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Pressure in a fluid-filled borehole caused by a
seismic source in stratified media

Chengbin Peng *, Jung M. Lee, and M. Nafi Toksort

ABSTRACT

A method for numerically simulating hydrophone
vertical seismic profiles (VSP) and crosswell data mea-
sured in a fluid-filled borehole (either open or cased)
embedded in stratified media is presented. The method
makes use of both the borehole coupling theory and the
global matrix formulation for computing synthetic seis-
mograms in a stratified medium. The global matrix
formulation is used to calculate the stress field at the
borehole location. Borehole coupling theory is then
employed to obtain the pressure in the borehole fluid.
Comparisons with exact solutions for an open borehole
in a homogeneous and unbounded formation show that
this method is accurate for frequencies below 2 kHz.
This method is used to model the Kent Cliffs hydro-
phone VSP data, where good agreement between the
numerical simulations and the field measurements has
been found, in both traveltimes and rms amplitudes of
the direct P-wave. Examples show that this method is
efficient and accurate, and can be applied to model VSP
and crosswell experiments using an array of hydro-
phones.

INTRODUCTION

Numerical simulation of elastic wave propagation in cross-
well seismic profiling and vertical seismic profile (VSP) con-
figurations has been extensively studied in recent years (Wyatt,
1981; Temme and Mueller, 1982; Sullivan, 1984; Suprajitno
and Greenhalgh, 1986; Schmidt and Tango, 1986; Aminzadeh,
1989). These methods are suited to modeling only downhole
geophone data at low frequencies, since the boreholes are not
properly included. However, a variety of geophysical applica-
tions involve measuring the pressure inside a fluid-filled bore-
hole for a source on the surface or in another borehole

(Marzetta et al., 1988; Lee, 1990; Albright and Johnson, 1990;
Krohn, 1992; Toksoz et al., 1992). Pressure measurement is
advantageous because we use hydrophones, that are free from
mechanical noises (e.g., poor clamping, tool resonance, asym-
metric coupling), and are cost efficient compared to a down-
hole three-component clamped geophones (Marzetta et al.,
1988). For hydrophone data modeling, the existing methods
are not applicable because they are incapable of handling
events associated with the borehole fluid and yield erroneous
amplitudes for direct and reflected waves refracted at the
fluid-solid interface. There is presently an increased demand
for an efficient method of modeling hydrophone VSP and
crosswell experiments (Kurkjian et al., 1994).

The objectives of this paper are to develop a useful method
for computing the hydrophone response in VSP surveys and
subsequently to model the field data from the Kent Cliffs
hydrophone VSP experiment. Kurkjian et al. (1994) proposed
a numerical technique for modeling downhole seismic data
acquired with a hydrophone in crosswell configurations. In
their method, the problem is divided into three parts: genera-
tion of the source well representation where the tube waves in
the source well are taken into account, transmission from
source well to receiver well using a preexisting code, and
calculation of the hydrophone measurements by applying
White's quasistatic approximation. The boreholes are dis-
cretized into small elements (10 points per tube wave wave-
length). The size of the matrix equations is proportional to the
number of discretization along the boreholes. The formula-
tions given in their paper are valid for open boreholes. In
contrast, in this work the borehole coupling process is incor-
porated into the global matrix algorithm for synthetic seismo-
grams in a layered medium. No discretization along the
borehole is required. The size of the matrix equations is
proportional to the number of geological layers presented in
the model. As a result, the formulations achieve both accuracy
and computational speed. Our method is valid for open, cased,
and partially filled boreholes. It agrees with analytical solutions
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in simplified media, and also predicts the traveltime and
amplitude data of the Kent Cliffs hydrophone VSP experiment.

The first section of this paper presents a theoretical formu-
lation for computing the pressure in a fluid-filled borehole for
a seismic source in a stratified medium. Our method estab-
lishes an efficient tool for hydrophone data modeling at low
frequencies. Its accuracy is validated by an analytical solution
for the case where the formation is homogeneous. This is
shown in the second section. The third section presents an
application of our method to the Kent Cliffs borehole experi-
ment. Using a stratified earth model derived from the averaged
sonic well logging profiles, we find that this method predicts
both the propagational (traveltime) and the dynamic charac-
teristics (rms amplitude) of observed hydrophone data quite
well. The last section summarizes the problem and gives a few
conclusions.

THEORETICAL FORMULATION

Problem statement

The problem we consider is a vertical fluid-filled borehole in
a horizontally layered half-space. As shown in Figure 1, each
layer of the formation has a homogeneous visco-elastic me-
dium with density p,,,, compressional-wave speed a,,,, and
shear-wave speed (3„ l , in addition to the quality factors Qpm

and Qsm,, where m denotes the layer number with 1 <_ m <_
N + 1. Here N is the total number of horizontal layers. The
half-space ZN < z < - is denoted as layer N + 1. The top
surface of the mth layer is at depth z,,,_ 1 and the bottom
surface is at depth zm . The borehole is assumed to have a finite
length and is filled with a fluid that has density pf, compres-
sional-wave speed af, and quality factor Qf. Furthermore, the
fluid fills only a portion of the borehole from the bottom at
depth z = H to the top at depth z = z 0 (water table), where
0 <_ zo : H. The borehole can be either open, cased, or
partially cased. In an open borehole, we use rb to denote the
radius of the borehole. In a cased borehole, there is a radial
layer around the borehole with an inner radius rb and an outer
radius r,. The casing is assumed to be homogeneous and elastic
with compressional-wave speed a,, shear-wave speed f3,, and

Interf o 	Free surface	 Radial axis

Layer 1	 water tableInterface 1
Layer

Interface 2	 =:

o
Interface N-1

Layer N
Interface N .	 =' well bottom

Layer N+1

Z axis

FIG. 1. A borehole in a stratified half-space. In each layer, the
formation is homogeneous and viscoelastic. A seismic source is
either on the free surface (VSP geometry) or inside the
formation (crosswell geometry). An array of hydrophones is in
the borehole. The borehole has a finite length and may be
partially filled with fluid.

density p,. The top surface at z = 0 in the figure is assumed to
be stress free. The goal is to compute the pressure disturbance
produced in the fluid by the elastic wavefields radiated from a
source in the formation.

We are interested in the case where the borehole radius is
much smaller than the wavelength in the formation, i.e., rb <<

Rmin/f, where (3 m;m is the minimum shear velocity in the
formation and f is the frequency. For a typical choice of
parameters (rb = 0.10 m, Rmin = 2000 m/s), the frequency of
an incident wave needs to be less than 2000 Hz for which the
borehole radius is less than one-tenth of the shortest wave-
length. This condition satisfies almost all VSP and crosswell
experiments [for extreme cases, see Albright and Johnson
(1990)].

Borehole coupling equation

At low frequencies, the pressure in the fluid is homogeneous
across the borehole cross-section and is related to the defor-
mation of an empty borehole by the following borehole
coupling equation, written in the time domain as

	a 2P	 1 a lP 	 2 a 2£ r 	(1)
	aZ 2 C Z at e 	pf atz 'T

where P(z, t) is the pressure in the fluid, CT is the tube-wave
velocity in an open or a cased borehole, and £r(z, t) =
[ur (Z, t)lrb ] is the borehole squeeze strain associated with the
incident waves. The overbar denotes an azimuthal average, and
u,(z, t) is the radial displacement on the borehole wall. The
derivation has been given in Peng (1993). In an open borehole,
White (1953) gave

Qax(z, W) + o , (z, W)	 QZZ(z, CO)

	E
	

— v 
E

where Qom , cryy , and r are the principal stresses of the incident
waves around the vicinity of a borehole. E and v are the
Young's modulus and the Poisson's ratio of the formation,
respectively. In a cased borehole, we obtain (Peng, 1993)

o (z, w) + o (Z, d)	 o (Z' W)

	EII
	 — v 

E1
	 (3)

where EII and E 1 are the effective moduli of the cased
borehole against radial and vertical deformations, and are
given by

	r 	 (	 2

Ell= 1 E tv 1+^ µ̀ -1 )(1- 7c)I 1—
,

and

(	 2 1
E 1 = 1+Ev _ t ^l+^ µ̀-1 )( 1— Yr)I 1— rz) J ,

where

(,,c-1)/2_ ^)( 1— rz),

and where y c = 1?2 /a^ , p and p are the shear rigidities of the
formation and casing, respectively. In the case where rb = rc or
Ec = E and v c = v, i.e., the casing vanishes, EII and E 1 reduce

£ r (Z, W) = (2)

£ r (Z, () =
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to E, the Young's modulus of the formation. Thus equation (3)
reduces to equation (2). The derivations of equations (2) and
(3) require that seismic wavelengths be much larger than the
borehole radius. A rule of thumb would be that the shortest
wavelength be at least ten times larger than the borehole
radius, allowing accurate handling of S-waves.

Pressure in the fluid

Given that e,(z, w), the borehole squeeze strain, is known,
the pressure in the fluid can be obtained from equation (1). In
a segment of the fluid column that is in the depth range of the
mth layer of the formation, i.e., z,,,- 1 ^ z zm where zm _ I and
zm are the depths of the top and the bottom of the mth layer,
respectively, the pressure is determined by

P(z, W) =Ame-ikmz + Bmeikmz

+ w2 E
^inc) ^, w t e-ik„fz-z^l dz

'Pfr( , )  , 4()fZZ:

where km = to/CT is the tube-wave wavenumber in the fluid
associated with the mth layer, A m and B /2 are unknown
coefficients representing the upgoing and downgoing energies
in the fluid. The Green's function used in deriving this
equation can be found in Morse and Feshbach (1953, 811).

The boundary conditions for determining A„, and B,, are
the continuities of pressure and axial fluid velocity between
layers m and m + 1, the vanishing of pressure at the top of the
borehole fluid (water table), and the rigidity condition at the
well bottom. These boundary conditions yield the following set
of linear equations for the unknown coefficients:

Dq=c, (5)

where

Wm (z) = P 
w2t

-1

 E(inc)(Z , w) t e ikmIz-z'l dz',

f 	km

W 2 f Z

= l p
f 	C (inc)(z ' w )e -ikm (z-z') dl '
km	l

z„,.,

+ fz £"(z' )e+ikm(z-z')dz'
	(6)

z

Recall that z o is the depth of the water table and H is the depth
of the well bottom. The subscript I is the index of the layer in
which the water table is located (i.e., zj_ 1 <_ zo < zj), and J is
the index of the layer where the well bottom is positioned (i.e.,
zJ- t <H <_ zJ). It is assumed that 1 <_ I <_ m C J N + 1.

Borehole squeeze strain

In this section, we proceed to compute the pressure in the
borehole fluid for a seismic source in a stratified formation. The
pressure in the fluid can be obtained by solving matrix equation
(5) if the borehole squeeze strain is known. To determine the
borehole squeeze strain e, (z, w) in equation (2) for an open
borehole or in equation (3) for a cased borehole, we need to
compute the stresses at the location of the presumed borehole.
This is a much easier problem than the original one involving a
fluid-filled borehole embedded in a layered half-space. For a
stratified medium, the Thomson-Haskell type propagator matrix
method can be used to achieve this goal (Harkrider, 1964;
Takeuchi and Saito, 1972; Kennett and Kerry, 1979). We adopt
an approach that combines the discrete wavenumber method
(Bouchon, 1981) with the global matrix method (Chin et al., 1984,
Schmidt and Tango, 1986) to efficiently and accurately compute

e -ikizo	 ikrzoe	 ,

e -ik m z^,	 eik.z,,,	 _e-ikm izm	 _eikm+iz,,,

_	 —ikme-ik,^z,„	 ikmeikMz,	 ikm+le ik,+iz., 	 —ikm+Ieikm,izm

— ik e -ik1H ik eik'H

is a band matrix whose upper and lower bandwidths are equal
to three, and

q = [A1, B1, ... ,Am, Bm,Am+i, Bm+i, ... ,A1, Bj] T,

C = —W/(zo), ...	
dWm +l (gym)

 Wm+1(zm) — wm(zm), 	
+i

dw,n(z m)	 dwj(H)1 T

dz`' "'' — dz J

In the above equation, wm (z) denotes the third term on the
right-hand side of equation (4), i.e.,

the stress and displacement fields in a stratified half-space. The
details of this approach are given in the Appendix.

In terms of the displacement-stress vector B(z; w, k, n) = [U,
j7 S] ^' in equation (A-3) (see the Appendix), the borehole
squeeze strain in equation (2) can be computed according to

E,(z, w) _ f F(z, w, k)J o (krb)Jo(kro)k dk,	 (7)
a

where

F(z, w, k)  2(X +2) P(z; W, k, 0)
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	— 2(k + µ)
 kV(z; w, k, 0)	 (8)

k+2µ

for an open borehole. For a eased borehole, it is

r(z' w ' k) 2µ(3k + 2µ) [ Ti4II K + 2µ)	 rl 1

2(k + µ)
xP(z;w,k,0)—III k+2 kV(z;w,k,0).

µ

(9)

In the above equation, w is the frequency, k is the radial
wavenumber, rb is the borehole radius, ro is the horizontal
distance between the seismic source and the fluid-filled bore-
hole, and K and µ are the Lame's parameters. Here, TiII = E/E II
and rl 1 = E/E l are the ratio of the effective Young's moduli
in an open borehole to those in a cased borehole, and J0 (x)
is the Bessel function of the zeroth order. Substituting
equation (7) into equation (6), after a few algebraic manip-
ulations, we get

2

Wm(z, w) = i kw [kP(J + (z; w, k) + J - (z; w, k))
m ^

— kky(J + (z; w, k) + J - (z; w, k))]J o (kr b )J o (kr o )k dk,

(10)

where

2µ(3K + 2µ) L1 II 4k + 2µ) 	] 0, 0, 1,0] T 	 (11)

and

2(k + µ)

kv =K + 2µ [0, 1, 0, 0]T	(12)

are two indication vectors that yield P(z; w, k, n) and V(z; w, k,
n) from B(z; w, k, n), the displacement-stress vector in the
frequency-horizontal wavenumber domain. In the above equa-
tion, J + (z; w, k) and J (z; w, k) are vectors defined as

J + (z; w, k) =	 B(z; w, k, n = 0)e -;k '" (z-z' ) dz',	 (13)
z m _,

and

J z,„

J - (z; w, k) =	 B(z; w, k, n = 0)e +1k "' ( z-z' ) dz'.	 (14)

z

The integration with respect to the horizontal wavenumber k
is carried out first by the discrete wavenumber method
(Bouchon and Aki, 1977; Bouchon, 1981). After w m (z, w) and
dw,,,(z, w)/dz are computed, equations (5) and (4) are used to
determine the pressure P(z, w) in the fluid. Then an integra-
tion with respect to frequency is implemented by fast Fourier
transform (FFT) to obtain the time response P(z, t) at a given
depth. The additional computation for borehole coupling is
significantly less than the computation of the stress field
around the borehole by the global matrix method. Therefore,
this method is as fast as the existing ones that do not include

the fluid-filled borehole. It is worthwhile to note that the
borehole coupling equation can be incorporated into other
numerical techniques that compute the normal stresses of
incident waves, such as finite difference or dynamic ray-tracing
methods. The global matrix algorithm is chosen because it
provides general solutions that include inhomogeneous waves,
and it can be incorporated efficiently as discussed above.

NUMERICAL EXAMPLES

To show the accuracy of this technique, we present a
comparison with an analytical solution for a fluid-filled bore-
hole in an unbounded and homogeneous formation. In this
case, the pressure in the fluid can be computed exactly for an
explosive source in the formation. The exact method is to
express the wavefield caused by an explosive source as a
superposition of plane waves. The coupling of individual plane
waves into the borehole fluid is accomplished through the
method described in Schoenberg (1986) and Peng et al. (1993).
Finally, contributions from all of them are summed. In this
example, the formation compressional velocity is 3000 m/s,
shear velocity 2000 m/s, and density 2400 kg/m 3 . The fluid in
the borehole is ideal water. The borehole is uncased with a
0.10 m radius. The source is at depth q, = 400 m with a
horizontal offset ro = 400 m. A Kelly wavelet (Kelly et al.,
1976) with a central frequency of 50 Hz is used as the source
signal. We use 21 receivers that equally span a section of the
borehole from depths of 0 to 800 m. Figure 2 shows two
calculations: one is computed by the exact method, the other
by the hybrid method developed in this paper. Up to the
resolution in this figure, one cannot tell the difference between
the calculations by our technique and those by the exact
method. Then we take the Fourier transforms of both calcu-
lations and pick the spectral amplitudes at the central fre-
quency of 50 Hz. After multiplying by the source receiver
distance, i.e., the geometrical spreading correction, we plot the
result shown in Figure 3 as a function of angle of incidence
with respect to the borehole axis. This graphic representation
of borehole data is also called the point-source reception
pattern. In this figure, the open circle is from our numerical
method, the solid circle corresponds to the exact solution, the
solid triangle shows the pressure disturbance in a full space
assuming the borehole is absent. The triangles, as expected, are
on the unit circle for an explosive source. The circles are bent
inward because of the pressure release on the fluid-solid
interface at the borehole wall. Again the numerical data agree
with the exact solutions in the frequency domain.

In the second example, we choose a configuration where a
low velocity layer is embedded in a high velocity half-space.
The depths of the top and bottom boundaries of the low
velocity layer are at 300 m and 500 m, respectively. The
borehole (radius rb = 0.1 m) is open and filled with fluid (af =
1500 m/s, pf = 1.0 g/cm 3 and Q1 = 30). It has a finite length of
800 m. The source is at depth 400 m and at offset 400 m. The
receivers are in the borehole spanning a depth range between
0 to 800 m. The top surface is stress free. The source waveform
is a Kelly wavelet with the central frequency of 100 Hz. The
formation parameters for this calculation are given in Table 1.
Figure 4 shows the synthetic seismograms of pressure in the
borehole fluid. Clearly, a significant portion of energy is
trapped in the low velocity layer (300-500 m depth interval),
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arriving at a later time in the seismograms. Multiple reflec-
tions, occurring just after the first arrivals inside this layer, are
observed. The low velocity events are tube waves generated at
the interface boundaries as well as at the top and bottom of the
borehole. The tube wave generated at the well head has a
larger amplitude. Reflections at the free surface (top) are also
discernible. On the free surface, the pressure is zero (first trace
on the top).

The third example is a calculation for a cased borehole. The
configuration and parameters are the same as the second
example. The casing is steel with a 2 cm thickness. Figure 5
shows the synthetic pressure in the cased borehole. The
amplitude of the fluid pressure is significantly reduced in a
cased borehole. The maximum amplitude in Figure 4 is about
three times larger than in Figure 5. The relative amplitudes of
the trapped waves in the depth interval corresponding to the
low velocity layer are not as prominent as those in an open
borehole because the casing tends to smooth out the effect of
formation discontinuities. In the cased borehole, the tube
waves from the well head are more evident, as are the P- and
S-waves outside the low velocity layer.

APPLICATIONS TO THE KENT CLIFFS HYDROPHONE
VSP EXPERIMENT

Background

The Kent Cliffs borehole is an approximately 1-km deep test
well located in southeastern New York. The borehole is drilled
for the study of the crustal stress regime. Various geophysical
and geological data were collected in this borehole, including
core samples, well-logs, televiewer survey, hydraulic fracturing

8) Depth (m)

160

360

560

760

60 108 126 144 162 160 196 216 224 252 270

Time(ms)

• Exact

Numerical

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8

rehole

FIG. 3. Borehole point-source reception pattern for the exam-
ple shown in Figure 2. The solid circles are data from the exact
method. The open circles are data from the numerical method
proposed in this chapter. The solid triangles are the isotropic
radiation from an explosive source in a homogeneous and
unbounded medium. The data are individually normalized.
The reception pattern of a fluid-filled borehole shows a lobe at
normal incidence.

162 180 198

Time (ms )
FIG. 2. Synthetic hydrophone pressures in the borehole fluid for an explosive source inside a homogeneous and unbounded
formation: (a) by the numerical method developed in this paper, and (b) by an exact method. The parameters are: r 0 = 400 m, a =
3000 m/s, 13 = 2000 m/s, p = 2400 kg/m 3 . The borehole radius is 0.10 m. The source waveform is a Kelly wavelet with a central
frequency of 50 Hz. The depth of the source is 400 m. A total of 21 traces are plotted, spanning a depth range from 0 to 800 m.
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stress measurements, and multiple offset VSPs with geophones
and hydrophones. Geophysical and lithological data show that
the borehole cuts first through fine-to-medium-grained amphi-
bolite, the upper 10-40 m of the amphibolite is weathered, and
the lower portion of the formation is gneiss. The transition
zone is at a depth of 260-271 m in the borehole. The overall
formation shows well developed foliation. The foliations and
contact surfaces dip 60 0 southeast.

Core logs and downhole televiewer images show that there
are two primary shear zones at depth intervals 273-275 m and

511-513 m. Fractures of various sizes are found at depths of
232, 286, and 512 m. Full waveform acoustic logs show that, in
the overall depth interval of approximately 1 km, the compres-
sional velocity varies between 5.8 km/s and 6.8 km/s and the
shear velocity between 3.3 km/s and 3.6 km/s. The gradient of
formation elastic properties with depth is small. For detailed
accounts of this experiment, the reader is referred to Lee
(1990) and Cicerone (1991). As a first-order approximation, we
will ignore the dipping of the formation boundaries in our
subsequent simulation.

Table 1. Medium parameters for the examples in Figure 4 and Figure 5.

depth P-velocity S-velocity density
Berea sandstone (m) (m/s) (m/s) (g/cm3) QP QS

Berea sandstone 1 0-300 4206 2664 2.20 40 30
Shale sediment 2 300-500 3000 1800 2.00 20 15
Berea sandstone 500 —co 4206 2664 2.20 40 30

1 data from Toksoz, N. M., Johnston, D. H., and Timur, H. (1979).
2 data from the experimental measurements at Chevron CO RC La Habra site.

-.

II

II-

II

II

.II

II-

100	 200	 300	 400	 500

100	 200	 300	 400	 500

Time (ms)

Fio. 4. Synthetic hydrophone pressures in an open borehole for
an explosive source in the formation. The source is inside a low
velocity layer embedded in a high velocity half-space. The source
waveform is a Kelly wavelet with a central frequency of 100 Hz.
The source-borehole offset is 400 m. The borehole radius is
0.10 m. Other parameters used in this calculation are given in
Table 1. The maximum amplitude in this data set is 1.93E-02. The
label P stands for P-wave, Sp for S-wave converted from P-wave,
Sr for reflected S-wave, and T for tube wave.

Time (ms)

FIG. 5. Synthetic hydrophone pressures in a cased borehole for
an explosive source in the formation. The source is inside a low
velocity layer embedded in a high velocity half-space. The
source waveform is a Kelly wavelet with a central frequency
100 Hz. The source-borehole offset is 400 m. The casing is
steel. The inner radius of the casing is 0.10 m, the outer radius
is 0.12 m. Other parameters used in this calculation are given
in Table 1. The maximum amplitude in this data set is 6.37E-03.
The label P stands for P-wave, Sp for S-wave converted from
P-wave, Sr for reflected S-wave, and T for tube wave.
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HYDROPHONE VSP DATA AND NUMERICAL MODELING

The multioffset hydrophone VSP experiment (Figure 6) was
carried out using a repeatable vertical weight drop source on
the surface. The receivers are an array of six (6) piezo-electric
hydrophones separated by a 3.048-m interval. Four source
offsets were used in the experiment. They are at 37.5, 350.5,
288.0, and 518.2 m away from the well head, and are refer-
enced as S/P #1, S/P #2, S/P #3, and S/P #4, respectively, in
the figure. Data processing includes raw data demultiplexing,
stacking, and band-pass filtering. Figure 7 shows, as an exam-
ple, the hydrophone VSP data at shot point S/P #3. A
zero-phase band-pass filter with a pass band between
100-220 Hz is applied to these data. These data show large
amplitude tube waves generated at the well head, the shear
zones, and the fractures. The direct P- and S-waves are small in
amplitude, and are strongly interfered with by the energetic
tube waves. The tube waves originating from the well head are
caused by the squeeze effect of incident P-, S-, and Rayleigh
waves. The tube waves generated by shear zones and fractures
are a result of the injection of fluid into the borehole as the
incident P-wave and S-wave squeeze the fractures. The latter
mechanism is extensively studied in the literature (Beydoun et
al., 1985; Cicerone, 1991; Toksoz et al., 1992).

The modeling code developed in this paper does not have
the ability to include fractures and shear zones in its formula-
tion, thus we are unable to model the tube waves generated by
them (i.e., the chevron-shaped patterns are absent in our
synthetics). Nevertheless, other arrivals, such as P-, S-, and
tube waves from the well head, are included.

We choose a stratified earth model described in Table 2. The
formation P-wave and S-wave velocity profiles are derived
from the sonic logging data. In Table 2, the lithology in each
layer is also given. In the simulations, we use a vertical force on
the surface to simulate the actual weight drop. The water table
in the borehole is 14 m from the surface. The well bottom is
approximately at 1007 m. Both of these numbers are from
actual measurements. We use a Kelly wavelet with a central
frequency of 100 Hz as the source signal. In the numerical
simulation, the number of receivers is five times less than that
of the field data. That is, we have 65 traces in the simulation
instead of the 321 traces in the experiment. Nevertheless, the
simulation covers approximately the same depth range as the
experiment.

Figure 8 shows the synthetic hydrophone pressures for shot
point S/P #3. In the synthetic seismograms, the P-, S-, and tube
waves from the well head are well modeled. There are three

tube wave events generated at the top of borehole (in both the
field data and the numerical simulations as marked by the
arrows): one is caused by the squeezing effect of the P-wave,
another by the S-wave, and the last by the Rayleigh wave
(ground roll). To quantitatively compare the numerical simu-
lations with the field data, we pick the arrival time of the
P-wave and measure its rms amplitude in a window of one
period in length, that is,

	1 	 t o +T

	Prms = 7	 p(t) X p(t) dt,

where to is the P-wave arrival time, T is the period equal to the
reciprocal of the central frequency, and p(t) is the hydrophone
pressure data. The rms amplitude is also a measure of the
energy in the time window. We plot both t o and P,

S/P #2

288.0 m
37.5 m
S88W S^ #1	 N85E	 S/P #3

BOREHOLE

T. D. 1007.8 m

WS/P#4
FIG. 6. A map showing the Kent Cliffs hydrophone VSP
experiment. A total of four (4) shot points around the borehole
were used in the experiment. The borehole has a depth about
1 km and is slightly deviated southeast by about 30 m in the
east direction and 70 m in the south direction. The formation
is amphibolite and gneiss in the top and bottom portions of the
borehole, respectively, and is tilted toward the southeast by as
much as 60°.

Table 2. Medium parameters and lithologies derived from logging data in the Kent Cliffs test borehole: The intrinsic attenuation
is ignored in the synthetic calculation.

depth P-velocity S-velocity density
Lithology (m) (m/s) (m/s) (glcm3)	 QP	 Qs

Amphibolite 0-10 5500 3300 2.80	 00	 Co
Amphibolite 10-85 6246 3700 2.90
Amphibolite 85-215 6888 3850 3.10

Transition zone 215-270 6189 3590 3.00
Gneiss 270-425 6197 3530 2.90
Gneiss 425-470 6197 3500 2.80
Gneiss 470-770 6197 3530 2.90
Gneiss 770—Co 6204 3630 2.90
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functions of hydrophone depth. The results are shown in
Figure 9 through Figure 12.

Figure 9a shows the P-wave traveltime versus hydrophone
depth for shot point S/P #1 (37.5 m horizontal offset). The
solid line is the traveltime measured from the field data; the +
symbol is that from the synthetics. The agreement is excellent,
showing that the velocity model based on information from the
sonic well logging data explains the traveltime of the VSP data
at near offsets. In Figures 9b and 9c, we show the P-wave
traveltime for shot points S/P #2 (350 m horizontal offset) and
S/P #3 (288 m horizontal offset). At these shot points, the
traveltimes in the synthetics are slightly different from those in

the field data, which is attributed to the fact that the formation
is actually tilted towards the southeast. Since the seismic
velocity of the upper amphibolite layer is higher than that of
the lower gneiss layer, the synthetic P-wave traveltimes are
smaller than the observed ones in S/P #2, the northwest offset,
while opposite phenomena occur in S/P #3, the east offset.

More importantly, our simulation can predict the dynamic
behavior of a downhole hydrophone measurement as well. In
Figure 10, we plot the P-wave rms amplitude versus depth for
shot point S/P #1. In this plot, the solid line is the rms
amplitude of the synthetic data; the + symbol is that of the
field data. The integrated rms amplitude in the depth interval

FIG. 7. Hydrophone VSP data for shot point S/P #3. The source offset is 288.0 m in the direction N85 °E. The first hydrophone is
at a depth of 15.25 m, slightly below the water table. The last hydrophone is at 990.6 m, slightly above the well bottom. A band-pass
filter is applied to this data with a pass band between 100 Hz and 220 Hz.
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304.8-990.6 m is used to scale the synthetic and the field data.
There is a good agreement between the synthetic amplitude
and the observed one, except at locations where tube waves are
generated and interfere with the P-wave. This kind of agree-
ment also exists for the other two shot points—S/P #2 and S/P
#3—as shown in Figure 11 and Figure 12. For shot points at
large offsets, however, the observed data points tend to shift
away from the synthetic prediction at shallow depths, which is
partly because of the assumption made in building the velocity
model for synthetic computations. Note that complicated
inhomogeneities around the surface were not included in the

modeling either. At small offsets, the first-arrival P-wave
energy decreases with receiver depth at a faster rate than an
exponential; while at large offsets, exponential decays are
observed. This ability of accurately predicting the amplitude of
field data can be important for downhole seismic data inter-
pretation and inversion for subsurface physical parameters.

DISCUSSIONS AND CONCLUSIONS

In this paper, an efficient and accurate method is proposed
to model hydrophone VSP and crosswell data in a stratified

Time (ms)
FIG. 8. Synthetic hydrophone VSP data for shot point S/P #3, computed with a stratified model for the formation. The source is a
vertical force near the free surface, simulating the actual weight drop. The source waveform is a Kelly wavelet with a central
frequency of 100 Hz. Others parameters are given in Table 2.
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formation. This method incorporates borehole coupling theory
into the global matrix algorithm by dividing the problem into
two parts: propagation from the source to the presumed
borehole location by the global matrix algorithm, and coupling
the resulting stresses into the borehole fluid by a low-frequency
approximation. This approach greatly reduces the difficulties of
the original problem; viz., the inclusion of a fluid-filled bore-

hole in a stratified medium that involves two sets of interfaces
perpendicular to each other. It yields accurate results at
frequencies below 2 kHz (for typical sedimentary rocks). This
is demonstrated by a comparison with an analytical solution.
The method is as fast as other existing ones in modeling elastic
wave propagation in a layered medium.

This method has been applied to model the Kent Cliffs
hydrophone VSP data. Using a stratified model derived from
the sonic logging data, we are able to predict the traveltime

10

FIG. 9. P-wave traveltimes for shot points S/P #1 (a), S/P #2
(b), and S/P #3 (c). The solid line is the traveltime picked from
the field hydrophone measurements shown in Figure 7. The
plus (+) symbol is the traveltime picked from the synthetic
hydrophone pressure shown in Figure 8. The horizontal axis is
the depth of receivers in m. The vertical axis is traveltime in
ms.

+ norm rms amp (obs: 304.8-990.6)

— norm rms amp (syn: 304.8-990.6)

E 10
ro
m
E

0
E 10
0
z

10
200	 400	 600	 800	 1000

Depth (m)

Fig. 10. The rms amplitudes of the first arrival (P-wave) for
shot point S/P #1. The solid line is the rms amplitude
computed from the synthetic hydrophone pressure. The plus
(+) symbol is the rms amplitude derived from the field
hydrophone measurement. A constant factor derived from
data in the depth range between 304.8 m and 990.6 m is used
to normalize the synthetic and field data. The horizontal axis is
the depth of receivers in m. The vertical axis is the normalized
rms amplitude in a logarithmic scale. The arrows indicate
locations where tube waves generated by fractures interfere
with the P-wave signals.

10 - ?

a

a
E
c0

£10

+ norm rms amp (obs: 304.8-990.6)

—norm rms amp (syn: 304.8-990.6)

200	 400	 600	 800	 1000
Depth (m)

FIG. 11. The rms amplitude of the first arrival (P-wave) for shot
point S/P #2. The solid line is the rms amplitude computed
from the synthetic hydrophone pressure. The plus (+) symbol
is the rms amplitude derived from the field hydrophone
measurement. A constant factor derived from data in the
depth range between 304.8 m and 990.6 m is used to normalize
the synthetic and field data. The horizontal axis is the depth of
receivers in m. The vertical axis is the normalized rms ampli-
tude in a logarithmic scale. The arrow indicates the location
where tube waves generated by fractures interfere with the
P-wave signals.
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and rms amplitude of the P-wave arrival in the hydrophone data,
especially for the first shot point S/P #1. Our simulation demon-
strates that the earth model based on the sonic well logging data
explains the hydrophone VSP data at small offsets. There are
systematic discrepancies between predictions and observations in
the other two shot points (S/P #2 and S/P #3). These differences
are attributed to the dipping of the formation (geological data
show that the layers are tilted toward the southeast with a dip
angle of 600), incomplete knowledge of the structures and lithol-
ogies away from the borehole, and surface complications such as
topography and weathered rocks.

Besides applications to hydrophone VSP data simulation, this
method can be used to model crosswell data (including crosswell
continuity logging) if proper source borehole effects are taken
into account (Ben-Menahem and Kostek, 1991; Kurkjian et al.,
1994; Gibson, 1992; Gibson and Peng, 1994). One limitation of
this method would be the transmission of high-frequency signals
over large distances, because the computation time increases
linearly with both frequency and the maximum distance between
the source and the receivers. However, this computational prob-
lem can be minimized by using fast computers.
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APPENDIX A

THE GLOBAL MATRIX METHOD

Consider a vertically stratified half-space with a source or a
vertical array of sources located on the coordinate axis (see
Figure 1 without the borehole). In terms of the surface vector
harmonics in the cylindrical coordinate system (R, 0, z), the
displacement u and traction t across a surface perpendicular to
the z-axis can be expressed as (Takeuchi and Saito, 1972; Chin
et al., 1984)

1	 ^`
u(R, 0, z) = _	 dw e`W`	 k dk

o

introduced as an equivalent discontinuity in the stress-displace-
ment field across the source plane z = % (Kennett and Kerry,
1979, Chin et al., 1984):

B('S;w,k,n)—B(r ;w,k,n)=S*(w,k, n),

where, for a point volume source S* = [-2, 0, 0, —4µk] T
(Harkrider, 1964); and for a vertical point force S* = [0, 0,
— 1/21T, 01 T (Harkrider, 1964; Bouchon, 1981). Other types of
sources are constructed from the fundamental ones, and can be
found in, among others, Ben-Menahem and Singh (1981).

Using the spectral decomposition of A,,, = Dm 4m D,, we
can rewrite equation (A-3) as

x	 (URk + VS k + WTk),	 (A-1)	
d

n=-x	

j Qm=AmQm, Zm-1<Z<Zm, m=1,2,...,N

and
	

(A-4)

	1 1
t(R, 0,z) = 1 I dw e`w`	 k dk
	f	 o

	x	 (PRk + SSk + 7T),	 (A-2)
n=-oo

where R, S, and Tk are vector harmonics in a cylindrical
coordinate. The coefficients U, V, IV, P, S and T are functions
of depth z, frequency w, horizontal wavenumber k, and order
of harmonics n. They are related to each other by a first-order
matrix equation

a
az B =A(z; w, k)B, 	 (A-3)

where B(z; w, k, n) = [U, V, P, S] T is the displacement-stress
vector for a P-SV problem and B(z; w, k, n) = [W, 7 Z for a SH
problem. In this paper, we focus our attention to the P-SV
problem only. In this case

A(z; w, k)

	0	 k(1 — 2y)	 1/(X + 2µ)	 0

	—k	 0	 0	 1/µ

	—pow	 0	 0	 k

	0	 — pw 2 + 4k2µ(1 --y) —k((1 —2-y) 0

where y = µ/(K + 2µ) = (3 2/a 2 , k and p. are the Lame
parameters and p is the density. They are dependent on z.

For the case where the formation is layered, the elements of
matrix A are piecewise constant such that the resulting equa-
tion has constant coefficients in each subinterval. In forming a
global matrix solution to equation (A-3), the continuity of the
local solution at an interface is required, i.e.,

+
B m (Zm ; w, k, n) = Bm+l(Zm ; w, k, n),

m= 1,2,...,N.

In addition, the free surface condition at z = 0 and the
radiation condition at z — o must be satisfied. The source is

where Qm = Dm 1 Bm . In the P-SV problem the choice of

D m =

V a,,,	 k	 v ',,,	 k

—k	 —vpm	 k	 vp,,,

—p. m (2k 2  kpnt) —2p.mkv(3m p•m (2k 2 — k2m) 2l.mkvpm

2p.rnki am	 N.m(2 2 kpm) 21.mkvom F1 m\2kz — k'

leads to

—V am

— V pm

A m =
Vam

V pm

where v 	^/k aim, vRm = \/k 2 — kim, kan, = (i)/am,

km = w/Rm • am and (3m are the compressional and shear
velocities in the layer m. Anelastic attenuation is incorporated
into the formulation by making the medium velocities complex
numbers (Aki and Richards, 1980). The choice of branch cuts is
R(va,n ) ? 0 and R(v ) ? 0 (i.e., the real part should not be less
than zero) for the particular choice of e" time dependence.

The solution to equation (A-4) can be written in terms of a
propagator matrix

Qr (z) = exp [A m(Z — zm-1)]Qm(Zm-1) , Zm-1 <Z <Zm,

m=1,2,...,N (A-5)

which relates the wavefield at the boundary to that in the
interior. Knowing the vector Q m (z) at the boundaries, the
displacement-stress vector B m can be readily computed by

B m (z; w, k, n) = D m exp [A m(Z — Zm-1)]Qm(Zm-1)•

(A-6)

To determine Qm(zm-1) , the upgoing and downgoing am-
plitudes at the top boundary of the mth layer, the continuities
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of stress and displacements across the interfaces are imposed,	 except the source layer m = s at which
in addition to vanishing stresses at the free surface and the 	 _
radiation condition at infinity. Let us denote 	 Ms+l MS 1 Ps +l MS MS E s

	

+	 [ Ns+l Ns 1 J L Ps1	 J - Na Ns	 _ s 1 Ps	M M	 J
D m = N _ N+

_ m 	m	 = Q s exp [A(zs — Tts)]Ds 1 S*. (A-8)

fE_ m

exp [Am(zm - zm -1)] = L
	

1 0

exp (
- vam(zm - zm -1))	 0	 1

0	 exp ( - vpm(zm - Zm -1))J

Also denote

mQm = I PPM- 1 ,

where p,n corresponds to the downgoing amplitude and p„
corresponds to the upgoing amplitude in the mth layer. Then
the interface boundary conditions can be written as

Mm+l Mm+1 Pm +1	 Mm Mm Em

[	 N	 tNm+1 Nm +11 LPm +1J — L m Nm J L	 _m] [PM

= 0, (A-7)

At z = 0, we have the stress free conditions

N1P1 +N, 1 =0,	 (A-9)

and at z — -, we must impose

PN+1 = 0.	 (A-10)

In the global matrix formulation, the local coefficients p,n
and p„ are assembled into a global vector that is solved by the
Gaussian elimination method with proper scaling and partial
pivoting (Chin et al., 1984; Schmidt and Tango, 1986). The
global matrix formulation has several important advantages
over the Thomson-Haskell propagator matrix technique: (1)
any number of sources can be treated conveniently because the
fields produced by multiple sources are simply superposed,
which is especially important for properly handling the source
borehole radiation in the crosswell modeling (Ben-Menahem
and Kostek, 1991; Kurkjian et al., 1994; Gibson, 1992); (2) any
number of receivers can be treated with only one solution pass
since the wavefields are found in all layers simultaneously; and
(3) time consuming stability problems do not arise because
there is no need for an evaluation of exponential with positive
real argument (Peng, 1993).
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