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Abstract—This paper presents a method for the model order  In all of the above-mentioned PMORSs, the input and output
reduction of fully parameterized linear dynamic systems. In a matrices are non-parameterized. This assumption is true fo
fully parameterized system, not only the state matrices, but also many model order reduction (MOR) problems, when the input

can the input/output matrices be parameterized. This algorithm is . 8 .-
based on neither conventional moment-matching nor balanced- (or output) matrix only represents the fixed positions of the

truncation ideas; instead, it uses “optimal (block) vectors” to €Xcitation (or output) signals. Nevertheless, if we attetop
construct the projection matrix such that the system errors in he analyze the higher-order nonlinearity of parameterized- an

whole parameter space could be minimized. This minimization |og/RF circuits, the input matrices of the resulting lirizad
problem is formulated as a recursive least square (RLS) optimiza- model may also be parameter-dependent. A typical example

tion and then solved at a low cost. Our algorithm is tested by a from the Volterr fies based nonlinear circuit -mod
set of multi-port multi-parameter cases with both intermediate COMES 110 € \Volterra-series based nonlinear circurt-mo

and large parameter variations. The numerical results show that €ling [18]-[22]. The input matrix can also be parameterized
high accuracy is guaranteed, and that very compact models can when the input signal is posed into a network after being

be obtained for multi-parameter models due to the fact that the processed by a parameter-dependent block (such as a MEMS
ROM size is independent of the parameter number in our flow. sensor). Unfortunately, for these systems that involven bot
parameterized state matrices and parameterized inpptifout
|. INTRODUCTION matrices, few MOR solutions have been reported in the EDA
Design and process parameter variations need very caremmunity.
ful consideration in submicron digital, mixed-signal an& R This paper proposes a method for the MOR of fully pa-
analog integrated circuit design. Parameterized modetrordameterized systems with possibly parameter-dependent in
reduction (PMOR) techniques can generate compact modelg/output matrices. This method is not based on existing
reflecting the impact induced by design or process variatioomoment matching or balanced truncation. Instead, it geeera
Such techniques have become highly desirable in the EBAme “optimal (block) vectors” by recursive least square
community in order to accelerate the time-consuming desi¢RLS) optimization to construct the projection matrix,dabgh
space exploration, sensitivity analysis and automatith®gis. minimizing the error in the whole parameter space (c.f.i8act
Several PMOR techniques have been developed for bol). By this error minimization procedure, high accuracy
linear and nonlinear circuits. Most are based on mometdn be guaranteed; very small reduced-order models (ROM)
matching techniques [1]-[11] due to the numerical efficienccan be obtained for multi-parameter models since the ROM
These algorithms normally assume that the closed forms gife does not depend on parameter numbers in our flow.
the parameterized state-space models are given, or that \Wieen large parameter variations are involved, the RLS method
parameters’ statistical distributions are known. With i@m can generate highly accurate ROMs after parameter space
assumptions, the positive-real balanced truncation ndti®] partitioning (c.f. Section 1V). Our algorithm does not need
has been modified for parameterized interconnect model tee closed forms of the parameterized circuit equationss th
duction [13], [14]. In many cases the designers do not knawhas wider application areas than existing moment magchin
the exact symbolic forms of the parameterized circuit equbased PMORs. Besides, since Taylor expansion is not used
tions. As a result, neither moment matching nor positivée approximate the parameterized system matrices, the pos-
real balanced truncation can be used in the PMOR flow. iive semi-definite structures of some systems are prederve
numerically efficient and flexible method is the variationalvhich implies passivity preservation for parameterizdC
PMTBR scheme [15], which starts from the state-space modederconnect models.
and uses a cheap sampling scheme to approximate the Gramian
matrix. This approach is capable of preserving passivity fo I
symmetric systems (such &C circuits), but not for general
RLC interconnect models. When the system equations are Aot Fully Parameterized Linear Dynamics
available, one can treat the original model as a black bax, an |, this paper, we consider the multi-parameter linear time-
then use system identification techniques to construct @acg,yariant (LTI) parameterized dynamic system
models from simulated or measured data by, for example, the
quasi-convex optimization method [16], [17]. CN)z(t) = GN)x(t) + B(Mu(t), y(t) =L(Nz(t) (1)

. MOTIVATION AND PROBLEM FORMULATION
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B. Fully Parameterized Model Order Reduction

To speedup the computer-aided simulation, we aim at con-

it . .
u(t B(A) g E(A)E(E) = A(A)x(8) + (D) ¥ structing a very small (for example, ordgrwith ¢ < n) fully
() = L(A)x(t) :f\r/ parameterized reduced-order model (ROM)

Cr(/\)z(t) = Gr()‘)z(t) + Br()‘)u(t)7 yr(t) = Lr()‘)z(t)
(5)
The resulting ROM should approximate the original in-
put/output relationship with high accuracy when the patame
Fig. 1. Block diagram of the fully parameterized LTI systemeThputu(t) A varies in a specific range. A popular method is to select an

is converted by a parameter-dependent transformer befang fed to an LTI gppropriate projection matrik” to construct the ROM by
network which has: input ports. This system is a fully parameterized LTI

model when we consider the signal path frart) to y(¢). C, ()\) _ VTC()\)V, Gr()\) _ VTG()\)Vv
B, =VTB(\), L, = L\)V,

(6)

whereC()\), G(\) € R™*" are state matriced3(A\) € R**™ such that the ROM’s parameterized transfer function
and L(\) € R™*™ are the input and output matrices, respec-
tively. (Hire)\ € RPis avectorprepresentir}%design or procegs Hy(5,0) = L\ (sCr(N) = Gr(\) 7' Br(A) ™
parameters that influence the system equations. is close to the original one for any within a specified
The input and output matrices in (1) can also be paramet@griation range. Many PMOR methods have been proposed
ized, which were assumed non-parameterized in the previagsreduce systems with non-parameterized input and output
literatures. To distinguish our model from the ones with Nonnatrices, such as moment matching [1]-[4], [6], [7], [9L]1
parameterized input/output matrices, we refer to (1) &dl@  positive-real balanced truncation [13], [14] and the sangpl
parameterized model The fully parameterized model can beyased variational PMTBR [15].
interpreted as follows: the input signa(t) is first converted to g the best knowledge of the authors, however, no results
a(t) € R™ by a transformeiB(A), whose behavior depends omaye been reported in the EDA community to reduce fully
some parameters, before being injected into an LTI network,parameterized models whose input and output matrices are
as shown in Fig. 1. The parameter-dependent transformgso parameterized. In the following sections we will prise

block B(A) can be many kinds of signal processing units ig fylly parameterized MOR algorithm subject to the follogin
the real world, such as a voltage controlled current sourGgquirements:

a MEMS sensor that converts chemical or optical signals to
electrical signals, etc.

Fully parameterized models may also appear when we,
analyze some systems with non-parameterized input mstrice
For example, in RF circuit analysis the parameter-dependen
nonlinear circuit equation

« Itis feasible even when the input/output matrix is param-
eterized;
It is applicable when the symbolic expression of the
system matrices are unknown, which usually happens
when (1) is extracted from transistor SPICE netlist and
A are some parameters in the complex semiconductor
) device model, or when the parameter dependence is
q(a(t),A) = f(x(t), A) + Bu(t) @ shown by a look-up table or a measurement data sheet;
o Our technique is applicable even when the parameter
variation is large, and it generates a ROM with size
dx independent of the number of parameters;
EQ) =AMz + ANz@z+ A3(M)z@r @+ Bu(t) « It preserves passivity for the positive semi-definite struc

dt
. ) . ©) tured MNA (modified nodal analysis) equations.
around the operating point, wherg (\) € R"*™ is theith-
order derivative matrix and> denotes the Kronecker tensor
product. It has been shown in [18], [19] that the first- thioug I1l. RECURSIVELEAST SQUARE BASEDFULLY PMOR
third-order responses components sofcan be obtained by A Main Idea

solving the following linear systems, respectively,
In our approach we assume that all entries of the param-
E(O\)ds — Ay (\s - A2()\%x1 - eterized _syst_em matrices are continuous functions.oThis _
E(Nas = A(Nas + As() (21 © o1 + 22 @ 71) 4) _assumpnon is re_asonable for many p_hy5|c_al syst_ems, and it
+As(N)z1 ® 71 is less conservative than the assumptions in previous PMOR
algorithms where all entries in the system matrices arengive
which are very useful for signal distortion or inter-modida as symbolic forms or every entry is differentiable with resp
analysis in analog/RF circuit design. Obviously, the linedao (w.r.t) A in the moment matching flows
systems corresponding te, and x5 are fully parameterized

LTI systems with parameter-dependent input matrices. !Consider the simple parameterized matfix= Eo + [A|EF1, and letA
M int ti full terized del be f rtﬁ a scalar. This parameterized matrix is continuous at)asyR. But we
ore interesting fully parameterized models can be T0UNd,not yse Taylor expansion around the nominal mafix because | is

in the real-world applications. not differentiable at\ = 0.

can be written as the \olterra series

E()\){El = Al(/\)ml + Bu(t



In the frequency domain, we have

sC(AN)x(s,\) = G(N)x(s, \) + B(A)u(s). (8)

problem, instead of using the conventional moment matching
balanced truncation or sampling schemes. The main difficult
of this fully PMOR flow is the numerical solution of the

We know that the transfer function from(s) to the state OPtimization problem (12).

variablex(s, A), denoted as{ (s, A), is obtained from solving
the linear equation

(sC(A) = G(A) X(s,A) = B(A). 9)

B. Reformulating Problem (12)
Since the parameterized system matrices are assumed to

_ _ be continuous functions of, the integration in (12) can be
Inspired by the rational Krylov subspace method [23] for theomputed after discretizing the parameter space. Notetbat
linear MORs of non-parameterized systems, we know thatviriation range of each element dfcan be characterized by

we can getX (s, \) at a set of frequency points and forvh
such that

colspan { X (s1,A), X (s2, ), -, X(s,, )} C V, (10) 1)

then an accurate ROM can be constructed. Unfortunately, we
cannot compute the closed form of tharameterized (block) 2)
vectors X (s;, A)’s. Furthermore, it is normally impossible to
orthonormalize these vectors even if they are computalile fo
some specially-structured parameterized systems.

Alternatively, we can seek for a set nbn-parameterized
(block) vector X (s;)’s that are “close” toX (s;, A)'s under
some accuracy criteria. If we substitute aiys,) € C**™
back into (9), a parameter-dependent residual (block)ovect
is obtained:

e(si; ) = (sC(A) = G(N)) X(si) = B(A),

3)

(11)

which could be used for error estimation. Then we can seek for
a non-parameterized (block) vectdi(s;) “close to” X (s;, A),
such thatX (s;) is an optimizer to the following problem

ming 1(5:C(N) = GN) X () = BOY|RA(L) - - - dA(p).

subject to X (s;) € C"*™.
12)
Here S C R? denotes the parameter spacé;) is the i-th
coordinate of\, and ||} || . represents the Frobenius norm of
a matrix M e Crr>n2:

4)

nz2 N1

M| 2 (ZZM(Z‘J)IQ) .

j=1i=1

13)

5)

The optimization problem (12) implies thé&(si) is the non-
parameterized (block) vector that is “nearest” to the patam
ized X (s;, ), if X(s;) is selected such that the error [which
is measured by the Frobenius norm of the residual matrix in
(11)] is minimized in the whole parameter space.

Algorithm 1 Fully PMOR Flow
1: Solve the optimization problem (12) at frequency paint
to obtain X (s;) fori =1,2,--- ,q
2: Construct the projection matrix V' such
range(V)=colspan {X(sl), X(s9),--, X(5,)
3: Construct the fully parameterized ROM by (6).

that

its lower bound and upper bound, then the whole parameter
space can be discretized by the following procedures.

The whole parameter space is represented by two
vectors a« and g of length p, such that$S
{)\‘O[(Z) < )‘(Z) < 6(2)7 fori= Lo ap}'

For each parameten(:), its variation range (i.e.,
[a(7), B(i)])can be segmented into; uniform intervals.
For \(i), the length of each interval is decided as

i) — a(i)

m; '
Meanwhile, the above segmentation procedure would
partition the whole parameter spack into N

mims - --m, boxes, each of which igp-dimension.
For each integek € [1,N], we can find a unique

A; = (14)

“companion vector’y; = [k1,---,k,], based on the
following rules:
a) ky —+ komq +  kymomy + +

kpmp_lmp_g cemp =k — 1,
b) k; € Zand0 < k; <m; — 1.
Algorithm 2 has given the pseudo codes of calculating
Xk With x4, the k-th p-dimensional box3(x) can be
specified as

a(i) + kA <A(E) < a(i)+ (b + 1D)A;, fori=1,---|p

(15)
in the p-dimensional parameter spaSe
The volume of each box is
A=AAy--- A, (16)

The geometric center of thieth box B(xy) is a point

A(xx) in the p-dimensional space, whosdh coordinate
is (i) + (k; +0.5)A,.

After discretization, the integration in problem (12) bews
Sf 1(s:C(A) = G(N) X (s:) = BO|[RdA(1) - - - dA(p)

~ éA 1(5:C (\x) — G (M) X (51) — B (o)) |2

(17

Since A is a positive constant, now the original optimization
can be reformulated as

min ]ﬁl (5:C (Axk)) = G (M) X (51) = B (M) ||

subjegt to X (s;) € C*m™,

Our fully PMOR is summarized in Algorithm 1. The key

(18)

point is that the set of (block) vectors used to construcptioee Problem (18) is solvable and can be easily tackled by the
jection matrix are obtained by solving an error minimizatiorecursive least square (RLS) optimization in Section llI-C



for j = 1,---m, with X;(s;) as the variable. From this
Box3 | Box 6 observation, it is clear that theth column of X (s;) can be
(0,1.35) decided by finding the optimizer to the problem
N N 2
Ae[1513] ] min Z H( ( (x )) G ()\(Xk))) X,(s;) — B ()\(Xk))’|2 '
5ubJect to X,(s;) eCn
Box 5 (22)
Box 1 | Box4 If problem (22) is solved foj = 1,--- ,m, then all columns
of the “optimal block vector"X (s;) can be obtained.
~— 4018 —» Next we give the RLS theorem.

Theorem: Lete; = Ao —b; for i« = 1,---,k, with

Fig. 2. Discretization example for a parameterized systetn 24b parameter €i» by e C", z € C", A; € C""2, ny > ny and AiHAi IS
space. Sinca\(1) € [—1.5,1.5] andA(2) € [0, 1.8], we havea = [—1.5;0]  invertible’. Then the optimal solution to

andg = [1.5; 1.8]. We usem; = 3 andmy = 2, which segments the range

of A(1) into 3 intervals withA; = 1 and the range oA(2) into 2 intervals

with As = 0.9. Meanwhile, the whole parameter spatés partitioned into min Z ||€i||§, subject to x € C™? (23)
3 x 2 = 6 two-dimension boxes (which are panels2fD parameter space),

and each box’s volume i& = 0.9. For the5th box, using Algorithm 2 we

havek—1 = 4 = 1+1 xm, therefore, the companion vectonig = [1,1].  can be written as

With x5, the center of theésth box is fixed as\(1) = «a(1) + 1.5A; =0
andA\(2) = a(2) + 1.5A2 = 1.35. k -1k
&= <Z Al Ai> (Z Al bi> . (24)
1=1 =1
To illustrate the discretization flow, an example witl2-®
parameter space is given in Fig. 2. The extension to 3-D and Proof: Denotee = [e;; ;- ;ex], b = [b1;,ba; -+ ; by

higher-dimension parameter spaces is straightforward. and A = [A4;; Ay; -+ 5 A, then (23) can be converted to the
least-square problem

Algorithm 2 Compute the companion vectgy, of k.

. 2 . 72
L Initialize 11 € 27 m(1) = 1, m(i + 1) = mem(i)for min |le||;, subjecttoe=Ax—b, x € C (25)
i:17-~',p—1; ) f hich h -~ _ AHA -1 AH —
2: Initialize xj € ZP: xx = [0,---,0] and setk = k — 1; ro’:n whie _lwek e s ( ) (4%
g forp=p,...p—1, 1do (ZAﬁAi S Ay, ). [
Xk(P) = ﬂoor(ﬂ( )) k k- X (D) (p).- 4

i=1 =1
According to the above theorem, we know that the optimizer
for the RLS problem in (22) is

. N _ _ -
C. RLS Optimization Xi(s:) = (z M; (Aow) ™ M, (/\(Xk))>
In this section we present a method to solve problem (18). ket - o - (26)
First, we denote thg-th columns ofX (s;) and B (A(x4)) x >3 M; (A(xx))” B (Mx))
by X;(s;) and B; (A(xx)). respectively. It is straightforward k=1
to show that where
_ _ _ ) ) ) )
(€ (AG@)) = & (A0er))) X (s0) = B (M) [ M; (M) = :C (Aow)) — G (Mxw))  (27)

< < < 2
:j;H(SiC (Alxr)) = G (Mxx))) X;(si) — B; ()‘(Xk))Hz’ is a nonsingular matrix, if the original dynamical system
(19) is stable ands ¢ C~. The nonsingularity ofM; (A(xx))

(S

. . N H N . L. -
implies thatM; (A(xx))" M; (A(xx)) is positive definite, so
where [[bll, = (Z b )‘ is the 2-norm for any vector the matrix inversion in (26) is well posed.
b e C™. As a result, problem (18) can be rewritten as Finally, the “optimal (block) vector’X (s;) is obtained as
minm C (A -G (X X,(s;) — Bj (A 2 R - N - - -t
£ (B oo 600 -c6eonne-5 600E) g, (£ 3 o) 8 () )
subject to X;(s;) € C", forj=1,--- ,m. k=1 (28)
(20) N 5 H
Let X kZ M; (Mxx)) ™ B (Mxk))-
=1
N
£ (X5(s0) = Z Mxr)) = G (M) X;(si) = B (M) I3
k=1 1) D. Algorithm Summary
It is clear that for any integer # j (1 < r < m), the value  Assume thay frequency pointss,--- , s, are used in the

of f; (X,(s;)) is independent ofX,(s;). Therefore, the cost fully PMOR flow, the original system hag parameters, its
function of (18) is minimized if f; (X;(s;)) is minimized model size isn, and for parametetf its variation range is



Algorithm 3 RLS-based Fully PMOR. “very” large. But when the discretization scheme is acairat

1: Initialize X « []; enough, we cannot further improve the accuracy by using a

2. fori=1, ---,qdo finer discretization scheme. This is because the theoligtica

3 M=0,B=0 minimal error in (12) will grow when the parameter space is

4. for k=1, ---, Ndo too large. In such a case, we can segment the whole parameter

5: calculate the companion vectg(k) of k; space into several smaller spaces before using Algorithm 3.

6: fix A(xx); There does not exist a theoretically sound guideline on

7: M =M+ M; (A(xx) " M; (A(xx)); how to segment the original parameter sp&c®ne possible

8: B=B+ M, (X(Xk)) B (X(Xk)); parameter space segmentation procedure is given below.

9: end for 1) We first use Algorithm 3 to generate a fully parameter-

10:  computeX (s;) = M~1B; ized ROM for the parameter spae

11 X« [X, X(si)}; 2) We see the center d§ (denoted as\g = O‘T“’) as

12: end for the nominal point. After that, we compute the transfer

13: orthonormalize the column vectors okt such that function of system (1) at a set of frequency points
range(V) = colspan {X'}; s1,--- , s in the specified frequency band, with= ).

14: construct the fully parameterized ROM by (6). The computed “nominal” transfer functions are denoted

as H(sj, \o), with j = 1,--- 1.
3) We evaluate the effect induced by the variation of each
uniformly segmented inten; intervals. The details of our fully parameter. FoA(i), we mcrgas(%’ixz(-;[)h coordinate from
PMOR is are given in Algorithm 3. a(i) to f(i) with a step sae%. (ri is a positive
integer), while keeping other coordinates nominal (i.e.,
identical to those of)y). By doing so, we getr;
parameter points along the directienin the parameter

The main computational cost comes from solving the linear
system withm right-hand sides in Lind0, at a cost similar
to that of Krylov-subspace based moment matching for non- ) ) 7 -
parameterized systems [24]. The matrix-matrix and matrix- ~ SPac€ & Is the i-th column of thep x p identity
vector products in line&s8 are very cheap in circuit simula- matrix). For each parameter point denotedy. (with
tion, because the resulting matrices are normally verysspar k=1---,r;), we compute the ROM's transfer functions
The proposed fully PMOR has the following properties: at the frequency points used in Step and denote the

« At each frequency point only one (block) vectsi(s;) is result asf, (s;, A, ;). Then we can get a; x [ error
selected in the whole parameter space, so much redundant matrix for parameten(i)

information is eliminated, which helps keep the ROM size 011 b1o --- 601y
small. Besides, the ROM sizegq is also independent of 01 Boo - Ooy
the parameter number and the discretization schgme 0, = | | ) J ,
« We only need the numerical values of the system matrices : : R (29)
when )\ is the center of each box in the discretization Orin Ori2 oo Or
scheme. Therefore, our algorithm is also applicable when with G,Am = HH(SJ-, 5\0) — H,(sj, )\“;)HF .

the parameter dependence is given as a look-up table. . o
For the models from semiconductor circuits, one can use4) From©;, we estimate the ROM's error that is induced
SPICE to get the numerical values at the parameter points by A(i)'s variation by
of |r_1terest, even if the p_ar_ameter dgpendence inside the 0. — max 6 . for he1 mandj=1,- 1
device model is not explicitly known; J (30)
o No Taylor expansion around the nominal value f . . .
. I e which represents the largest sampling error in the
is used, so the positive semi-definite structure of MNA
. ) . ) frequency-parameter space. We can also use another
equations can be preserved for interconnect simulation. ;
) = error estimator
This means that passivity can also be guaranteed.

| E s A0~ B A )|
IV. DEALING WITH LARGE VARIATIONS 0; =

2

= (31)
Til

A. Parameter Space Segmentation which represents the average sampling error in the

When the parameter variation range is very large, the frequency-parameter space pf+ 1 dimensions.
resulting ROM may not be as accurate as required. One5) We repeat the steps from) to 4) to get the error
solution is to use a finer discretization when computiigs; ), estimator for each parameter coordinate [i., for
by increasing the segmentation number of each parameter. Th (1), - - -, ép for A(p)].
is helpful when the parameter space is “intermediate” or not6) We assume that, is the largest one among the obtained

p error estimators. 16, is larger than an error tolerance

2A\H i o s
3;%- de”ho;?séhetﬁonlugat? ”agspozﬁgﬂfm ot (block) vect e, we segment the range of(i) into two sub-ranges
or each fixeds;, the sampling-base selects many (block) vectors N ali)+B(>0) a(i)+B(:) ) .
to constructV’, which introduces redundancy. In moment-matching PMORs, [O‘.(Z_)v 2 ] and | 2 ’5(1)} M?a“Wh"e’ the
the ROM size grows exponentially with the parameter number original parameter spac® is portioned into two parts




S: andS, by this segmentation. 1§, < ¢, we do not whereU,; denotes the firs§ columns ofU.
partition the parameter space. Through the SVD ofx, one can prove that 'V = I and
7) We repeat the above procedures to further partition thgnge(V) spans the column space of the figgtdominant
obtained smaller parameter spaces, if necessary.  eigenvectors ot X/, Whenmhq < n, the cost of computing
The parameter space segmentation can also be performves negligible. This procedure can also be used in Algorithm
with some empirical experience, which is less mathemdyicaB3 to form V, if we need even smaller ROMs.
sound but normally effective. In practical problems, many We use the second approach to generate single parameter-
parameters fluctuate in a small range (such as the dielectried ROM. The pseudo codes are given as Algorithm 4.
constant of the metal interconnects, the threshold volti#fge
MOS transistors), and a few of others have larger variatigigorithm 4 RLS-based fully PMOR with Large Variations
ranges (e.g., the width and length sizing of interconnects: Segment the original parameter space BtpS, - - -, Sy,
or transistors in the design phase). Therefore, one can first by the procedures in Section IV-A;
segment the variation ranges of several parameters whose Initialize X <« [];

ranges are “obviously” large based on the design experience: for i =1, ---, h do
If the result is not good enough, one can further consider the:  Within the parameter spacB;, use Lines 1-12 of
above-mentioned segmentation scheme. Algorithm 3 to generatet;;
5 X« [X, A

B. Constructing Reduced-Order Models 6: end for

After parameter space segmentations, we mayigsub  7: FormV by (32) and (33);
parameter space$;, S», ---, Si. For each of them one can 8: construct the fully parameterized ROM by (6).
use Algorithm 3 (precisely, Linek-12) to geth matricesXy, €
Cm*™a with k = 1,2,--- ,h. With these matrices, we can
construct parameterized ROMs in different ways. V. NUMERICAL RESULTS

1) Multiple ROMs: each &, is orthonormalized to form We use several multi-port fully parameterized examples
Vi, which is stored in a look-up table. Then using different P yp P

Vi's, one can geth different ROMs by (6). We denoteW|th very large parameter variations to test the proposed

these ROMs by>,, %y, ---, %, respectively. Then in the RLS optimization-based PMOR scheme. All experiments are

subsequent simulation, one can usgto perform fast ROM- implemented n Matlab and performed on a 3.3GHz 4-GB
. S ) o RAM workstation.

based simulation if the the given parameter is inside the

smaller parameter spag. The parameter point may belong )

to several sub parameter spaces if it is located on the bordér EXPerimental Setup

In such a case any; satisfying\ € Sy can be used. The circuit configuration in Fig 3 (a) is used to build
2) Single ROM:we first constructt’ = [X, X, .-+, A,].  multi-port multi-parameter fully parameterized benchksar

To eliminate the possible redundant information, the demin OTA 1-4 are four operational transconductance amplifiers that

eigenspace o Y is extracted to form the projection matrixconvert input voltage signals to output currents. We assume

V. Power iteration could be used to extract the dominatitat theirf3qp frequencies are much higher than the frequency

eigenspace oft XY [25], but it may be inaccurate when thewe are interested in, then the OTA gains are some functions

largest eigenvalue ok X' is not distinct. Assuming that we of the temperatureél’ which influences transistor threshold

want V' to span the column space of the figgtdominant voltages. Their gains are given 85,1(7"), gm2(T), gms(T)

eigenvectors of YA (§ < mhg < n), the following andg.,4(T), respectively, by some data sheets. Four coupling

procedures can be used: metal lines connect the OTAs to the loading networks. We
« Perform singular value decomposition (SVD) for th@ssume that th¢ lines have the same widths, and the same
much smaller-size matrix’’ X, obtaining spacingl between adjacent lines. As shown in Fig. 3 @0
5, parameter-dependent couplB€ segments are used to model
5 the metal lines, whose per-unit-length (p.u.l.) resispoy.l.
xYHy — . UH, (32) ground capacitor and p.u.l. coupling capacitor vary witand
: l. Since the metal resistivity varies with temperature, thelp
Omhg resistor also depends dh Each loading network is modeled

since X X is a Hermitian positive semi-definite matrix.by a non-parameterizeRC pair. For simplicity, we assume

In the SVD resulty is a unitary matrix, and; > --- > thrat i;he :e??riratttrj]re gfl_c:”e \;\S/ untltforrnm.t -trhiir:glptuht v\cl)ltl?ges
dmiq are the singular values ofH x. are injecte 0 the S. Ve attempt 1o € voilage

. C : gains from the OTA inputs to the far end of each metal line.
Compute the pl‘OjECtICl)n matrik” by The state-space equation can be written as the followirg ful

Vor . parameterized model with four ports
V= XU, v N . (33) C(w, i = G(w,T)z + B(T)u, y= L.
1 Here u = [uisug;us;ug] and y = [Vo1;V02; Vo3; Vos| are

NG shown in Fig. 3. The original problem size i804.
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() Original circuit. (b) Fully parameterized model.

Fig. 3. The multi-port fully parameterized example used to testalgorithm. (a) The original circuit consists of four itleerational transconductance
amplifiers (OTA),4 coupling metal lines each loaded with a network. The exoitatiignals are injected into the OTAs, and we attempt to findvtiieage
gains from the inputs to the far ends of the interconnec)sT(le fully parameterized model used for simulation. The OTAshg depend on the temperature
T'. The interconnect parasitRC performances are dependent on metal widif, fvire spacing {) and the temperatur€. The loading effect of each loading
network is described by a non-parameteri&d pair.

B. Accuracy Verification of RLS-based Fully PMOR [@Transfer function, port (1,1) (b) Relative error
. . . 45 ——original,case —e—case 1 _
We first test the RLS-based fully PMOR (Algorithm 3) with ° RiScasel | —>—case 24
Fp : . : —original,case 2 ——case 3p,
variations of moderate size. The parameter sgfage listed a5 o RLS,case2 | O
in the 2nd row of Table I, wherew,, lp and T, denote the =, original.case 3 .«
nominal parameter values. Three test cases are given in R( di,s RSl |2
3-5. =, D10
15
TABLE | . -
PARAMETER SPACE SPECIFICATION AND TEST EXAMPLES FOR 05
ALGORITHM 3. 14
0 10
10° 10 10° 10° 10° 10°
w/wo /Ty T —To frequency (Hz) frequency (Hz)
parameter spacgé || [1,30] | [1,15] | [0,100]
case 1 3 1.5 10 Fig. 4. Fully PMOR result by our RLS-based scheme (AlgoritB)mfor
case 2 15 7.5 50 casesl-3, with ROM size=10. (a) The transfer functions (from; to v,1)
case 3 27 13.5 90 of the obtained ROMs are indistinguishable from the origmaves. (b) The

maximum relative errors of cases3 are aboutl0—°, 10~6 and 108,
respectively.

In the RLS flow,10 frequency points fron200Hz to 10° Hz
are used. In the discretization scheme, each parametee rang _
is divided into2 intervals, which means tha “boxes” are C.” Large-Variation Models
used to compute eacl (s;). To make the ROM compact, In this section we test Algorithm 4 on some models experi-
we extract the dominant eigenspace o', and an order- encing larger parameter variations (c.f. casesin Table II).
10 parameterized ROM is generated for the parameter rand¥sshown in the2nd row of Table Il, the variation ranges of
specified in the first row of Table I. Fig. 4 gives the MORNterconnect width and spacing are almost doubled.
results for test casels3, where the ROMSs’ transfer functions
are all indistinguishable from their original ones. Whgn<
108Hz, the relative errors are all below) 5.

TABLE Il
PARAMETER SPACE SPECIFICATION AND TEST CASES FORLGORITHM 4.

For comparison, we also implemented the sampling based w/wo | Ul | T—To
scheme in [15] with some modifications. In [15], the input paranlzt:é Zpa& [1’180] [175’0] [0’21(?0]
matrix is fixed. In our experiments, the input matrix is ught case 5 30 18 G0
as A changes, but we do not change any other procedure case 6 40 24 80

of [15]. For each frequency poin27 block vectorsX (s;, \)

are produced a7 parameter points. Three ordes-reduced First, we segment the variation ranges of bettand! into
models are generated for case8. The results in Fig. 5 (b) 2 uniform intervals (and here we do not segment the range
show that the relative errors from [15] are abdutorders of T'), generatingd smaller parameter spaces. Then we use
of magnitude higher than those from RLS optimization [c.fl0 frequency points to construét and extract the dominant
Fig. 4 (b)], even though the ROM sizes from [15]2is larger eigenspace oft X to construct an orde?d parameterized
than the results from our RLS-based fully PMOR. ROM. In Fig. 6, the resulting ROMs’ transfer functions are



(a) transfer function, port (1,1) (b)Relative error
5

Proc. Intl. Workshop on Behavior Modeling and SimulatioBan Jose,

s —original,case 1 —=—case 1 CA, September 2003.
X il SRETY ——case 2 [2] L. Daniel, C. S. Ong, S. C. Low, K. H. Lee, and J. White, “A miult
o samp,, case 2 ——case parameter moment matching model reduction approach for gemgrati
85 origina'mase 5107 geometrically parameterized interconnect performance mpd&gE
=8 + samp. case 3 5 Trans. Computer Aided Desigwol. 23, no. 5, pp. 678-693, May 2004.
d2s 2 10 [3] B. N. Bond and L. Daniel, “Parameterized model order reiducof
T 8 nonlinear dynamical systems,” iRroc. Intl. Conf. Computer-Aided
15 ® 0 Design San Jose, CA, Nov 2005, pp. 487-494.
' [4] ——, “A piecewise-linear moment-matching approach to paranized
! 107 model-order reduction for highly nonlinear system&EE Trans. Com-
05 puter Aided Designvol. 26, no. 12, pp. 2116 — 2129, Dec 2007.
05 = o 107 . “ [5] N. Mi, S. X.-D. Tan, Y. Cai, and X. Hong, “Fast variationahalysis of
frequency (Hz) 10 frequéhey (Hz) ™ on-chip power grids by stochastic extended Krylov subspaethod,”
IEEE Trans. Computer Aided Desigwol. 27, no. 11, pp. 1996-2006,
. . e Nov 2008.
Fig. 5. MOR result by the sampling scheme modified from [15] faesa . . . C ) .
1-3, with ROM size=20. (a) The transfer functions of the obtained ROMs [°! e Lé’xglri‘gt_'; n';['i‘;?pgl'i'Cifgﬁ?_gﬁgﬁgé?ﬂg%‘;ﬂigﬁ;ﬁ
are also indistinguishable f_rom their original curves. Tje reI_at|ve errors inter/intra-die variations,” irProc. Intl. Conf. Computer Aided Design
are several orders of magnitude larger than those from ouorifgn 3. 2005, pp. 806-812
. . [7] S. Pullela, N. Menezes, and L. T. Pileggi, “Moment-seaugit-based
S(a) Transfer function, port(l‘,l) - (b) Relapve error wire sizing for skew reduction in on-chip clock netdEEE Trans.
S y — ] Computer Aided Desigrvol. 16, no. 2, pp. 210-215, Feb 1997.
e a ‘;r[%”ii;iisf b _e_z::: | [8] V. Liu, L. T. Pileggi, and A. J. Strojwas, “Model order rection of RCL
4 _origi}]amage interconnect including variational analysis,”toc. Design Automation
35 o RLS,case5 | 107 Conference New Orleans, Louisiana, June 1999, pp. 201-206.
5 original,case 6 5 [9] T. Moselhy and L. Daniel, “Variation-aware interconheextraction
3 * RLS,case6 | ©10° using statistical moment preserving model order reductiam,Pioc.
%2-5 2 . Design, Automation and Test in Europe Dresden, March 2010, pp.
=2 S0 453-458.
15 “10,,0 [10] J. F. Villena and L. M. Silveira, “SPARE - a scalable aigiom for
passive, structure preserving, parameter-aware model cedection,”
! e IEEE Trans. Computer Aided Desigwol. 29, no. 6, pp. 925-938, Jun
05 2010.
ok = o 1072 [11] Y. Li, Z. Bai, Y. Su, and X. Zeng, “Parameterized model arosduction
10 frequency (Hz) 1 * via a two-directional Arnoldi process,” iRroc. Intl. Conf. Computer-
Aided Design San Jose, CA, Nov 2007, pp. 868-873.
[12] J. R. Phillips, L. Daniel, and L. M. Silveira, “Guaraet® passive

Fig. 6. Fully PMOR results by our Algorithnt for the large-variation cases
4-6, with ROM size=20. (a) The ROMs’ transfer functions overlap with their

original ones. (b) The maximum relative errors of casesare aboutl0~5, [13]

10~7 and 10~%, respectively.

still indistinguishable from the ones from the original netsl [14]

For all of the three test cases (cadesin Table I1), the relative

errors are all belowt0~7 when the frequency is below)®*Hz. [15]
[16]

VI. CONCLUSION

This paper has proposed a PMOR scheme for fully p&7]
rameterized systems with possibly parameter-dependent in
put/output matrices. Instead of using moment matching ps]
balanced truncation, an error minimization procedure & pr
posed to construct the projection matrix. Such a procedLﬁg]
is reformulated as a recursive least square problem and then
efficiently solved. Since the optimization can eliminatecmu
redundant information and is independent of the number i8p!
parameters, our approach can construct high-accuracylsmode
with small ROM size for systems with large numbers dfll
parameters. Additionally, for systems with large parametg,,
variations, parameter space segmentation can help imghneve
accuracy. Our algorithms have been tested by a set of multi-
parameter fully parameterized models, and have obtaingd b
high accuracy and small ROM sizes.

[24]
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