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ABSTRACT

We have developed a new sparse-spike deconvolution (SSD)
method based on Toeplitz-sparse matrix factorization (TSMF), a
bilinear decomposition of a matrix into the product of a Toeplitz
matrix and a sparse matrix, to address the problems of lateral
continuity, effects of noise, and wavelet estimation error in SSD.
Assuming the convolution model, a constant source wavelet, and
the sparse reflectivity, a seismic profile can be considered as a
matrix that is the product of a Toeplitz wavelet matrix and a
sparse reflectivity matrix. Thus, we have developed an algorithm
of TSMF to simultaneously deconvolve the seismic matrix into
a wavelet matrix and a reflectivity matrix by alternatively
solving two inversion subproblems related to the Toeplitz wavelet
matrix and sparse reflectivity matrix, respectively. Because the
seismic wavelet is usually compact and smooth, the fused
Lasso was used to constrain the elements in the Toeplitz wavelet

matrix. Moreover, due to the limitations of computer memory,
large seismic data sets were divided into blocks, and the aver-
age of the source wavelets deconvolved from these blocks via
TSMF-based SSD was used as the final estimation of the source
wavelet for all blocks to deconvolve the reflectivity; thus, the
lateral continuity of the seismic data can be maintained. The
advantages of the proposed deconvolution method include using
multiple traces to reduce the effect of random noise, tolerance
to errors in the initial wavelet estimation, and the ability to
preserve the complex structure of the seismic data without using
any lateral constraints. Our tests on the synthetic seismic data
from the Marmousi2 model and a section of field seismic data
demonstrate that the proposed method can effectively derive
the wavelet and reflectivity simultaneously from band-limited
data with appropriate lateral coherence, even when the seismic
data are contaminated by noise and the initial wavelet estimation
is inaccurate.

INTRODUCTION

Reflection seismology, a widely used method in geophysical ex-
ploration, is based on the general principle of sending seismic
source wavelets (using an energy source, such as dynamite explo-
sion or vibroseis) into the earth, recording the reflected waves at the
earth’s surface, and then using the recorded data for estimating the
properties of the earth’s subsurface. According to the convolutional
model, a seismogram is the sum of the convolution of the seismic
source wavelet with the subsurface reflectivity coefficients and
added noise. Let wðtÞ be the source wavelet, rðtÞ denote the reflec-

tivity coefficients of the subsurface, and nðtÞ be the noise; then, the
seismogram trace yðtÞ can be given by

yðtÞ ¼ wðtÞ � rðtÞ þ nðtÞ; (1)

where * means convolution. From equation 1, we can see that the
recorded seismic trace always bears the source wavelet, which
smears adjacent events and reduces the resolution of the seismic
image. Seismic deconvolution is an inverse problem for removing
the source wavelet from the recorded seismic trace. In the ideal case,
after deconvolution, the true seismic reflectivity is recovered. In
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reality, because the source wavelet is always band-limited, the in-
verse problem is ill-posed, and requires regularization to achieve
stable results. Because the bigger seismic reflectivity coefficients
are the main contributors of seismic acoustic impedance, and they
are usually sparse in time, sparsity is usually taken as a regulariza-
tion constraint for reflectivity inversion. Using this constraint leads
to a methodology called the sparse-spike deconvolution (SSD)
method (Latimer et al., 2000; Nguyen, 2008).
SSD is a commonly used deconvolution method for acoustic-

impedance inversion (Latimer et al., 2000). It assumes, as a prior,
that the reflectivity is a sparse sequence of spikes. The main objec-
tive of SSD is to provide a significant increase in the bandwidth
content from band-limited seismic observations, so that the result
has high resolution and is suitable for acoustic-impedance inver-
sion. There are many methods for performing SSD. Some use dif-
ferent search strategies to locate the spikes and rely on the
optimization of different cost functions to satisfy a probabilistic
model for the reflectivity (Kormylo and Mendel, 1978; Kaaresen
and Taxt, 1998); some apply stochastic methods in a nonlinear
optimization framework to find the locations and amplitudes of
the least number of spikes (Velis, 2008); others proceed to opti-
mize some norm that forces the solution to be sparse (Oldenburg
et al., 1983; Debeye and van Riel, 1990; Sacchi et al., 1994;
Wang, 2011). However, these methods face challenges when being
applied to multidimensional data in a trace-by-trace basis: they may
show bad lateral continuity and the image quality may be compro-
mised in the presence of noise and wavelet estimation error.
Although some scholars have proposed methods to reduce these
problems (Wang et al., 2006; Nguyen, 2008; Lu, 2009; Kazemi
and Sacchi, 2014; Guitton and Claerbout, 2015; Nose-Filho et al.,
2016), the challenges remain for seismic data with complex
structure.
We present a new seismic SSD method based on Toeplitz-sparse

matrix factorization (TSMF). Matrix factorization has been exten-
sively studied in many research fields, such as numerical analysis
(Golub and Van Loan, 2012), machine learning (Srebro and Jaak-
kola, 2003; Salakhutdinov and Mnih, 2008), computer vision (Oka-
tani and Deguchi, 2007; Eriksson and van den Hengel, 2010), and
signal processing (Hyvärinen and Oja, 2000; Cichocki et al., 2009).
Various matrix models have been proposed that use different con-
straints. For example, by enforcing orthogonality constraints, we
get the classical singular value decomposition (Golub and Van
Loan, 2012); non-negative constraints lead to non-negative matrix
factorization (Lee and Seung, 1999); and independent component
analysis (Hyvärinen and Oja, 2000) can be formulated with statis-
tical independence. These models have already been successfully
applied to numerous problems, e.g., collaborative filtering (Lim
and Teh, 2007; Porteous et al., 2010), distinguishing structure from
motion (Tomasi and Kanade, 1992; Bregler et al., 2000), and blind
source separation (Hyvärinen and Oja, 2000; Cichocki et al., 2009).
For seismic data, the matrix form of a seismic trace modeled in
equation 1 is

y ¼ Arþ n; (2)

where A is a Toeplitz matrix with element Aij ¼ wi−jþ1, where
wi−jþ1 is the i − jþ 1th sampling point of the wavelet wðtÞ. Here,
y, r, and n are column vectors obtained by sampling yðtÞ, rðtÞ, and
nðtÞ, respectively. For a 2D seismic profile, equation 2 becomes

Y ¼ ARþ N; (3)

where the columns ofY are the successive traces of the seismic data,
R andN are the corresponding reflectivity series and noise matrices,
respectively. In practice, it is not easy to know the wavelet exactly;
nevertheless, we could take advantage of the Toeplitz structure of A
and the sparsity property of R to invert for them simultaneously. We
note that a dictionary learning model (Aharon et al., 2006; Elad and
Aharon, 2006) enforces sparsity constraints to R but does not con-
strain A, whereas Kibangou and Favier (2007) consider A to have a
Toeplitz structure but a nonsparse structure for R, so their method
cannot be directly applied to the seismic problem. We propose the
TSMF method to combine the advantages of the above methods to
invert for A and R simultaneously. This method is based on a ma-
trix-factorization method that uses multiple traces to estimate the
wavelet and reflectivity simultaneously; it thus obtains good lateral
continuity and preserves structure well when applied to seis-
mic data.
This paper is organized as follows: First, we present the formu-

lation of the TSMF and derive an algorithm for achieving it. Next,
we develop the TSMF-based SSD method. Finally, synthetic and
field data examples are used to demonstrate the effectiveness of
the proposed deconvolution method before drawing conclusions.

TOEPLITZ-SPARSITY MATRIX FACTORIZATION

In this section, we present our formulation of TSMF, and give a
simple but effective algorithm to solve it.

Model formulation

Let Y be an n ×m matrix factorizable as a product of an n × n
Toeplitz matrix A with an n ×m sparse matrix R. The basic matrix
factorization solves

J0 ¼ min
A;R

kY − ARk2F: (4)

Here, we enforce a Toeplitz structure to A and a sparse property
to R, respectively. Sparsity problems can be transformed into
L0-regularization problems. The general class of problems, for
which some algorithms can provide an answer in polynomial time
is called P. The computational complexity of the problem with L0

regularization has been shown to be NP-hard (nondeterministic pol-
ynomial-time hard), which is a class of problems that are at least as
hard as the hardest problems in NP. If P ≠ NP, the NP-hard prob-
lems cannot be solved in polynomial time, which means that the
time required to solve the problem using any currently known al-
gorithm increases very quickly as the size of the problem grows (Ge
et al., 2011). Thus, many researchers suggest to relax the L0 regu-
larization and, instead, to consider the L1 regularization. The
L1-regularization problem can be transformed into an equivalent
convex quadratic optimization problem, and therefore, can be very
efficiently solved (Xu et al., 2012). Hence, we use the L1-norm
(Tibshirani, 1996) to regularize the column vectors of R, and
add the Toeplitz constraint to A, yielding the basic formulation
of TSMF as follows:

V170 Wang et al.
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Ĵ ¼ min
A;R

1

2
kY − ARk2F þ λ

Xm
j¼1

krjk1;

s:t: A is a Toeplitz matrix;

(5)

where rj ∈ Rn is the jth column of R and k · k1 is the L1-norm of a
vector. The difficulty, however, is how to deal with the Toeplitz
structure of A. To tackle this, we first write A as

A¼

0
BBBBBBBBB@

a0 a1 · · · · · · an−1

a−1 a0 a1 · · · ..
.

..

.
a−1 a0 a1

..

.

..

. . .
.

a−1 a0 a1
a−ðn−1Þ · · · · · · a−1 a0

1
CCCCCCCCCCA

¼ a−ðn−1Þ

�
O

1

�

þ · · · þa0

0
B@

1 O

. .
.

O 1

1
CAþ · · · þan−1

�
1

O

�
(6)

based on its Toeplitz structure. Denoting Ik to be the matrix filled
with zeros everywhere except along the kth-diagonal, which is filled
with 1 s, the above equation can be written as

A ¼ a−ðn−1ÞI−ðn−1Þþ · · · þa0I0þ · · · þan−1In−1

¼
Xn−1

k¼−nþ1

akIk: (7)

Substituting equation 7 into equation 5, we can then eliminate the
Toeplitz constraint and simplify the original optimization problem
to the following one:

Ĵ ¼ min
α;R

1

2

����Y −
�X

akIk

�
R

����
2

F
þ λ

Xm
j¼1

krjk1; (8)

where α ¼ ða−ðn−1Þ; : : : ; a0 : : : ; an−1ÞT . Because in many applica-
tions, such as signal processing, A can have other properties, e.g.,
sparsity and smoothness, besides Toeplitz structure, it is necessary
to incorporate a regularization term to α to get the general form of
TSMF

J ¼ min
α;R

1

2

����Y −
�X

akIk

�
R

����
2

F
þΨðαÞ þ λ

Xm
j¼1

krjk1;

(9)

where Ψð·Þ is some chosen regularization function that is assumed
to be convex for convenience in this paper.

Algorithm

Equation 9 is generally difficult to solve because it is not convex
for all variables. However, if either A (or equivalently α) or R is

fixed, the original problem can be reduced to much simpler convex
subproblems. For this reason, it is natural to alternatively solve these
subproblems to approach the solution of the original problem,
which is in fact the block coordinate descent method (Tseng,
2001; Xu and Yin, 2013), and its convergence has been proved
in Xu and Yin (2013). We describe the details as follows.
First, when A is fixed, the optimization becomes irrelevant to A,

and we get

JR ¼ min
R

1

2
kY − ARk2F þ λ

Xm
j¼1

krjk1: (10)

It can be further decomposed into a series of subproblems based
on the separability of Y and R as

Jr ¼ min
rj

1

2
kyj − Arjk22 þ λkrjk1 (11)

for j ¼ 1; : : : ; m, where yj ∈ Rn is the jth column of Y. These are
the standard L1-norm regularization problems, which have been
extensively studied and can be solved by several existing methods
(e.g., Efron et al., 2004; Hale et al., 2007; Kim et al., 2007; Beck
and Teboulle, 2009). Similarly, when R is fixed, we get

Jα ¼ min
α

1

2

����Y −
�X

akIk

�
R

����
2

F
þ ΨðαÞ: (12)

By some simple algebra, it becomes

Jα ¼ min
α

1

2
k ~y − ~Rαk22 þΨðαÞ; (13)

where ~y ¼ vecðYÞ and ~R ¼ ðvecðI−ðn−1ÞRÞ; : : : ; vecðIn−1RÞÞ.
Equation 13 can also be solved without much difficulty if ΨðαÞ
is chosen to be a convex regularization function. By alternatively
solving equations 11 and 13, it is expected that we can obtain a
good solution to the original problem in equation 9.
Note that although any existing method can be used to solve

equations 11 and 13, we highlight the proximal method (Combettes
and Wajs, 2005; Bach et al., 2012) in this paper because it is easily
implemented and its convergence is guaranteed. We now briefly re-
view this method. Consider the following optimization problem:

min
x

fðxÞ þ gðxÞ; (14)

where g∶Rn → R is a continuous convex function, and f∶Rn → R
is a smooth convex function with L-Lipschitz continuous gradient
for L > 0, i.e., k∇fðxÞ − ∇fðyÞk2 ≤ Lkx − yk2 for every
x; y ∈ Rn. The basic proximal method obtains a solution using
the following iteration:

xðtþ1Þ ¼ proxγgðxðtÞ − γ∇fðxðtÞÞÞ; (15)

where proxgð·Þ is the proximity operator defined by

proxgðxÞ ¼ argy∈Rn min gðyÞ þ 1

2
kx − yk2 (16)

Deconvolution via matrix factorization V171
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and γ is a proper parameter, such that 0 < γ < ð1∕LÞ. Then, it can be
shown (Combettes and Wajs, 2005) that xðtÞ → x� as t → ∞, and x�

solves equation 15.
Applying above method to equations 11 and 13, we obtain the

iterations

rðtþ1Þ
j ¼ proxγjλk·k1ðr

ðtÞ
j − γjATðArðtÞj − yjÞÞ (17)

and

αðtþ1Þ ¼ proxγαψðαðtÞ − γα ~RTð ~RαðtÞ − ~yÞÞ (18)

for the subproblems. The proximity operator proxλk·k1ð·Þ in equa-
tion 17 is in fact the well-known soft thresholding (Tibshirani,
1996) explicitly defined by

½proxλk·k1ðxÞ�i ¼ signðxiÞðjxji − λÞþ (19)

for i ¼ 1; : : : ; n, with ðxÞþ ¼ maxðx; 0Þ. The proximity operator in
equation 18 depends on the regularization functionΨð·Þ, which may
not have an explicit form but can be efficiently computed in general
(Bach et al., 2012).
The entire procedure is summarized in Algorithm 1.
The convergence of the sequence generated by Algorithm 1 is

analyzed in Appendix A.

SPARSE-SPIKE DECONVOLUTION USING TSMF

As mentioned in the first section, following the convolution trace
model, a section of 2D seismic data can be expressed by equation 3,
where matrix A is the wavelet convolution matrix that has Toeplitz
structure and matrixR is the reflectivity matrix that is sparse. There-
fore, the previous proposed TSMF algorithm can be used to perform
SSD for seismic data.
As we know, seismic wavelets are usually smooth and much

shorter in time than the seismic trace. That is, if we assume that
the length of the seismic wavelet is l sampling points, we usually
have l ≪ n. For equation 7, the points a−ðdl∕2e−1Þ; : : : ; a−ðdl∕2eÞ are

the values of the seismic wavelet, other points are zeros. That means
α is sparse to some extent in this case, and nonzero values are con-
centrated around the diagonal in matrix A. Hence, in this paper, we
choose the Fused Lasso (Tibshirani et al., 2005) penalty as the regu-
larization function in equation 9, i.e.

ΨðαÞ ¼ βkαk1 þ β1
X
k

jakþ1 − akj þ β2kαk2; (20)

where the first term forces α to be sparse (i.e., forces α to be com-
pact), and the second and third terms constrain α to be smooth. If we
use only the second term to constrain α to be smooth, the estimated
wavelet may have successive identical values, so we add the third
term to avoid this case. For simplicity, in this paper, we apply aver-
age smoothness to α when we detect that there are successive iden-
tical values in the estimated waveform during iteration to replace the
third term. The average smoothness also reduces the weight of the
second term, when the S/N of the seismic data is high, β1 can be set
to 0. Then, substituting equation 20 into equation 13 gives the fol-
lowing Fused Lasso problem:

Jα ¼ min
α

1

2
k ~y − ~Rαk22 þ βkαk1 þ β1

X
k

jakþ1 − akj; (21)

which can be solved by any of the standard methods (e.g., Hoefling,
2010; Liu et al., 2010; Ye and Xie, 2011). Here, we use the function
mexFistaFlat in SPAMS (Mairal, 2012) to help solve the objective
function in equation 21.
In this paper, we use the fast iterative shrinkage-thresholding al-

gorithm (FISTA) with backtracking method (Beck and Teboulle,
2009) to solve equation 11. Instead of λ, the sparsity K, assumed
to be the upper bound of the number of nonzero reflectivity coef-
ficients, is taken as the parameter of this FISTA method. We simply
give the algorithm of FISTA with backtracking in Algorithm 2.
The principle of this algorithm can be found in Beck and Te-

boulle (2009) and Xu et al. (2012).
The sparsity parameter K can be estimated from the number of

the local peaks of the seismic trace envelope. The local peaks of the
seismic trace envelope contain information regarding the locations

Algorithm 1. Algorithm for TSMF.

Input: Observation matrix Y ∈ Rn×m, sparsity parameter λ, parameters in ΨðαÞ, initialized Að0Þ ∈ Rn×n.

Output: Toeplitz matrix A and sparse matrix R.

1: k ¼ 1

2: While not converged do

3: for j ¼ 1; : : : ; m do

4: Solve rðkÞj ¼ argmin
rj

1
2
kyj − Aðk−1Þrjk22 þ λkrjk1 via the proximal method (Algorithm 2 is used in this paper).

5: end for

6: RðkÞ ¼ ðrðkÞ1 ; : : : ; rðkÞm Þ, ~RðkÞ ¼ ðvecðI−ðn−1ÞRðkÞÞ; : : : ; vecðIn−1RðkÞÞÞ
7: Solve αðkÞ ¼ argmin

α
1
2
k~y − ~RðkÞαk22 þ ΨðαÞ via the proximal method (function mexFistaFlat in SPAMS, a SPArse Modeling Software,

is used in this paper), where ~y ¼ vecðYÞ.
8: Recover AðkÞ from αðkÞ based on equation 7.

9: k ¼ kþ 1.

10: end while

11: A ¼ AðkÞ, R ¼ RðkÞ

V172 Wang et al.
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of the bigger seismic reflectivity coefficients. Specifically, there
may be several bigger seismic reflectivity coefficients around each
peak. For one trace, we denote the number of the local peaks of the
trace envelope as K0, and let the sparsity parameter be K ¼ cK0,
where c is a constant. Then we could take the width of the relatively
narrower waveform around a peak as a unit to estimate the average
number of waveforms around each peak, and take a value a little
larger than that average number as the value of c. For ease of under-
standing, Figure 1 gives an example for estimation of K. By con-
volving the reflectivity in Figure 1a with a 30° phase rotated Ricker
wavelet with dominant frequency of 30 Hz, we get the synthetic
seismic trace shown in Figure 1b and then we can obtain the trace
envelope and the local peaks of the envelope. Comparing Figure 1a
and 1b, we can easily see that the locations of the reflectivity co-
efficients and the locations of the local peaks of the envelope show a
certain correspondence. In Figure 1b, the number of the local peaks
K0 is 16. Taking a region around the first local peak as a unit, we can
see that there may be 1.5–2 reflectors around each peak on average.
So the value of c can be 1.5–2, and the value of K can then be 24–
32, which is reasonable compared with the true number of reflectors
22. Actually, for this noise-free seismic trace, when c increases to 3,
the proposed method still works well, as will be shown later in the
numerical examples. For the wavelet, the parameter β is related to

Algorithm 2. Algorithm for FISTA with backtracking.

Input: Observed seismic trace y ∈ Rn×1, sparsity K, initialized A0 ∈ Rn×n, r0 ∈ Rn×1, t0 ¼ 1, z0 ¼ r0.

Output: Sparse reflectivity r ∈ Rn×1.

1: k ¼ 0, μ0 ¼ 1−ε
kA0k2 with any small ε ∈ ð0;1Þ

2: While not converged do

3: k ¼ kþ 1, μk ¼ μ0,

4: e ¼ y − Ak−1 � rk−1, uk ¼ AT
k−1e, bk ¼ rk−1 þ μk � uk

5: Put bk in descending order, let ~bk be the sorted bk and J be the original index of the element in ~bk, that is ~bkðJÞ ¼ bk
6: λμ ¼ ~bkðK þ 1Þ
7: Let JK ¼ Jð1∶KÞ, zk ¼ zerosðn; 1Þ, zkðJKÞ ¼ T λμðbðkÞÞ ¼ ðjbðkÞðJKÞj − 0.5 � λμÞsignðbðkÞðJKÞÞ
8: tk ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4t2k−1

p
2

,

9: rk ¼ zk þ
�

tk−1−1
tk

�
ðzk − zk−1Þ,

10: end while

11: r ¼ rðkÞ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

0

1

Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

0

1

2

Time (s)

 

 

Seismic trace Trace envelope Local peaks of envelope

a)

b)

unit

Reflectivity

Figure 1. An example for estimation of K. (a) True reflectivity;
(b) the synthetic seismic trace (solid) with its envelope (dashed)
and local peaks of envelope (star). The number of the local peaks
of the envelope K0 is 16. Taking the waveform around the first local
peak as a unit, we can see that there may be 1.5–2 reflectors around
each peak on average. So the value of K can be 1.5–2 times of K0,
that is, 24–32.

Table 1. Influence and selection method for the parameters.

Parameter Influence How to choose

λ Sparsity of reflectivity series Not used (replaced by K)

K Upper bound of the number of reflectors Count local peaks of the seismic trace envelope (K0), and estimate the average
number of pulses around each peak (c), then we have K ¼ cK0

(usually, the value of c can be 1.5–3)
β Compactness of wavelet Related to trace length and wavelet dominant frequency

β1 Smoothness of wavelet Zero if high S/N

β2 Smoothness of wavelet Not used (replaced by average smoothness during iteration)

Deconvolution via matrix factorization V173

D
ow

nl
oa

de
d 

06
/0

8/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



the dominant frequency of the wavelet and the length of the seismic
trace, which will be discussed later. In practice, we can get a refer-
ence value for β from synthetic experiments with the same dominant
frequency wavelet and trace length. The parameter β1 can be given a
small value when the seismic data are somewhat noisy. If well logs
are available, we can use them for quality control to improve the
choice of these parameters. For clarity, we list the influence and
selection method for all the parameters appeared in this paper in
Table 1.

APPLICATION

In the following, we will test the proposed TSMF-based SSD
method using synthetic and field data.

Synthetic data examples

Most SSD methods require a known wavelet (Nguyen, 2008).
Though several methods exist to estimate the seismic wavelet that
yield reasonable results even for nonminimum phase sources, often
the quality of the derived wavelets is data dependent. Clearly, ignor-
ing wavelet inaccuracies would lead to partially successful decon-
volution results (Velis, 2008). As a result, the knowledge of the
wavelet is critical in carrying out the deconvolution.
In the first experiment, we test our TSMF-based SSD method on

synthetic seismic data, where we assume that we have no advanced
knowledge of the wavelet. The reflectivity profile is produced from
a portion of the Marmousi2 model, as shown in Figure 2, which
contains the section that Velis (2008) used for testing. The size
of this section is 800 × 200 (number of time sampling points ×
number of traces). For simplicity, we assume constant density,
and also assume traces have 800 points with 1 ms sampling interval.
Thus, this data set consists of 200 traces with an offset interval of
12.5 m and a time window of 800 ms with Δt ¼ 1 ms. The reflec-
tivity section is shown in Figure 3b. By convoluting this reflectivity
section with a 30° phase rotated Ricker wavelet with dominant fre-
quency of 30 Hz, we get the noise-free synthetic seismic section
shown in Figure 3a. After adding Gaussian noise with approxi-
mately 10% of the maximum trace value to the seismic profile
in Figure 3a, we get the noisy synthetic profile in Figure 3d. As
this section is relatively large compared with our computer memory,
we divide it into seven sections along its lateral direction. Each of
the first six sections has 30 seismic traces with dimension of

800 × 30. Consequently, the last section has 20 seismic traces,
and its size is 800 × 20. We average the amplitude spectra of all
traces and perform an inverse Fourier transform to obtain the initial
estimation of the wavelet, and then form the initial estimation of
matrix A following equations 6 and 7 for each section of data. Then
we use the wavelet solution of the previous section as the initial
model for the next section, and take the average of the source wave-
lets deconvolved from all the sections via TSMF-based SSD as the
final estimation of the source wavelet for all sections to deconvolve
the reflectivity using equation 11. Thus, the lateral continuity of the
seismic data can be maintained.

Figure 2. (a) Marmousi2 P-wave velocity model
and (b) an enlarged portion in the rectangular area
that will be used to generate the reflectivity profile
for the synthetic examples.

Figure 3. TSMF-based SSD on the Marmousi2 model. (a) The
noise-free synthetic data, (b) the true reflectivity, (c) the estimated
reflectivity from noise-free synthetic data, (d) the noisy synthetic
data with Gaussian noise approximately 10% of the maximum trace
value, (e) the estimated wavelet from (left) noise-free and (right)
noisy synthetic data, and (f) the estimated reflectivity from noisy
synthetic data.
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Figure 3c shows the TSMF-based SSD result of the noise-free
input synthetic data shown in Figure 3a with K ¼ 40, β ¼ 6,
and β1 ¼ 0. We can see that nearly all the reflectors are recovered
and resolved accurately with appropriate lateral coherence. Figure 3f
shows the result obtained with K ¼ 30, β ¼ 6, and β1 ¼ 0:01 when
the input data are contaminated with Gaussian noise of approxi-
mately 10% of the maximum trace amplitude. As expected, the vari-
ability of the solution obtained with noisy data increases.
Nevertheless, most reflectors are recovered well and the main struc-
ture is appropriately preserved. Here, the average number of the
local peaks of the envelopes of the synthetic seismic traces is
20.6. Let K0 ¼ 20, so we have K ¼ 2K0 ¼ 40 for noise-free data,

and K ¼ 1.5K0 ¼ 30 for noisy data. Taking synthetic experiments
as reference, we choose β ¼ 6, which will be discussed in detail later
in the example of the sensitivity analysis for β. Figure 3e shows the
estimated wavelets for (left) noise-free and (right) noisy data for each
section. Figure 4 shows wavelet and one trace comparison for the
noise-free and noisy cases in Figure 3. Figure 4a shows the wavelet
comparison, where the estimated wavelets are the average of the wave-
lets in Figure 3e for (left) noise-free and (right) noisy data, respectively.
We can see that, although the estimation of the initial wavelet is in-
accurate, after applying our method, thewavelet is recovered very well.
Figure 4b illustrates that almost all reflectors are resolved for the noise-
free case. Figure 4c shows that the noise affects the accuracy of the
deconvolution. Comparing the noise-free synthetic trace in Figure 4b
and the noisy trace in Figure 4c, we can see that the synthetic trace is
badly contaminated by the noise, nevertheless, by decreasing the value
of K from 40 to 30, most reflectors are recovered from the noisy data.
Compared with the stochastic SSD method of Velis (2008), the pro-
posed method has a better tolerance to errors in the initial wavelet es-
timation. Velis’s (2008) method uses constant-phase shift to calibrate
the initial wavelet, which just calibrates the phase of the wavelet. Our
method can automatically calibrate the whole wavelet, not just the
phase of the wavelet, as shown in Figure 4a.
Figure 5 shows a sensitivity analysis of the result obtained with

various values of the sparsity K for noise-free data. The true number
of reflectors is 22. Figure 5b shows the estimated reflectivity when
K equals to 22, 25, 30, 40, and 50 in turn, where β ¼ 6 and β1 ¼ 0

in all cases. From this analysis, we can see that, as K increases, our
method induces some small artificial reflectors. Nevertheless, it
works well even when K is more than two times of the true number
of reflectors.
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Figure 4. Wavelet and reflectivity comparison for the examples in
Figure 3. (a) Wavelet comparison for (left) the noise-free and (right)
noisy cases. The first trace of (b) Figure 3a–3c and (c) Figure 3d, 3b,
and 3f.
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Figure 5. Sensitivity analysis for the choice of sparsity K. (a) True
reflectivity; (b) estimated reflectivity when K is 22, 25, 30, 40, and
50 from top to bottom, β ¼ 6 and β1 ¼ 0 in all cases.
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Figure 6 gives a sensitivity analysis for β. Figure 6b shows the
estimated wavelet and reflectivity when β equals to 0.01, 2, 6, 10,
20, 50, and 100 in turn, whereK ¼ 30 and β1 ¼ 0 in all cases. From
this figure, we can see that, as β increases, the wavelet becomes
more compact. When β equals to 2–20, the proposed method works
well, which means β can be selected within a wide range. Because β
controls the compactness of the wavelet, it is related to the dominant
frequency of the wavelet and the length of the seismic trace, which
is demonstrated in Figure 7. Compared with the above examples,
the length of the seismic trace is reduced to 300 sampling points in
Figure 7. Figure 7b shows the estimated wavelet and reflectivity
when β equals to 1, 2.3, 5, and 10 in turn, where the wavelet is
still a 30 Hz Ricker wavelet, K ¼ 10 and β1 ¼ 0 in all cases. From
this figure, we can see that, when β equals to 2.3 and 5, the proposed
method works well, when β increases to 10, the result is beginning
to degrade. The reason is that when the dominant frequency of the
wavelet remains unchanged, whereas the length of the seismic trace
is reduced, the sparsity of the wavelet of matrix A decreases, so β
should be given a smaller value. Compared with the example in
Figure 6, in this example, β should be selected as almost 3∕8 (ratio
of the trace length) of the β value in Figure 6. Figure 7c shows the
estimated wavelet and reflectivity when β equals to 6, 15, 20, and 60
in turn, where the wavelet is changed to a 60 Hz Ricker wavelet,
with K ¼ 10 and β1 ¼ 0 in all cases. From this figure, we can see
that, the selection value of β in this case is larger than in Figure 7b.
The reason is that when the dominant frequency of the wavelet in-

creases, whereas the length of the seismic trace remains unchanged,
the sparsity of the wavelet of matrix A increases, so β should be
given a larger value. Comparisons between the true reflectivity
and the estimated reflectivity show that β can be determined accord-
ing to the length of the seismic trace and the dominant frequency of
the wavelet by comparing with a reference data set. In practice, we
can get a reference value for β from synthetic experiments.
Figure 8 shows examples of the tolerance of the proposed method

to the phase error of the initial wavelet. We use the same amplitude
spectra averaging method mentioned above to obtain the initial es-
timation of the wavelet. That means the initial wavelet is zero phase.
Figure 8b and 8c shows the estimated wavelet and reflectivity when
the true phase of the synthetic data changes from −90° to 90°, where
K ¼ 30, β ¼ 6, and β1 ¼ 0 in all cases. We can see that in all cases,
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Figure 7. Analysis of the relation of β to the length of the seismic
trace and the dominant frequency of the wavelet. Comparing with
the above examples, the length of the seismic trace is reduced to 300
sampling points in this example. (a) True reflectivity; (b) estimated
wavelet and estimated reflectivity when β is 1, 2.3, 5, and 10 from
top to bottom, where the wavelet is still a 30 Hz Ricker wavelet;
(c) estimated wavelet and estimated reflectivity when β is 6, 15,
20, and 60 from top to bottom, where the wavelet is changed to
a 60 Hz Ricker wavelet. Here, K ¼ 10 and β1 ¼ 0 in all cases.
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Figure 6. Sensitivity analysis for the choice of β. (a) True wavelet
and true reflectivity; (b) estimated wavelet and estimated reflectivity
when β is 0.01, 2, 6, 10, 20, 50, and 100 from top to bottom,K ¼ 30
and β1 ¼ 0 in all cases.
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our method can resolve the wavelet and reflectivity well, except for
the case, where the phase equals 90°. In that case, the estimated
wavelet and reflectivity all have their polarity reversed. Thus, in
practice, we need to know the polarity of the seismic data first,
and give the correct polarity to the initial zero-phase wavelet.

Field data example

Figure 9 illustrates a poststack field data example. Figure 9a
shows a portion of a poststack field data profile provided by China
National Offshore Oil Corporation (CNOOC). The size of this seis-
mic profile is 300 × 801 (number of time sampling points × number
of traces, Δt ¼ 2ms), which is relatively large. Thus, we divide this
seismic profile into 27 sections along its lateral direction. Each of
the first 26 sections has 30 seismic traces with size 300 × 30. Con-
sequently, the last section has 21 seismic traces, and its size is
300 × 21. We process each seismic section separately using Algo-

rithm 1. Here, we take the wavelet estimated from the first section as
the initial wavelet of the second section, wavelet estimated from the
second section as the initial wavelet of the third section, and so on.
Moreover, we normalize the amplitude of the estimated wavelet
during each iteration to keep the energy balanced between sections.
Then, we take the average of the wavelets estimated from these sec-
tions as the final estimation of the wavelet to deconvolve all sections
for the reflectivity following equation 11. Thus, we obtain the
TSMF-based SSD result that can maintain the lateral continuity
of the seismic data, as shown in Figure 9b. In this example because
the mean number of the local peaks of the seismic traces’ envelope
is 27, and usually there are much more layers than observed in prac-
tice, so we choose 80 that is almost three times of the number of the
peaks of the seismic trace envelope as the value for K. Because the
dominant frequency of this seismic profile is near to 30 Hz, taking
the example in Figure 7b as reference, we select β ¼ 2.3. Because
this section of seismic profile is contaminated by some noise, so we
choose β1 ¼ 0:2 to reduce the effects of noise. Comparing Figure 9a
and 9b, we can see that the TSMF-based SSD method cannot only
effectively derive the reflectivity from seismic data, but it also
achieves a good laterally continuous result and preserves the com-
plex structure of the seismic data: see the complex structures, such
as the fault indicated by arrows, the trap shown using an ellipse and
the anticlines within the rectangles. Awell log of impedance filtered
by a low-pass filter with 300 Hz cutoff frequency is inserted in these
two profiles. We can see that the estimated reflectivity trace near the
position of the well matches the locations of the boundaries between
layers of constant impedance very well.
The well-log data are not required by our inversion method, but

they can be used for quality control purposes. Due to the resolution
differences between the well logs and the seismic data, the cross-
correlation calculated between the reflectivity derived from the well
logs filtered with a zero-phase band-pass filter, and the inverted
trace reflectivity near the position of the well filtered with the same
filter is used for quality control. Should this not match as expected,
the requisite parameterization can be varied until a suitable match is
obtained. In Figure 10a, the synthetic produced by convolving the
reflectivity obtained from well logs with a 25 Hz Ricker wavelet is
correlated with the trace near the well location from input seismic
data in Figure 9a. In Figure 10b, the reflectivity obtained from well
logs is filtered by a zero-phase band-pass filter with bandwidth 15–
120 Hz, and correlated with the seismic trace obtained by passing
the estimated reflectivity trace near the well location from Figure 9b
through the same filter. Comparing the seismic profile (black) in
Figure 10a and 10b, we can see that the vertical resolution of
the seismic data is significantly improved by our method. The cor-
relation coefficient between the synthetic and the seismic data in-
creases from 0.3942 to 0.58 after the frequency enhancement
provided by our method. This match is as expected, so we accepted
this group of parameters and the result.
Figure 11 shows the estimated wavelet and comparisons between

some seismic traces and their corresponding estimated reflectivity
for the field data in Figure 9. Figure 11a is the estimated wavelet,
which is the average of the 27 estimated wavelets from the seismic
sections. Figure 11b–11d shows the 270th, 550th, and 700th traces
and their estimated reflectivity. We can see that our method works
well to estimate the reflectivity from the original data, and the ver-
tical resolution of the seismic data has been significantly improved
by the removal of the wavelet.
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Figure 8. Analysis of the tolerance to phase error of the initial
wavelet. (a) True reflectivity; (b and c) estimated wavelet (solid
line), true wavelet (dash line), and estimated reflectivity, data phase
changes in the range from −90° to 90°, K ¼ 30, β ¼ 6, and β1 ¼ 0
in all cases.
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Figure 12a and 12b shows a comparison between the amplitude
spectra of the 270th trace of the field data shown in Figure 9 before
and after the application of the TSMF-based SSD. After being proc-
essed by the TSMF-based SSD, the shape of the low-frequency
component of the amplitude spectrum of the trace is similar to that
of the original data, whereas the high-frequency component is en-
hanced as expected, leading to a significant improvement on the
vertical resolution. Figure 12c shows the normalized amplitude
spectrum of the reflectivity derived from well logs near the
270th trace, we can see that the distribution of this reflectivity is
somewhat like blue noise. Comparing Figure 12a, 12b, and 12c,
we can see that the distribution of the amplitude spectrum of the
processed trace is closer to that of the reflectivity derived from well
logs, which further demonstrates the effectiveness of our method.

DISCUSSION

It should be pointed out that the proposed deconvolution method
requires significant computer memory because of the matrix com-
putation. In practice, the size of field seismic data is usually large, so
we need to divide the seismic data into proper sections before

processing. We can similarly divide 3D poststack seismic data into
blocks, rearrange each block into a matrix, and then use our method
to process the data. To keep lateral continuity, we take the average
of the source wavelets deconvolved from these sections (blocks) via
TSMF-based SSD as the final estimation of the source wavelet for
all sections (blocks) to deconvolve the reflectivity. Moreover, our
method can be developed for the case that the seismic wavelet varies
in the lateral direction, in which case we can take the average of the
wavelet solutions obtained for one section (block) and the sections
(blocks) around it as the final wavelet solution for this section
(block) to keep the lateral continuity. We can divide the seismic data
according to the capacity of computer memory. If necessary, we can
use parallel computation to reduce the computation time.
Another issue is that despite the convergence of the TSMF algo-

rithm, it is not guaranteed to converge to the optimum solution. Sub-
sequently, although the proposed method has a favorable error
tolerance to the choice of the initial wavelet, giving a more accurate
initial value to wavelet matrix A can result in a more reliable result.
In addition, when the reflectors are closely spaced, the interference
of the reflected wavelets may affect the estimation of wavelet and

Figure 9. Field data example. (a) A part of post-
stack field data with complex structures, such as
the fault indicated by an arrow, the trap in the el-
lipse, and the anticlines in the rectangle; (b) the
SSD result of the field data. A well log of imped-
ance is inserted in these two profiles.
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reflectivity. The proposed method can alleviate this problem in
some cases, but it cannot thoroughly solve this problem.

CONCLUSION

We have proposed a novel SSD method based on TSMF. The
TSMF algorithm computes the factors of a matrix bilinear decom-
position, where the factors are Toeplitz and sparse matrices. When a
section of 2D seismic data can be approximately described by the
product of a wavelet convolution matrix that has Toeplitz structure
and a reflectivity matrix with sparse structure, the TSMF algorithm
is ideally suited for SSD. The TSMF-based SSD simultaneously
deconvolves the seismic matrix into a wavelet matrix and a reflec-
tivity matrix by alternatively solving two inversion subproblems re-
lated to Toeplitz wavelet matrix and sparse reflectivity matrix,
respectively. As the seismic wavelet is usually compact and smooth,

Fused Lasso is used to constrain the elements in the Toeplitz wave-
let matrix. After using average smoothing, the parameters in Fused
Lasso can be determined according to the length of the seismic trace
and the dominant frequency of the wavelet by comparing with a
reference data set. An L1-norm is used to constrain the reflectivity,
where upper bound of the number of reflectors is used as the param-
eter, which can be easily determined by counting peaks of the seis-
mic trace’s envelope. Because the TSMF algorithm estimates the
wavelet using multiple traces, it is more reliable in the presence
of random noise. In practice, due to the limitations of computer
memory, large seismic data sets are divided into blocks, and the
average of the source wavelets deconvolved from these blocks
via TSMF-based SSD is used as the final estimation of the source
wavelet for all blocks to deconvolve the reflectivity, thus the lateral
continuity of the seismic data can be maintained. Examples using

Figure 10. Correlation between the synthetic
trace derived from well logs and the trace near
the well location. (a) Correlation between a syn-
thetic trace derived from well logs (red) and a trace
from Figure 9a near the well location (blue).
(b) Correlation between filtered reflectivity de-
rived from well logs (red) and filtered reflectivity
from Figure 9b near the well location (blue). Com-
parison between the seismic profile (black) in pan-
els (a and b) shows that the vertical resolution of
the seismic data is significantly improved by our
method.
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the synthetic seismic data from the Marmousi2 model and a section
of field seismic data demonstrate that the proposed method can
effectively derive wavelet and reflectivity simultaneously from
band-limited data with appropriate lateral coherence, even when
the seismic data are contaminated by noise, and it has a favorable

tolerance to errors in the initial wavelet estimation even when the
phase error is up to −90° or near to 90°.
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APPENDIX A

CONVERGENCE ANALYSIS

It is obvious that the value of the objective function in equation 9
monotonically decreases during the iterations of Algorithm 1 be-
cause the subproblems of equations 11 and 13 are convex, to which
the optimal solution can be guaranteed. Considering that the objec-
tive function clearly has a lower bound of zero, we can simply con-
clude that the algorithm converges in the sense of the objective
function. In this appendix, we will explore the convergence of
the sequence generated by Algorithm 1.

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.1

−0.05

0

0.05

0.1

Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1

0

1

2
x 10

4

The 270th trace

b)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

The estimated wavelet

−0.5

0

0.5

1a)

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.3

−0.2
−0.1

0
0.1

0.2
0.3

Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6
−5

0

5
x 10

4

The 550th trace

c)

The estimated reflectivity

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

Time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6
−5

0

5

x 10
4

The 700th trace

The estimated reflectivity

d)

Figure 11. Estimated wavelet and traces comparison of the field
data in Figure 9. (a) Estimated wavelet; (b) the 270th trace and
its estimated reflectivity; (c) the 550th trace and its estimated reflec-
tivity; and (d) the 700th trace and its estimated reflectivity.
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Figure 12. The amplitude spectra of the 270th trace of the field data
in Figure 9 (a) before and (b) after the application of the TSMF-
based SSD, and (c) the normalized amplitude spectrum of the
reflectivity derived from well logs near the location of the 270th
trace.
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THEOREM 1:
The sequence fAðkÞ;RðkÞg (k ¼ 1;2; : : : ) generated by

Algorithm 1 converges, provided Ψ is coercive, i.e.,
limkαk→þ∞ΨðαÞ ¼ þ∞.
To prove this theorem, we first introduce some operators. Denote

z ¼ fα; r1; : : : ; rmg ∈ Rnðmþ1Þ, we define operator T α∶Rnðmþ1Þ →
Rnðmþ1Þ as

T αz ¼ fproxγαΨðα − γα ~RTð ~Rα − ~yÞÞ; r1; : : : ; rmg (A-1)

and T j∶Rnðmþ1Þ → Rnðmþ1Þ as

T jz ¼ fα; r1; : : : ; rj−1; proxγjλk:k1ðrj
− γjATðArj − yjÞÞ; rjþ1; : : : ; rmg (A-2)

for j ¼ 1; · · · ; m. Denote the sets of fixed points of T α and T jðj ¼
1; : : : ; mÞ as FixðT αÞ ¼ fz ∈ Rnðmþ1Þ∶T αz ¼ zg and
FixðT jÞ ¼ fz ∈ Rnðmþ1Þ∶T jz ¼ zgðj ¼ 1; : : : ; mÞ, respectively.
Then, we have the following lemmas that are useful for proving
Theorem 1.

LEMMA 1:
The operators defined in equations A-1 and A-2 are nonexpan-

sive, i.e., for any z1; z2 ∈ Rnðmþ1Þ, it holds that

kT αz1 − T αz2k ≤ kz1 − z2k; (A-3)

kT jz1 − T jz2k ≤ kz1 − z2k; (A-4)

for j ¼ 1; · · · ; m.
Proof:

Following Lemma 2.4 of Combettes and Wajs (2005), the prox-
imity operator proxg defined in equation 16 is nonexpansive. Con-
sequently, proxγαψ and proxγjλk:k1ðj ¼ 1; · · · ; mÞ are nonexpansive.
Then, it is easy to check that T α and T jðj ¼ 1; · · · ; mÞ are non-
expansive by definition.

LEMMA 2:
The following statements are true:

1) FixðT jÞ ≠ ∅for j ¼ 1; · · · ; m.
2) FixðT αÞ ≠ ∅, provided Ψ is coercive.
3) F ¼ FixðT αÞ ⋂ ð⋂m

j¼1 FixðT jÞÞ, provided Ψ is coercive.

Proof:
1 and 2 follow immediately from Proposition 3.1 in Combettes

and Wajs (2005).
It is obvious that the objective function in equation 9 is coercive

and has a lower bound of zero. Therefore, the optimal solution to
equation 9 exists. Assume z� ¼ fα�;R�g ¼ fα�; r�1; · · · ; r

�
mg is one

of such optimal solutions, it is easy to check that T αz� ¼ z� and
T jz� ¼ z� ðj ¼ 1; · · · ; mÞ. In fact, taking T α as an example, if

T αz� ≠ z�, then α� ≠ proxγαΨðα� − γα ~R
�Tð ~R�α� − ~yÞÞ, which im-

plies that there exists an ~α ≠ α�, such that ~α gives lower value of the
objective function in equation 13 than α�, with R fixed to R�. Con-
sequently, ~z ¼ f ~α; r�1; · · · ; r�mg gives lower value of the objective
function in equation 9 than z�, which is a contradiction to the fact
that z� is an optimal solution to equation 9.

Therefore, we have found z� ∈ F, which proves 3. Now, we can
give the proof of Theorem 1.

Proof of Theorem 1:
It is easy to check that the iterations in Algorithm 1 can be de-

scribed by the product of the operators from fT α; T 1; · · · ; T mg

zðkþ1Þ ¼ T α · · · T αT m · · · T m · · · T 1 · · · T 1zðkÞ;
(A-5)

where zðkÞ ¼ fαðkÞ; rðkÞ1 ; · · · ; rðkÞm g, which is equivalent to
fAðkÞ;RðkÞg, noting that rðkÞj is the jth column of RðkÞ, and αðkÞ rep-
resents the free parameters of AðkÞ.
Then, by Lemmas 1 and 2, it suffices show that zðkÞ converges to

a point z� ∈ F by applying Corollary 1.1 in Bruck (1982).
Though the sequence generated by Algorithm 1 converges ac-

cording to Theorem 1, we cannot guarantee it converges to a local
minimum of equation 9. However, it is easy to verify that the limit,
denoted as z� ¼ fα�; r�1; · · · ; r

�
mg, is a coordinatewise minimum

point of the objective function, i.e., denote

Fðz�Þ ¼
����Y −

�X
akIk

�
R

����
2

F
þ ΨðαÞ þ λ

Xm
j¼1

krjk1;

(A-6)

we have

Fðz� þ ð0; · · · ; 0; dj; 0; · · · ; 0ÞÞ ≤ Fðz�Þ; (A-7)

where djðj ¼ 1; · · · ; mÞ correspond to coordinate block
α�; r�1; · · · ; r

�
m, respectively because z� is a common fixed point

of T α and T jðj ¼ 1; : : : ; mÞ.
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