interconnect models. When the system equations are not
available, one can treat the original model as a black box, and
then use system identification techniques to construct macro-
models from simulated or measured data by, for example, the
quasi-convex optimization method [16], [17].

In all of the above-mentioned PMORs, the input and output
matrices are non-parameterized. This assumption is true for
many model order reduction (MOR) problems, when the input
(or output) matrix only represents the fixed positions of the
excitation (or output) signals. Nevertheless, if we attempt to
analyze the higher-order nonlinearity of parameterized ana-
log/RF circuits, the input matrices of the resulting linearized
model may also be parameter-dependent. A typical example
comes from the Volterra-series based nonlinear circuit mod-
eling [18]–[22]. The input matrix can also be parameterized
when the input signal is posed into a network after being
processed by a parameter-dependent block (such as a MEMS
sensor). Unfortunately, for these systems that involve both
parameterized state matrices and parameterized input/output
matrices, few MOR solutions have been reported in the EDA
community.

This paper proposes a method for the MOR of fully pa-
rameterized systems with possibly parameter-dependent in-
put/output matrices. This method is not based on existing
moment matching or balanced truncation. Instead, it generates
some “optimal (block) vectors” by recursive least square
(RLS) optimization to construct the projection matrix, through
minimizing the error in the whole parameter space (c.f. Section
III). By this error minimization procedure, high accuracy
can be guaranteed; very small reduced-order models (ROM)
can be obtained for multi-parameter models since the ROM
size does not depend on parameter numbers in our flow.
When large parameter variations are involved, the RLS method
can generate highly accurate ROMs after parameter space
partitioning (c.f. Section IV). Our algorithm does not need
the closed forms of the parameterized circuit equations, thus
it has wider application areas than existing moment matching
based PMORs. Besides, since Taylor expansion is not used
to approximate the parameterized system matrices, the pos-
itive semi-definite structures of some systems are preserved,
which implies passivity preservation for parameterizedRLC
interconnect models.

II. M OTIVATION AND PROBLEM FORMULATION

A. Fully Parameterized Linear Dynamics

In this paper, we consider the multi-parameter linear time-
invariant (LTI) parameterized dynamic system

C(λ)ẋ(t) = G(λ)x(t) +B(λ)u(t), y(t) = L(λ)x(t) (1)
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Fig. 1. Block diagram of the fully parameterized LTI system. The inputu(t)
is converted by a parameter-dependent transformer before being fed to an LTI
network which hasn input ports. This system is a fully parameterized LTI
model when we consider the signal path fromu(t) to y(t).

whereC(λ), G(λ) ∈ R
n×n are state matrices,B(λ) ∈ R

n×m

andL(λ) ∈ R
m×n are the input and output matrices, respec-

tively. Hereλ ∈ R
p is a vector representingp design or process

parameters that influence the system equations.
The input and output matrices in (1) can also be parameter-

ized, which were assumed non-parameterized in the previous
literatures. To distinguish our model from the ones with non-
parameterized input/output matrices, we refer to (1) as afully
parameterized model. The fully parameterized model can be
interpreted as follows: the input signalu(t) is first converted to
û(t) ∈ R

n by a transformerB(λ), whose behavior depends on
some parametersλ, before being injected into an LTI network,
as shown in Fig. 1. The parameter-dependent transformer
block B(λ) can be many kinds of signal processing units in
the real world, such as a voltage controlled current source,
a MEMS sensor that converts chemical or optical signals to
electrical signals, etc.

Fully parameterized models may also appear when we
analyze some systems with non-parameterized input matrices.
For example, in RF circuit analysis the parameter-dependent
nonlinear circuit equation

q̇(x(t), λ) = f(x(t), λ) +Bu(t) (2)

can be written as the Volterra series

E(λ)
dx

dt
= A1(λ)x+A2(λ)x⊗ x+A3(λ)x⊗ x⊗ x+Bu(t)

(3)
around the operating point, whereAi(λ) ∈ R

n×ni

is the ith-
order derivative matrix and⊗ denotes the Kronecker tensor
product. It has been shown in [18], [19] that the first- through
third-order responses components ofx can be obtained by
solving the following linear systems, respectively,

E(λ)ẋ1 = A1(λ)x1 +Bu(t)
E(λ)ẋ2 = A1(λ)x2 +A2(λ)x1 ⊗ x1

E(λ)ẋ3 = A1(λ)x3 +A2(λ) (x1 ⊗ x1 + x2 ⊗ x1)
+A3(λ)x1 ⊗ x1

(4)

which are very useful for signal distortion or inter-modulation
analysis in analog/RF circuit design. Obviously, the linear
systems corresponding tox2 and x3 are fully parameterized
LTI systems with parameter-dependent input matrices.

More interesting fully parameterized models can be found
in the real-world applications.

B. Fully Parameterized Model Order Reduction

To speedup the computer-aided simulation, we aim at con-
structing a very small (for example, order-q, with q ≪ n) fully
parameterized reduced-order model (ROM)

Cr(λ)ż(t) = Gr(λ)z(t) +Br(λ)u(t), yr(t) = Lr(λ)z(t).
(5)

The resulting ROM should approximate the original in-
put/output relationship with high accuracy when the parameter
λ varies in a specific range. A popular method is to select an
appropriate projection matrixV to construct the ROM by

Cr(λ) = V TC(λ)V, Gr(λ) = V TG(λ)V,

Br = V TB(λ), Lr = L(λ)V,
(6)

such that the ROM’s parameterized transfer function

Hr(s, λ) = Lr(λ)(sCr(λ)−Gr(λ))
−1Br(λ) (7)

is close to the original one for anyλ within a specified
variation range. Many PMOR methods have been proposed
to reduce systems with non-parameterized input and output
matrices, such as moment matching [1]–[4], [6], [7], [9], [11],
positive-real balanced truncation [13], [14] and the sampling
based variational PMTBR [15].

To the best knowledge of the authors, however, no results
have been reported in the EDA community to reduce fully
parameterized models whose input and output matrices are
also parameterized. In the following sections we will present
a fully parameterized MOR algorithm subject to the following
requirements:

• It is feasible even when the input/output matrix is param-
eterized;

• It is applicable when the symbolic expression of the
system matrices are unknown, which usually happens
when (1) is extracted from transistor SPICE netlist and
λ are some parameters in the complex semiconductor
device model, or when the parameter dependence is
shown by a look-up table or a measurement data sheet;

• Our technique is applicable even when the parameter
variation is large, and it generates a ROM with size
independent of the number of parameters;

• It preserves passivity for the positive semi-definite struc-
tured MNA (modified nodal analysis) equations.

III. R ECURSIVELEAST SQUARE BASEDFULLY PMOR

A. Main Idea

In our approach we assume that all entries of the param-
eterized system matrices are continuous functions ofλ. This
assumption is reasonable for many physical systems, and it
is less conservative than the assumptions in previous PMOR
algorithms where all entries in the system matrices are given
as symbolic forms or every entry is differentiable with respect
to (w.r.t) λ in the moment matching flows1.

1Consider the simple parameterized matrixE = E0 + |λ|E1, and letλ
be a scalar. This parameterized matrix is continuous at anyλ ∈ R. But we
cannot use Taylor expansion around the nominal matrixE0, because|λ| is
not differentiable atλ = 0.



In the frequency domain, we have

sC(λ)x(s, λ) = G(λ)x(s, λ) +B(λ)u(s). (8)

We know that the transfer function fromu(s) to the state
variablex(s, λ), denoted asX(s, λ), is obtained from solving
the linear equation

(sC(λ)−G(λ))X(s, λ) = B(λ). (9)

Inspired by the rational Krylov subspace method [23] for the
linear MORs of non-parameterized systems, we know that if
we can getX(s, λ) at a set of frequency points and formV
such that

colspan {X(s1, λ), X(s2, λ), · · · , X(sp, λ)} ⊆ V, (10)

then an accurate ROM can be constructed. Unfortunately, we
cannot compute the closed form of theparameterized (block)
vectorsX(si, λ)’s. Furthermore, it is normally impossible to
orthonormalize these vectors even if they are computable for
some specially-structured parameterized systems.

Alternatively, we can seek for a set ofnon-parameterized
(block) vector X̂(si)’s that are “close” toX(si, λ)’s under
some accuracy criteria. If we substitute anyX(si) ∈ C

n×m

back into (9), a parameter-dependent residual (block) vector
is obtained:

e(si, λ) = (sC(λ)−G(λ))X(si)−B(λ), (11)

which could be used for error estimation. Then we can seek for
a non-parameterized (block) vectorX̂(si) “close to”X(si, λ),
such thatX̂(si) is an optimizer to the following problem

min
∫

S

‖(siC(λ)−G(λ))X(si)−B(λ)‖2F dλ(1) · · · dλ(p),

subject to X(si) ∈ C
n×m.

(12)
Here S ⊆ R

p denotes the parameter space,λ(i) is the i-th
coordinate ofλ, and‖M‖F represents the Frobenius norm of
a matrixM ∈ C

n1×n2 :

‖M‖F
∆
=





n2
∑

j=1

n1
∑

i=1

|M(i, j)|2




1

2

. (13)

The optimization problem (12) implies that̂X(si) is the non-
parameterized (block) vector that is “nearest” to the parameter-
izedX(si, λ), if X̂(si) is selected such that the error [which
is measured by the Frobenius norm of the residual matrix in
(11)] is minimized in the whole parameter space.

Algorithm 1 Fully PMOR Flow
1: Solve the optimization problem (12) at frequency pointsi

to obtainX̂(si) for i = 1, 2, · · · , q
2: Construct the projection matrix V such that

range(V )=colspan
{

X̂(s1), X̂(s2), · · · , X̂(sq)
}

3: Construct the fully parameterized ROM by (6).

Our fully PMOR is summarized in Algorithm 1. The key
point is that the set of (block) vectors used to construct thepro-
jection matrix are obtained by solving an error minimization

problem, instead of using the conventional moment matching,
balanced truncation or sampling schemes. The main difficulty
of this fully PMOR flow is the numerical solution of the
optimization problem (12).

B. Reformulating Problem (12)

Since the parameterized system matrices are assumed to
be continuous functions ofλ, the integration in (12) can be
computed after discretizing the parameter space. Note thatthe
variation range of each element ofλ can be characterized by
its lower bound and upper bound, then the whole parameter
space can be discretized by the following procedures.

1) The whole parameter space is represented by two
vectors α and β of length p, such that S =
{λ|α(i) ≤ λ(i) ≤ β(i), for i = 1, · · · , p}.

2) For each parameterλ(i), its variation range (i.e.,
[α(i), β(i)])can be segmented intomi uniform intervals.
For λ(i), the length of each interval is decided as

∆i =
β(i)− α(i)

mi

. (14)

3) Meanwhile, the above segmentation procedure would
partition the whole parameter spaceS into N =
m1m2 · · ·mp boxes, each of which isp-dimension.
For each integerk ∈ [1, N ], we can find a unique
“companion vector”χk = [k1, · · · , kp], based on the
following rules:

a) k1 + k2m1 + k3m2m1 + · · · +
kpmp−1mp−2 · · ·m1 = k − 1;

b) ki ∈ Z and0 ≤ ki ≤ mi − 1.

Algorithm 2 has given the pseudo codes of calculating
χk. With χk, thek-th p-dimensional boxB(χk) can be
specified as

α(i) + ki∆i ≤ λ(i) ≤ α(i) + (ki + 1)∆i, for i = 1, · · · , p
(15)

in the p-dimensional parameter spaceS.
4) The volume of each box is

∆ = ∆1∆2 · · ·∆p. (16)

5) The geometric center of thek-th box B(χk) is a point
λ̄(χk) in thep-dimensional space, whosei-th coordinate
is α(i) + (ki + 0.5)∆i.

After discretization, the integration in problem (12) becomes
∫

S

‖(siC(λ)−G(λ))X(si)−B(λ)‖2F dλ(1) · · · dλ(p)

≈
N
∑

k=1

∆
∥

∥

(

siC
(

λ̄(χk)
)

−G
(

λ̄(χk)
))

X(si)−B
(

λ̄(χk)
)∥

∥

2

F
.

(17)
Since∆ is a positive constant, now the original optimization
can be reformulated as

min
N
∑

k=1

∥

∥

(

siC
(

λ̄(χk)
)

−G
(

λ̄(χk)
))

X(si)−B
(

λ̄(χk)
)∥

∥

2

F

subject to X(si) ∈ C
n×m.

(18)
Problem (18) is solvable and can be easily tackled by the
recursive least square (RLS) optimization in Section III-C.



Fig. 2. Discretization example for a parameterized system with 2-D parameter
space. Sinceλ(1) ∈ [−1.5, 1.5] andλ(2) ∈ [0, 1.8], we haveα = [−1.5; 0]
andβ = [1.5; 1.8]. We usem1 = 3 andm2 = 2, which segments the range
of λ(1) into 3 intervals with∆1 = 1 and the range ofλ(2) into 2 intervals
with ∆2 = 0.9. Meanwhile, the whole parameter spaceS is partitioned into
3× 2 = 6 two-dimension boxes (which are panels in2-D parameter space),
and each box’s volume is∆ = 0.9. For the5th box, using Algorithm 2 we
havek−1 = 4 = 1+1×m1, therefore, the companion vector isχ5 = [1, 1].
With χ5, the center of the5th box is fixed asλ(1) = α(1) + 1.5∆1 = 0
andλ(2) = α(2) + 1.5∆2 = 1.35.

To illustrate the discretization flow, an example with a2-D
parameter space is given in Fig. 2. The extension to 3-D and
higher-dimension parameter spaces is straightforward.

Algorithm 2 Compute the companion vectorχk of k.

1: Initialize ~m ∈ Z
p: ~m(1) = 1, ~m(i + 1) = mi ~m(i)for

i = 1, · · · , p− 1;
2: Initialize χk ∈ Z

p: χk = [0, · · · , 0] and set̂k = k − 1;
3: for p̂ = p, . . . p− 1, · · · , 1 do

χk(p̂) = floor( k̂
~m(p̂) ), k̂ = k̂ − χk(p̂)~m(p̂).

C. RLS Optimization

In this section we present a method to solve problem (18).
First, we denote thej-th columns ofX(si) andB

(

λ̄(χk)
)

by Xj(si) andBj

(

λ̄(χk)
)

, respectively. It is straightforward
to show that
∥

∥

(

siC
(

λ̄(χk)
)

−G
(

λ̄(χk)
))

X(si)−B
(

λ̄(χk)
)∥

∥

2

F

=
m
∑

j=1

∥

∥

(

siC
(

λ̄(χk)
)

−G
(

λ̄(χk)
))

Xj(si)−Bj

(

λ̄(χk)
)∥

∥

2

2
,

(19)

where ‖b‖2 =

(

n
∑

i=1

|b(i)|2
)

1

2

is the 2-norm for any vector

b ∈ C
n. As a result, problem (18) can be rewritten as

min
m
∑

j=1

(

N
∑

k=1

∥

∥

(

siC
(

λ̄(χk)
)

−G
(

λ̄(χk)
))

Xj(si)−Bj

(

λ̄(χk)
)
∥

∥

2

2

)

,

subject to Xj(si) ∈ Cn, for j = 1, · · · ,m.
(20)

Let

fj (Xj(si)) =
N
∑

k=1

∥

∥

(

siC
(

λ̄(χk)
)

−G
(

λ̄(χk)
))

Xj(si)−Bj

(

λ̄(χk)
)
∥

∥

2

2

(21)

It is clear that for any integerr 6= j (1 ≤ r ≤ m), the value
of fj (Xj(si)) is independent ofXr(si). Therefore, the cost
function of (18) is minimized iffj (Xj(si)) is minimized

for j = 1, · · ·m, with Xj(si) as the variable. From this
observation, it is clear that thej-th column ofX̂(si) can be
decided by finding the optimizer to the problem

min
N
∑

k=1

∥

∥

(

siC
(

λ̄(χk)
)

−G
(

λ̄(χk)
))

Xj(si)−Bj

(

λ̄(χk)
)∥

∥

2

2

subject to Xj(si) ∈ C
n

.

(22)
If problem (22) is solved forj = 1, · · · ,m, then all columns
of the “optimal block vector”X̂(si) can be obtained.

Next we give the RLS theorem.
Theorem: Let ei = Aix − bi for i = 1, · · · , k, with

ei, bi ∈ C
n1 , x ∈ C

n2 , Ai ∈ C
n1×n2 , n1 ≥ n2 and AH

i Ai is
invertible2. Then the optimal solution to

min

k
∑

i=1

‖ei‖22, subject to x ∈ C
n2 (23)

can be written as

x̂ =

(

k
∑

i=1

AH
i Ai

)−1(
k
∑

i=1

AH
i bi

)

. (24)

Proof: Denotee = [ei; e2; · · · ; ek], b = [b1; , b2; · · · ; bk]
andA = [Ai;A2; · · · ;Ak], then (23) can be converted to the
least-square problem

min ‖e‖22 , subject to e = Ax− b, x ∈ C
n2 (25)

from which we have x̂ =
(

AHA
)−1

(AHb) =
(

k
∑

i=1

AH
i Ai

)−1(
k
∑

i=1

AH
i bi

)

.

According to the above theorem, we know that the optimizer
for the RLS problem in (22) is

X̂j(si) =

(

N
∑

k=1

Mi

(

λ̄(χk)
)H

Mi

(

λ̄(χk)
)

)−1

×
N
∑

k=1

Mi

(

λ̄(χk)
)H

Bj

(

λ̄(χk)
)

(26)

where

Mi

(

λ̄(χk)
)

= siC
(

λ̄(χk)
)

−G
(

λ̄(χk)
)

(27)

is a nonsingular matrix, if the original dynamical system
is stable ands /∈ C

−. The nonsingularity ofMi

(

λ̄(χk)
)

implies thatMi

(

λ̄(χk)
)H

Mi

(

λ̄(χk)
)

is positive definite, so
the matrix inversion in (26) is well posed.

Finally, the “optimal (block) vector”X̂(si) is obtained as

X̂(si) =

(

N
∑

k=1

Mi

(

λ̄(χk)
)H

Mi

(

λ̄(χk)
)

)−1

×
N
∑

k=1

Mi

(

λ̄(χk)
)H

B
(

λ̄(χk)
)

.

(28)

D. Algorithm Summary

Assume thatq frequency pointss1, · · · , sq are used in the
fully PMOR flow, the original system hasp parameters, its
model size isn, and for parameteri its variation range is



Algorithm 3 RLS-based Fully PMOR.

1: Initialize X ← [ ];
2: for i = 1, · · · , q do
3: M = 0, B = 0;
4: for k = 1, · · · , N do
5: calculate the companion vectorχ(k) of k;
6: fix λ̄(χk);
7: M =M+Mi

(

λ̄(χk)
)H

Mi

(

λ̄(χk)
)

;

8: B = B +Mi

(

λ̄(χk)
)H

B
(

λ̄(χk)
)

;
9: end for

10: computeX̂(si) =M−1B;
11: X ← [X , X̂(si)];
12: end for
13: orthonormalize the column vectors ofX such that

range(V) = colspan {X};
14: construct the fully parameterized ROM by (6).

uniformly segmented intomi intervals. The details of our fully
PMOR is are given in Algorithm 3.

The main computational cost comes from solving the linear
system withm right-hand sides in Line10, at a cost similar
to that of Krylov-subspace based moment matching for non-
parameterized systems [24]. The matrix-matrix and matrix-
vector products in lines7&8 are very cheap in circuit simula-
tion, because the resulting matrices are normally very sparse.
The proposed fully PMOR has the following properties:

• At each frequency point only one (block) vectorX̂(si) is
selected in the whole parameter space, so much redundant
information is eliminated, which helps keep the ROM size
small. Besides, the ROM sizemq is also independent of
the parameter number and the discretization scheme3;

• We only need the numerical values of the system matrices
when λ is the center of each box in the discretization
scheme. Therefore, our algorithm is also applicable when
the parameter dependence is given as a look-up table.
For the models from semiconductor circuits, one can use
SPICE to get the numerical values at the parameter points
of interest, even if the parameter dependence inside the
device model is not explicitly known;

• No Taylor expansion around the nominal value ofλ
is used, so the positive semi-definite structure of MNA
equations can be preserved for interconnect simulation.
This means that passivity can also be guaranteed.

IV. D EALING WITH LARGE VARIATIONS

A. Parameter Space Segmentation

When the parameter variation range is very large, the
resulting ROM may not be as accurate as required. One
solution is to use a finer discretization when computingX̂(si),
by increasing the segmentation number of each parameter. This
is helpful when the parameter space is “intermediate” or not

2AH
i denotes the conjugate transpose ofAi.

3For each fixedsi, the sampling-based PMOR selects many (block) vectors
to constructV , which introduces redundancy. In moment-matching PMORs,
the ROM size grows exponentially with the parameter numberp.

“very” large. But when the discretization scheme is accurate
enough, we cannot further improve the accuracy by using a
finer discretization scheme. This is because the theoretically
minimal error in (12) will grow when the parameter space is
too large. In such a case, we can segment the whole parameter
space into several smaller spaces before using Algorithm 3.

There does not exist a theoretically sound guideline on
how to segment the original parameter spaceS. One possible
parameter space segmentation procedure is given below.

1) We first use Algorithm 3 to generate a fully parameter-
ized ROM for the parameter spaceS;

2) We see the center ofS (denoted aŝλ0 = α+β
2 ) as

the nominal point. After that, we compute the transfer
function of system (1) at a set of frequency points
s1, · · · , sl in the specified frequency band, withλ = λ̂0.
The computed “nominal” transfer functions are denoted
asH(sj , λ̂0), with j = 1, · · · , l.

3) We evaluate the effect induced by the variation of each
parameter. Forλ(i), we increaseλ’s i-th coordinate from
α(i) to β(i) with a step sizeβ(i)−α(i)

ri
(ri is a positive

integer), while keeping other coordinates nominal (i.e.,
identical to those ofλ̂0). By doing so, we getri
parameter points along the direction~ei in the parameter
space (~ei is the i-th column of thep × p identity
matrix). For each parameter point denoted byλ

i,k̂
(with

k̂ = 1 · · · , ri), we compute the ROM’s transfer functions
at the frequency points used in Step2), and denote the
result asHr(sj , λi,k̂

). Then we can get ari × l error
matrix for parameterλ(i)

Θi =











θ1,1 θ1,2 · · · θ1,l
θ2,1 θ2,2 · · · θ2,l

...
...

. ..
...

θri,1 θri,2 · · · θri,l











,

with θ
k̂,j

=
∥

∥

∥
H(sj , λ̂0)−Hr(sj , λi,k̂

)
∥

∥

∥

F
.

(29)

4) FromΘi, we estimate the ROM’s error that is induced
by λ(i)’s variation by

θ̂i = max θ
k̂,j

, for k̂ = 1, · · · , ri and j = 1, · · · , l
(30)

which represents the largest sampling error in the
frequency-parameter space. We can also use another
error estimator

θ̂i =

∥

∥

∥
H(sj , λ̂0)−Hr(sj , λi,k̂

)
∥

∥

∥

2

F

ril
(31)

which represents the average sampling error in the
frequency-parameter space ofp+ 1 dimensions.

5) We repeat the steps from3) to 4) to get the error
estimator for each parameter coordinate [i.e.,θ̂1 for
λ(1), · · · , θ̂p for λ(p)].

6) We assume that̂θk is the largest one among the obtained
p error estimators. If̂θk is larger than an error tolerance
ǫ, we segment the range ofλ(i) into two sub-ranges
[α(i), α(i)+β(i)

2 ] and [α(i)+β(i)
2 , β(i)]. Meanwhile, the

original parameter spaceS is portioned into two parts



S1 and S2 by this segmentation. If̂θk ≤ ǫ, we do not
partition the parameter space.

7) We repeat the above procedures to further partition the
obtained smaller parameter spaces, if necessary.

The parameter space segmentation can also be performed
with some empirical experience, which is less mathematically
sound but normally effective. In practical problems, many
parameters fluctuate in a small range (such as the dielectric
constant of the metal interconnects, the threshold voltageof
MOS transistors), and a few of others have larger variation
ranges (e.g., the width and length sizing of interconnects
or transistors in the design phase). Therefore, one can first
segment the variation ranges of several parameters whose
ranges are “obviously” large based on the design experience.
If the result is not good enough, one can further consider the
above-mentioned segmentation scheme.

B. Constructing Reduced-Order Models

After parameter space segmentations, we may geth sub
parameter spacesS1, S2, · · · , Sh. For each of them one can
use Algorithm 3 (precisely, Lines1-12) to geth matricesXk ∈
C

n×mq, with k = 1, 2, · · · , h. With these matrices, we can
construct parameterized ROMs in different ways.

1) Multiple ROMs: eachXk is orthonormalized to form
Vk, which is stored in a look-up table. Then using different
Vk’s, one can geth different ROMs by (6). We denote
these ROMs byΣ1, Σ1, · · · , Σh respectively. Then in the
subsequent simulation, one can useΣk to perform fast ROM-
based simulation if the the given parameter is inside the
smaller parameter spaceSk. The parameter pointλ may belong
to several sub parameter spaces if it is located on the border.
In such a case anyΣk satisfyingλ ∈ Sk can be used.

2) Single ROM:we first constructX = [X1,X2, · · · ,Xh].
To eliminate the possible redundant information, the dominant
eigenspace ofXXH is extracted to form the projection matrix
V . Power iteration could be used to extract the dominant
eigenspace ofXXH [25], but it may be inaccurate when the
largest eigenvalue ofXXH is not distinct. Assuming that we
want V to span the column space of the firstq̂ dominant
eigenvectors ofXXH (q̂ < mhq ≪ n), the following
procedures can be used:

• Perform singular value decomposition (SVD) for the
much smaller-size matrixXHX , obtaining

XHX = U











δ1
δ2

. . .
δmhq











UH , (32)

sinceXHX is a Hermitian positive semi-definite matrix.
In the SVD result,U is a unitary matrix, andδ1 ≥ · · · ≥
δmlq are the singular values ofXHX .

• Compute the projection matrixV by

V = XUq̂













1√
δ1

1√
δ2

.. .
1√
δq̂













, (33)

whereUq̂ denotes the first̂q columns ofU .
Through the SVD ofX , one can prove thatV TV = I and
range(V) spans the column space of the firstq dominant
eigenvectors ofXXH . Whenmhq ≪ n, the cost of computing
V is negligible. This procedure can also be used in Algorithm
3 to form V , if we need even smaller ROMs.

We use the second approach to generate single parameter-
ized ROM. The pseudo codes are given as Algorithm 4.

Algorithm 4 RLS-based fully PMOR with Large Variations
1: Segment the original parameter space intoS1, S2, · · · , Sh,

by the procedures in Section IV-A;
2: Initialize X ← [ ];
3: for i = 1, · · · , h do
4: Within the parameter spaceSi, use Lines 1-12 of

Algorithm 3 to generateXi;
5: X ← [X ,Xi];
6: end for
7: Form V by (32) and (33);
8: construct the fully parameterized ROM by (6).

V. NUMERICAL RESULTS

We use several multi-port fully parameterized examples
with very large parameter variations to test the proposed
RLS optimization-based PMOR scheme. All experiments are
implemented in Matlab and performed on a 3.3GHz 4-GB
RAM workstation.

A. Experimental Setup

The circuit configuration in Fig 3 (a) is used to build
multi-port multi-parameter fully parameterized benchmarks.
OTA 1-4 are four operational transconductance amplifiers that
convert input voltage signals to output currents. We assume
that theirf3dB frequencies are much higher than the frequency
we are interested in, then the OTA gains are some functions
of the temperatureT which influences transistor threshold
voltages. Their gains are given asgm1(T ), gm2(T ), gm3(T )
andgm4(T ), respectively, by some data sheets. Four coupling
metal lines connect the OTAs to the loading networks. We
assume that the4 lines have the same widthsw, and the same
spacingl between adjacent lines. As shown in Fig. 3 (b),250
parameter-dependent coupledRC segments are used to model
the metal lines, whose per-unit-length (p.u.l.) resistor,p.u.l.
ground capacitor and p.u.l. coupling capacitor vary withw and
l. Since the metal resistivity varies with temperature, the p.u.l.
resistor also depends onT . Each loading network is modeled
by a non-parameterizedRC pair. For simplicity, we assume
that the temperature profile is uniform. The input voltages
are injected into the OTAs. We attempt to find the voltage
gains from the OTA inputs to the far end of each metal line.
The state-space equation can be written as the following fully
parameterized model with four ports

C(w, l)ẋ = G(w, T )x+B(T )u, y = Lx.

Here u = [u1;u2;u3;u4] and y = [vo1; vo2; vo3; vo4] are
shown in Fig. 3. The original problem size is1004.
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Fig. 3. The multi-port fully parameterized example used to testour algorithm. (a) The original circuit consists of four ideal operational transconductance
amplifiers (OTA),4 coupling metal lines each loaded with a network. The excitation signals are injected into the OTAs, and we attempt to find thevoltage
gains from the inputs to the far ends of the interconnects. (b) The fully parameterized model used for simulation. The OTAs’ gains depend on the temperature
T . The interconnect parasiticRC performances are dependent on metal width (w), wire spacing (l) and the temperatureT . The loading effect of each loading
network is described by a non-parameterizedRC pair.

B. Accuracy Verification of RLS-based Fully PMOR

We first test the RLS-based fully PMOR (Algorithm 3) with
variations of moderate size. The parameter spaceS is listed
in the 2nd row of Table I, wherew0, l0 and T0 denote the
nominal parameter values. Three test cases are given in Rows
3-5.

TABLE I
PARAMETER SPACE SPECIFICATION AND TEST EXAMPLES FOR

ALGORITHM 3.

w/w0 l/l0 T − T0

parameter spaceS [1, 30] [1, 15] [0, 100]
case 1 3 1.5 10
case 2 15 7.5 50
case 3 27 13.5 90

In the RLS flow,10 frequency points from200Hz to 109 Hz
are used. In the discretization scheme, each parameter range
is divided into 2 intervals, which means that8 “boxes” are
used to compute eacĥX(si). To make the ROM compact,
we extract the dominant eigenspace ofXXH , and an order-
10 parameterized ROM is generated for the parameter ranges
specified in the first row of Table I. Fig. 4 gives the MOR
results for test cases1-3, where the ROMs’ transfer functions
are all indistinguishable from their original ones. Whenf <
108Hz, the relative errors are all below10−8.

For comparison, we also implemented the sampling based
scheme in [15] with some modifications. In [15], the input
matrix is fixed. In our experiments, the input matrix is updated
as λ changes, but we do not change any other procedure
of [15]. For each frequency point,27 block vectorsX(si, λ)
are produced at27 parameter points. Three order-20 reduced
models are generated for cases1-3. The results in Fig. 5 (b)
show that the relative errors from [15] are about3 orders
of magnitude higher than those from RLS optimization [c.f.
Fig. 4 (b)], even though the ROM sizes from [15] is2× larger
than the results from our RLS-based fully PMOR.
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Fig. 4. Fully PMOR result by our RLS-based scheme (Algorithm3) for
cases1-3, with ROM size=10. (a) The transfer functions (fromu1 to vo1)
of the obtained ROMs are indistinguishable from the original curves. (b) The
maximum relative errors of cases1-3 are about10−5, 10−6 and 10−8,
respectively.

C. Large-Variation Models

In this section we test Algorithm 4 on some models experi-
encing larger parameter variations (c.f. cases4-6 in Table II).
As shown in the2nd row of Table II, the variation ranges of
interconnect width and spacing are almost doubled.

TABLE II
PARAMETER SPACE SPECIFICATION AND TEST CASES FORALGORITHM 4.

w/w0 l/l0 T − T0

parameter spaceS [1, 50] [1, 30] [0, 100]
case 4 10 6 20
case 5 30 18 60
case 6 40 24 80

First, we segment the variation ranges of bothw and l into
2 uniform intervals (and here we do not segment the range
of T ), generating4 smaller parameter spaces. Then we use
10 frequency points to constructX and extract the dominant
eigenspace ofXXH to construct an order-20 parameterized
ROM. In Fig. 6, the resulting ROMs’ transfer functions are
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Fig. 5. MOR result by the sampling scheme modified from [15] for cases
1-3, with ROM size=20. (a) The transfer functions of the obtained ROMs
are also indistinguishable from their original curves. (b)The relative errors
are several orders of magnitude larger than those from our Algorithm 3.
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Fig. 6. Fully PMOR results by our Algorithm4 for the large-variation cases
4-6, with ROM size=20. (a) The ROMs’ transfer functions overlap with their
original ones. (b) The maximum relative errors of cases4-6 are about10−5,
10−7 and10−8, respectively.

still indistinguishable from the ones from the original models.
For all of the three test cases (cases4-6 in Table II), the relative
errors are all below10−7 when the frequency is below108Hz.

VI. CONCLUSION

This paper has proposed a PMOR scheme for fully pa-
rameterized systems with possibly parameter-dependent in-
put/output matrices. Instead of using moment matching or
balanced truncation, an error minimization procedure is pro-
posed to construct the projection matrix. Such a procedure
is reformulated as a recursive least square problem and then
efficiently solved. Since the optimization can eliminate much
redundant information and is independent of the number of
parameters, our approach can construct high-accuracy models
with small ROM size for systems with large numbers of
parameters. Additionally, for systems with large parameter
variations, parameter space segmentation can help improvethe
accuracy. Our algorithms have been tested by a set of multi-
parameter fully parameterized models, and have obtained both
high accuracy and small ROM sizes.
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