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Abstract

In this paper, we construct an injection A × B → M ×M from the product of
any two nonempty subsets of the symmetric group into the square of their midpoint
set, where the metric is that corresponding to the conjugacy class of transpositions.
If A and B are disjoint, our construction allows to inject two copies of A × B into
M ×M . These injections imply a positively curved Brunn-Minkowski inequality
for the symmetric group analogous to that obtained by Ollivier and Villani for the
hypercube. However, while Ollivier and Villani’s inequality is optimal, we believe
that the curvature term in our inequality can be improved. We identify a hypo-
thetical concentration inequality in the symmetric group and prove that it yields an
optimally curved Brunn-Minkowski inequality.

Keywords: Brunn-Minkowski inequality; discrete curvature

1 Introduction

The classical Brunn-Minkowski inequality may be formulated as follows: given two com-
pact nonempty sets A,B ⊂ Rn, one has

log |Mt| > (1− t) log |A|+ t log |B|
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for any 0 6 t 6 1, where

Mt = {(1− t)a+ tb : a ∈ A, b ∈ B}

is the set of t-midpoints of A and B, and | · | is Lebesgue measure. If Rn is replaced by a
smooth complete Riemannian manifold with positive Ricci curvature bounded below by
K > 0, the Brunn-Minkowski inequality can be strengthened to

log |Mt| > (1− t) log |A|+ t log |B|+ K

2
t(1− t)d(A,B)2, (1)

where d is the Hausdorff distance and Mt the set of points of the form γ(t) with γ a
geodesic in X such that γ(0) ∈ A and γ(1) ∈ B, see [4] and references therein. The
heuristic here is that midpoint sets are larger in positively curved space than in flat
space, and the degree of this distortion is controlled by Ricci curvature.

Y. Ollivier and C. Villani [4] have shown that a curved Brunn-Minkowski inequality
analogous to (1) holds for the discrete hypercube ZN2 equipped with the Hamming dis-
tance. While the definition of t-midpoints in discrete space is somewhat messy, in the case
t = 1

2
, at least, it is reasonable to define the midpoint set M = M1/2 of A,B ⊆ ZN2 to be the

collection of m ∈ ZN2 which satisfy d(a,m) + d(m, b) = d(a, b) and d(a,m) = d(m, b) + ε,
with ε ∈ {−1, 0, 1}, for some (a, b) ∈ A × B. Adopting these definitions, Ollivier and
Villani proved the following curved Brunn-Minkowski inequality for the hypercube [4,
Theorem 1].

Theorem 1. For any nonempty sets A,B ⊆ ZN2 ,

log |M | > 1

2
log |A|+ 1

2
log |B|+ K

8
d(A,B)2,

where K = 1
2N

.

Ollivier and Villani moreover verify that the dependence of K on N in their result is
optimal. As discussed in [4], this result supports the statement that the “discrete Ricci
curvature” of ZN2 is of order N−1.

For any n > 2N , there is an injective group homomorphism

ZN2 −→ S(n)

from the N -dimensional hypercube into the symmetric group of rank n determined by

e1 7→ (1 7→ 2)

e2 7→ (3 7→ 4)

...

eN 7→ (2N − 1 7→ 2N),

where ei ∈ ZN2 is the bitstring in which all bits are zero except the ith bit, and (2i− 1 7→
2i) ∈ S(n) is the transposition which swaps 2i and 2i − 1. If one equips S(n) with the
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metric induced by the word norm corresponding to the conjugacy class of transpositions
(see Section 2 below for a detailed construction), this injection is an isometric embedding
of ZN2 in S(n). It is thus natural to seek an extension of Theorem 1 to the symmetric
group, viewed as a metric space in this way. In this paper, we prove the following curved
Brunn-Minkowski inequality for S(n).

Theorem 2. For any nonempty sets A,B ⊆ S(n),

log |M | > 1

2
log |A|+ 1

2
log |B|+ K

8
d(A,B)2,

where K = 4 log 2
(n−1)2 .

The Brunn-Minkowski inequality presented in Theorem 2 is only slightly curved, and
we believe that Theorem 2 in fact holds with K = c

n−1 , c a positive constant. Although we
do not prove this, we identify a hypothetical concentration inequality in the symmetric
group which generalizes the hypercube concentration inequality of Ollivier and Villani
[4, Corollary 6], and demonstrate that it implies an optimally curved Brunn-Minkowski
inequality for the symmetric group.

2 Symmetric Group Basics

In this section we fix basic notation and terminology concerning the symmetric group
S(n). We identify S(n) with its right Cayley graph as generated by the conjugacy class
of transpositions. Thus a, b, c, · · · ∈ S(n) are the vertices of our graph, and {a, b} is an
edge if and only if a−1b fixes all but two points of {1, . . . , n}. In this way S(n) becomes
a graded graph: it decomposes as the disjoint union

S(n) =
n−1⊔
r=0

Lr,

where Lr is the set of permutations which factor into exactly n − r disjoint cycles; each
Lr is an independent set (contains no edges); and, finally, there exists an edge between
Lr and Lr′ if and only if |r − r′| = 1. Figure 1 shows the case n = 4.

Each level Lr of S(n) further decomposes as the disjoint union

Lr =
⊔
λ`n

`(λ)=n−r

Cλ,

where the union is over partitions λ of n with n−r parts, and Cλ is the set of permutations
with cycle type λ. The sets Cλ are the conjugacy classes of S(n).

In this paper we make use of a decomposition of S(n) which is finer than the usual
decomposition into conjugacy classes. Given p ∈ S(n), factor p into disjoint cycles, and
present each cycle so that its leftmost element is its minimal element. That is, each cycle
of p is presented in the form

(i1 7→ i2 7→ i3 7→ . . . ),

the electronic journal of combinatorics 23(1) (2016), #P1.27 3



((11)) ((22)) ((33)) ((44))

((1212)) ((33)) ((44)) ((1313)) ((22)) ((44)) ((1414)) ((22)) ((33))((11)) ((2323)) ((44)) ((11)) ((2424)) ((33)) ((11)) ((22)) ((3434))

((123123)) ((44)) ((132132)) ((44)) ((124124)) ((33)) ((142142)) ((33)) ((134134)) ((22)) ((143143)) ((22)) ((11)) ((234234)) ((11)) ((243243)) ((1212)) ((3434)) ((1313)) ((2424)) ((1414)) ((2323))

((12341234)) ((12431243)) ((13241324)) ((13421342)) ((14231423)) ((14321432))

Figure 1: The Cayley graph of S(4).

where i1 < min{i2, i3, . . . }. Next, list the cycles of p from left to right in increasing order
of their minimal elements. Thus p is presented in the form

p = (i1 7→ i2 7→ i3 7→ . . . )(j1 7→ j2 7→ j3 7→ . . . )(k1 7→ k2 7→ k3 7→ . . . ) . . . ,

where i1 < j1 < k1 < . . . . We call this the ordered cycle factorization of p. Figure 1
displays the elements of S(4) using their ordered cycle factorizations. We refer to the
vector

(i1, j1, k1, . . . )

as the sequence of cycle minima of p. The vector

(µ1, µ2, µ3, . . . )

of cycle lengths

p = (i1 7→ i2 7→ i3 7→ . . .︸ ︷︷ ︸
length µ1

)(j1 7→ j2 7→ j3 7→ . . .︸ ︷︷ ︸
length µ2

)(k1 7→ k2 7→ k3 7→ . . .︸ ︷︷ ︸
length µ3

) . . . ,

in the ordered cycle factorization of p is a composition µ of n which we call the ordered
cycle type of p. We denote by `(µ) the number of parts of µ, so that r = n−`(µ) if p ∈ Lr.
Given two permutations p, p′ of the same ordered cycle type, there is a unique permutation
u which both conjugates p into p′ and transforms the sequence of cycle minima of p into
that of p′.
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Given a composition µ � n, we denote by ~Cµ the set of all permutations whose ordered
cycle type is µ. Then each conjugacy class Cλ in S(n) decomposes as the disjoint union

Cλ =
⊔
µ

~Cµ,

where µ ranges over all compositions obtained by permuting the parts of λ. For the
symmetric group S(4), the successive decompositions we have discussed are

S(4) = L0 t L1 t L2 t L3

= C(1,1,1,1) t C(2,1,1) t C(3,1) t C(2,2) t C(4)

= ~C(1,1,1,1) t ~C(2,1,1) t ~C(1,2,1) t ~C(1,1,2) t ~C(3,1) t ~C(1,3) t ~C(2,2) t ~C(4).

Each class ~Cµ contains a canonical permutation pµ, which acts by cyclically permuting the
first µ1 positive integers in the canonical way, cyclically permuting the next µ2 positive
integers in the canonical way, and so on. Given p ∈ ~Cµ, we denote by up ∈ S(n) the
unique permutation which both conjugates pµ to p and transforms the sequence of cycle
minima of pµ into that of p.

We equip S(n) with the graph theory distance d. Thus level Lr in the Cayley graph
coincides with the sphere of radius r centred at the identity permutation e ∈ S(n). The
following properties of d are easily checked:

d(a, b) = d(pap−1, pbp−1)

= d(ab−1, e)

= d(e, a−1b)

= d(ap, bp)

= d(pa, pb).

In particular, the diameter of the Cayley graph is

max{d(a, b) : a, b ∈ S(n)} = max{d(e, p) : p ∈ S(n)} = n− 1.

We have already mentioned the fact that the set of permutations which lie on a geodesic
path from the identity permutation e to an involution v is isometrically isomorphic to a
hypercube whose dimension is half the size of the support of v. We will also make use
of the fact that a permutation lies on a geodesic path from e to a forward cycle f if and
only if it is a product of forward cycles which together induce a noncrossing partition of
the support of f . A proof of this folklore result may be found in [3, Lecture 23].

3 Midpoint Calculus

In this section, we generalize the encoding/decoding formalism of Ollivier and Villani
from the hypercube to the symmetric group. Where possible, we try to be consistent with
the notation and terminology of [4].
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3.1 Crossovers

Let (a, b) ∈ S(n)× S(n) be a pair of permutations, and let M(a, b) be the corresponding
midpoint set. Our first observation is that M(a, b) is the isometric image of a “standard”
set of midpoints. More precisely, let µ be the ordered cycle type of a−1b, and let Cr(µ)
denote the set of midpoints of e, the identity permutation, and pµ, the canonical permu-
tation of ordered cycle type µ. Adopting the terminology of [4], we call the elements of
Cr(µ) crossovers, or µ-crossovers to be precise. Consider the function

S(n) −→ S(n)

defined by
x 7→ aua−1bxu

−1
a−1b,

where ua−1b is the unique permutation which conjugates pµ to a−1b and transforms the
sequence of cycle minima of pµ into that of a−1b. This function is an isometry, being
composed of rotation by ua−1b followed by translation by a. Moreover, under this mapping

e 7→ a, pµ 7→ b.

Thus the mapping restricts to a bijection

Cr(µ) −→M(a, b).

We write
ϕc(a, b) = aua−1bcu

−1
a−1b,

and view
ϕc(a, b), c ∈ Cr(µ)

as a parameterization of the locus M(a, b) by a “standard” set of midpoints. Following
the terminology of [4], we call ϕc(a, b) ∈ M(a, b) the midpoint of a and b encoded by the
crossover c ∈ Cr(µ).

Here is an example to help solidify these definitions. Consider a = (1)(23)(4) and
b = (1324) as elements of S(4). We have

M(a, b) = {(132)(4), (1)(243), (14)(23)}.

Since a−1b = (124)(3), the ordered cycle type of a−1b is (3, 1). So pµ = (123)(4) and the
set of µ-crossovers is

Cr(µ) = {(12)(3)(4), (13)(2)(4), (1)(23)(4)}.

Since ua−1b = (1)(2)(34), we obtain a parametrization of M(a, b) as

ϕ(12)(3)(4)(a, b) = (132)(4),

ϕ(13)(2)(4)(a, b) = (14)(23),

ϕ(1)(23)(4)(a, b) = (1)(243).

Thus, for example, (132)(4) is the midpoint of a and b encoded by the crossover (12)(3)(4).
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3.2 Duality

There is a natural geometric operation on crossovers: we view a crossover as the lower half
of a geodesic path from the identity to the canonical permutation with a given ordered
cycle type, and map it to the corresponding upper half. More precisely, given c ∈ Cr(µ),
its dual c∨ is defined by

c∨ := c−1pµ.

We now establish some technical properties of the operation c 7→ c∨ which will be
needed below. First is the basic but important closure property.

Proposition 3. Cr(µ) is closed under taking duals.

Proof. Let c be a midpoint of e and pµ; we have to check that c∨ is a midpoint of e and
pµ. We have

d(e, c∨) = d(e, c−1pµ) = d(c, pµ)

and

d(c∨, pµ) = d(c−1pµ, pµ) = d(c−1, e) = d(e, c).

Thus
d(e, c∨) + d(c∨, pµ) = d(e, c) + d(c, pµ) = d(e, pµ),

and
d(e, c∨)− d(c∨, pµ) = d(c, pµ)− d(e, c) = ε

with ε ∈ {−1, 0, 1}, as required.

Note that while the map Cr(µ) → Cr(µ) defined by c 7→ c∨ is bijective, it is not
involutive: the dual of the dual of c is c conjugated by p−1µ . For future use, we extend the
duality operation from points to sets: given C ⊆ Cr(µ), we define

C∨ := {c∨ : c ∈ C}.

Next is the following important property of crossover duals.

Lemma 4. If c ∈ Cr(µ), then c−1c∨ has both the same ordered cycle type and the same
sequence of cycle minima as pµ.

Proof. First note that c−1c∨ = c−2pµ. Since c lies on a geodesic path linking e to pµ,
each cycle of c is a subcycle of some cycle of pµ. Since the cycles of pµ are intervals,
i.e. consist of consecutive numbers, our task reduces to proving the following general
statement: whenever c1c2 . . . is a product of forward cycles which induce a noncrossing
partition of {1, . . . , k}, the product

c−21 c−22 . . . (1 7→ . . . 7→ k)

is a cyclic permutation of the numbers 1, . . . , k. If this statement holds, then left multi-
plication of pµ by c−2 will change neither the cycle structure nor cycle minima of pµ.
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Note that we can assume each cycle ci is of length at least two. Suppose that the first
cycle, c1, is

c1 = (i1 7→ i2 7→ . . . 7→ ik1),

where 1 6 i1 < i2 < · · · < ik1 6 k. Let us write the full forward k-cycle in the form

(1 7→ . . . 7→ k) = (i1 7→ I1 7→ i2 7→ I2 7→ . . . 7→ ik1 7→ Ik1),

where the I∗’s are intervals. Since

(i1 7→ I1 7→ i2 7→ I2 7→ . . . 7→ ik1 7→ Ik1) = (i1 7→ . . . 7→ ik1)(i1 7→ I1)(i2 7→ I2) . . . (ik1 7→ Ik1),

we have

(i1 7→ . . . 7→ ik1)
−2(1 7→ . . . 7→ k) = (i1 7→ . . . 7→ ik1)

−1(i1 7→ I1)(i2 7→ I2) . . . (ik1 7→ Ik1)

= (ik1 7→ . . . 7→ i1)(ik1 7→ Ik1) . . . (i2 7→ I2)(i1 7→ I1)

= (ik1 7→ Ik1 7→ . . . 7→ i2 7→ I2 7→ i1 7→ I1).

Now, since the cycles c1, c2, . . . induce a noncrossing partition of {1, . . . , k}, the cycle
c2 is contained in one of the intervals I1, . . . , Ik1+1. Thus the same argument applies to
compute

c−22 (ik1 7→ Ik1 7→ . . . 7→ i2 7→ I2 7→ i1 7→ I1).

3.3 Encoding

The duality operation has been introduced, and its basic properties developed, in order
to make available a structured means of encoding pairs of midpoints using crossovers. To
this end, we introduce the mapping

Cr(µ) −→M(a, b)×M(a, b)

defined by
c 7→ Φc(a, b) := (ϕc(a, b), ϕc∨(a, b)).

Thus (x, y) = Φc(a, b) is the pair of midpoints of a and b encoded by c and c∨. The duality
relationship between c and c∨ induces algebraic and geometric relations between the pairs
(a, b) and (x, y) which may be collectively called duality of midpoints.

Proposition 5. If (x, y) = Φc(a, b), then:

1. x−1y has the same ordered cycle type and sequence of cycle minima as a−1b;

2. a and b are midpoints of x and y;

3. ux−1y = ua−1buc−1c∨.

Proof. Let us prove these assertions in order.
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1. First, we have

x−1y = (ϕc(a, b))
−1(ϕc∨(a, b))

= (aua−1bcu
−1
a−1b)

−1(aua−1bc
∨u−1a−1b)

= ua−1bc
−1c∨u−1a−1b.

Let µ be the ordered cycle type of a−1b. By definition, ua−1b conjugates pµ into a−1b
and transforms the sequence of cycle minima of pµ into that of a−1b. By Lemma
4, c−1c∨ has both the same ordered cycle type and sequence of cycle minima as pµ.
Thus, ua−1bc

−1c∨u−1a−1b has both the same ordered cycle type and sequence of cycle
minima as a−1b.

2. We now show that a and b are midpoints of x and y. Since

a−1x = a−1(aua−1bcu
−1
a−1b) = ua−1bcu

−1
a−1b

and

y−1b = (aua−1bc
∨u−1a−1b)

−1b

= (aua−1bc
−1pµu

−1
a−1b)

−1b

= (aua−1bc
−1u−1a−1bua−1bpµu

−1
a−1b)

−1b

= (aua−1bc
−1u−1a−1ba

−1b)−1b

= (b−1aua−1b)c(b
−1aua−1b)

−1,

both a−1x and y−1b are conjugates of c. By the conjugation invariance of d we thus
have

d(e, a−1x) = d(e, c) = d(e, y−1b),

whence
d(a, x) = d(e, c) = d(y, b).

Similarly, since
a−1y = a−1(aua−1bc

∨u−1a−1b) = ua−1bc
∨u−1a−1b

and

x−1b = (aua−1bcu
−1
a−1b)

−1b

= ua−1bc
−1u−1a−1ba

−1b

= ua−1bc
∨p−1µ u−1a−1ba

−1b

= ua−1bc
∨(u−1a−1b(a

−1b)−1ua−1b)u
−1
a−1ba

−1b

= ua−1bc
∨u−1a−1b,

both a−1y and x−1b are conjugates of c∨, and we have

d(a, y) = d(e, c∨) = d(x, b).
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Now, since x−1y has the same ordered cycle type as a−1b, we have

d(x, y) = d(a, b) = d(e, pµ).

Putting this all together, we have

d(x, a) + d(a, y) = d(e, c) + d(e, c∨)

= d(e, c) + d(c, pµ)

= d(e, pµ)

= d(x, y),

and

d(x, a)− d(a, y) = d(e, c)− d(e, c∨)

= d(e, c)− d(c, pµ)

= ε,

where ε ∈ {−1, 0, 1} because c is a midpoint of e and pµ. Thus, a is a midpoint of
x and y. The proof that b is a midpoint of x and y is just the same.

3. Finally, we prove the identity

ux−1y = ua−1buc−1c∨ ,

which will be needed below in the proof of Proposition 6. Since

x−1y = (aua−1bcu
−1
a−1b)

−1(aua−1bc
∨u−1a−1b)

= ua−1bc
−1c∨u−1a−1b

= ua−1buc−1c∨pµu
−1
c−1c∨u

−1
a−1b

= (ua−1buc−1c∨)pµ(ua−1buc−1c∨)−1,

we have that ua−1buc−1c∨ conjugates pµ into x−1y. This is one of the two properties
that uniquely defines the permutation ux−1y, the other being that it transforms the
sequence of cycle minima of pµ into the sequence of cycle minima of x−1y. Since
uc−1c∨ stabilizes the sequence of cycle minima of pµ (by Lemma 4), conjugation of
pµ by ua−1buc−1c∨ produces a permutation whose sequence of cycle minima coincides
with that of a−1b, and hence with that of x−1y by Part (1).

3.4 Decoding

Our constructions so far may be thought of in cryptographic terms, as follows. Alice and
Bob wish to transmit messages to one another across an insecure channel. They meet
at a secure location, and agree on a composition µ � n and a crossover c ∈ Cr(µ) to be
used as a secret encryption key. Alice and Bob then return to their respective locations
on opposite ends of the channel. The plaintext messages to be transmitted are pairs
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(a, b) ∈ S(n) × S(n) such that a−1b ∈ ~Cµ. To send the message (a, b) to Bob, Alice
computes the ciphertext (x, y) = Φc(a, b) and transmits it to Bob across the channel.
Bob receives the ciphertext (x, y), and wishes to recover the plaintext message. Our next
result proves that there is a well-defined decryption key δ(c) such that (a, b) = Φδ(c)(x, y)
— in fact, the proof explains how to compute δ(c).

Proposition 6. For each composition µ � n, there exists a function

δµ : Cr(µ) −→ Cr(µ)

such that
Φδµ(c)(Φc(a, b)) = (a, b)

holds for all c ∈ Cr(µ) and each (a, b) ∈ S(n)× S(n) verifying a−1b ∈ ~Cµ. Moreover, this
function is an involution.

We call the function δµ of Proposition 6 the decoding function of type µ. In order to
lighten the notation, we will henceforth omit the dependence of δ on µ.

Proof. Fix a composition µ � n. We claim that the corresponding decoding function is
given by

δ(c) := u−1c−1c∨c
−1uc−1c∨ .

First, let us check that the codomain of δ is indeed Cr(µ), i.e. that δ(c) is in fact a
midpoint of e and pµ. We have

d(e, δ(c)) = d(e, u−1c−1c∨c
−1uc−1c∨)

= d(e, c−1)

= d(e, c)

and

d(δ(c), pµ) = d(u−1c−1c∨c
−1uc−1c∨ , pµ)

= d(c−1, uc−1c∨pµu
−1
c−1c∨)

= d(c−1, c−1c∨)

= d(e, c∨)

= d(e, c−1pµ)

= d(c, pµ).

Thus, since c is a midpoint of e and pµ, we have

d(e, δ(c)) + d(δ(c), pµ) = d(e, c) + d(c, pµ) = d(e, pµ)

and
d(e, δ(c))− d(δ(c), pµ) = d(e, c)− d(c, pµ) = ε
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with ε ∈ {−1, 0, 1}.
Next, let (a, b) ∈ S(n) × S(n) be a valid plaintext, i.e. a pair of permutations such

that a−1b ∈ ~Cµ, and let (x, y) = Φc(a, b) be the corresponding ciphertext. We then have

x = ϕc(a, b) = aua−1bcu
−1
a−1b

y = ϕc(a, b) = aua−1bc
∨u−1a−1b,

By Proposition 5, Part (1), we may re-encode (x, y) using δ(c) as an encryption key,
arriving at a new ciphertext (x′, y′) = Φδ(c)(x, y). We claim that this re-encoding decrypts
(x, y), i.e. that (x′, y′) = (a, b). Indeed,

x′ = ϕδ(c)(x, y)

= xux−1yδ(c)u
−1
x−1y

= (aua−1bcu
−1
a−1b)(ua−1buc−1c∨)(u−1c−1c∨c

−1uc−1c∨)(ua−1buc−1c∨)−1

= a,

where we made use of Proposition 5, Part (3). Similarly, we have

y′ = ϕδ(c)∨(x, y)

= xux−1yδ(c)
∨u−1x−1y

= (aua−1bcu
−1
a−1b)(ua−1buc−1c∨)(u−1c−1c∨c

−1uc−1c∨)∨(ua−1buc−1c∨)−1

= (aua−1bcu
−1
a−1b)(ua−1buc−1c∨)(u−1c−1c∨cuc−1c∨pµ)(ua−1buc−1c∨)−1

= aua−1bc
2uc−1c∨pµu

−1
c−1c∨u

−1
a−1b

= aua−1bcc
∨ua−1b

= aua−1bpµua−1b

= b.

It remains to show that
δ : Cr(µ) −→ Cr(µ)

is an involution. Let c be a µ-crossover, let (a, b) be a valid message, and consider the
triple encoding

Φδ2(c)(Φδ(c)(Φc(a, b))).

Since δ(c) is the decryption key corresponding to the encryption key c, we have

Φδ2(c)(Φδ(c)(Φc(a, b))) = Φδ2(c)(a, b).

On the other hand, since δ2(c) is the decryption key corresponding to the encryption key
δ(c), we also have

Φδ2(c)(Φδ(c)(Φc(a, b))) = Φc(a, b).

Thus Φδ2(c)(a, b) = Φc(a, b), which readily implies δ2(c) = c.
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4 The Brunn-Minkowski inequality

4.1 Without a curvature term

We now put our encoding-decoding formalism to work. We begin by proving the “flat”
Brunn-Minkowski inequality for S(n).

Theorem 7. For any nonempty A,B ⊆ S(n), we have

log |M | > 1

2
log |A|+ 1

2
log |B|,

where M is the midpoint set of A and B.

Proof. Suppose that there exists an injection

Φ : A×B −→M ×M.

Then
|M |2 > |A||B|,

and taking logs this becomes

log |M | > 1

2
log |A|+ 1

2
log |B|.

To construct such an injection, let µ1, . . . , µm be an enumeration of the ordered cycle
types of the permutations

a−1b, (a, b) ∈ A×B.
For each 1 6 i 6 m, choose an encryption key ci ∈ Cr(µi), and let di = δ(ci) be the
corresponding decryption key.

Partition A×B into classes

Ci = {(a, b) ∈ A×B : a−1b ∈ ~Cµi}, 1 6 i 6 m,

and consider the map
Φ : A×B −→M ×M

whose restriction to each Ci is given by encryption using key ci:

Φ(a, b) = Φci(a, b).

We claim that Φ is injective. Indeed, if

Φ(a, b) = Φ(a′, b′)

for some (a, b), (a′, b′) ∈ A×B, then we must have (a, b), (a′, b′) ∈ Ci for some 1 6 i 6 m
by Part 1 of Proposition 5. Hence

(a, b) = Φdi(Φci(a, b)) = Φdi(Φci(a
′, b′)) = (a′, b′),

by Proposition 6.
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4.2 With a curvature term

Theorem 7 above was proved by injecting A× B into M ×M . The injection used was a
straightforward application of the formalism of encoding and decoding developed above.
We now obtain the curved Brunn-Minkowski inequality stated as Theorem 2 in the intro-
duction by injecting two copies of A× B into M ×M . The construction of the required
injection involves a subtler use of encoding/decoding: the proof requires choosing two
parallel sequences of encryption keys which are coupled in a special way.

Theorem 8. For any nonempty A,B ⊆ S(n), we have

log |M | > 1

2
log |A|+ 1

2
log |B|+ K

8
d(A,B)2

where M is the midpoint set of A and B and

K =
4 log 2

(n− 1)2
.

Proof. First note that if d(A,B) = 0, the claimed inequality degenerates to the flat
Brunn-Minkowski inequality, which we have already proved. We thus assume that A and
B are disjoint.

Suppose that there exists an injection

Φ : A×B × {0, 1} −→M ×M.

Then
|M |2 > 2|A||B|,

and taking logs this becomes

log |M | > 1

2
log |A|+ 1

2
log |B|+ log 2

2
.

The desired inequality now follows from the fact that the diameter of S(n) is n− 1.
In order to construct Φ as required, let µ1, . . . , µm and C1, . . . , Cm be as in the proof

of Theorem 7. Choose a system of encryption keys

ci ∈ Cr(µi), 1 6 i 6 m,

and consider a second system of encryption keys obtained from the first system by setting

c̃i := δ(δ(ci)
∨), 1 6 i 6 m.

The keys c̃i are defined in this way so that, by the involutive property of δ, their corre-
sponding decryption keys are the duals of the decryption keys of the first system:

δ(c̃i) = δ(ci)
∨. (2)
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We build Φ from the above data as follows. First, partition A × B × {0, 1} into the
2m sets

C
(j)
i = {(a, b, j) : a−1b ∈ Ci}, 1 6 i 6 m, 0 6 j 6 1.

We define Φ by declaring its restriction to C
(j)
i to be

Φ(a, b, j) :=

{
Φci(a, b), if j = 0

Φc̃i(a, b), if j = 1
.

We now prove that Φ so defined is an injection. Suppose

(x, y) ∈M ×M, (a, b, j) ∈ C(j)
i , (a′, b′, j′) ∈ C(j′)

i′

are such that
(x, y) = Φ(a, b, j) = Φ(a′, b′, j′).

Then, by the first part of Proposition 5, we must have i = i′. We claim that also j = j′.
If not, then (relabelling if neccessary) we have

(x, y) = Φ(a, b, 0) = Φ(a′, b′, 1),

so that
(x, y) = Φci(a, b) = Φc̃i(a

′, b′).

Decoding, we obtain

(a, b) = Φδ(ci)(x, y) = (ϕδ(ci)(x, y), ϕδ(ci)∨(x, y))

and, using (2),
(a′, b′) = Φδ(c̃i)(x, y) = (ϕδ(ci)∨(x, y), ϕδ(c̃i)∨(x, y)).

This implies a′ = b, which is impossible since A and B are disjoint.
There are now two cases: j = j′ = 0 and j = j′ = 1. In the first case, we have

Φci(a, b) = Φ(a, b, 0) = Φ(a′, b′, 0) = Φci(a
′, b′),

whence
(a, b) = Φδ(ci)(Φci(a, b)) = Φδ(ci)(Φci(a

′, b′)) = (a′, b′).

In the second case, we have

Φc̃i(a, b) = Φ(a, b, 1) = Φ(a′, b′, 1) = Φc̃i(a
′, b′),

whence
(a, b) = Φδ(c̃i)(Φc̃i(a, b)) = Φδ(c̃i)(Φc̃i(a

′, b′)) = (a′, b′).
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4.3 With an optimal curvature term

We conjecture that the curved Brunn-Minkowski inequality proved in Theorem 8 can be
improved to the following optimal statement.

Conjecture 9. For any nonempty A,B ⊆ S(n), we have

log |M | > 1

2
log |A|+ 1

2
log |B|+ K

8
d(A,B)2

where M is the midpoint set of A and B,

K =
c

n− 1
,

and c is a positive constant.

Note that this statement is indeed best possible, by Theorem 1. While we are at
present unable to prove Conjecture 9, we show here that it is implied by the following
conjectural concentration inequality.

Conjecture 10. There exists a positive constant ε > 0 such that, for any µ � n, we have

d(C,C∨) > r =⇒ P(C) 6 e−
εr2

n−`(µ) ,

where P is the uniform probability measure on Cr(µ).

Remark 11. In the case where µ = (µ1, µ2, . . . ) satisfies µi ∈ {1, 2}, Conjecture 10 is true
— via the embedding of the hypercube described in the introduction, it is equivalent to
Corollary 6 in [4].

We now explain how Conjecture 9 can be deduced from Conjecture 10. This argument,
which lifts the proof of [4, Theorem 1] from the hypercube to the symmetric group, differs
substantially from the proofs of Theorems 7 and 8. To prove these coarser results, we
used static encoding to construct our injections, i.e. a predetermined list of encryption
keys. Here, we use an adaptive coding scheme in which all crossovers associated to A×B
are employed.

Theorem 12. Suppose that Conjecture 10 is true. Then, for any nonempty A,B ⊆ S(n),
we have

log |M | > 1

2
log |A|+ 1

2
log |B|+ K

8
d(A,B)2

where M is the midpoint set of A and B and

K =
4ε

n− 1
.
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Proof. Let µ1, . . . , µm and C1, . . . , Cm be as in the proof of Theorem 7. Put

Ui := Ci × Cr(µi), 1 6 i 6 m.

These sets are pairwise disjoint, but note that they are not subsets of A×B. Rather,

U :=
m⊔
i=1

Ui

is an “enriched” version of A×B in which each pair (a, b) ∈ Ci appears with multiplicity
|Cr(µi)|.

Consider the map
Φ : U −→M ×M

defined by
Φ(a, b, c) := Φc(a, b).

By Proposition 5, we know that the image of Ui under Φ is contained in

Vi := {(x, y) ∈M ×M : x−1y ∈ ~Cµi}.

The sets V1, . . . , Vm are disjoint, and

m∑
i=1

|Vi| 6 |M ×M |.

Fix an arbitrary i ∈ {1, . . . ,m}, and an arbitrary pair of midpoints (x, y) ∈ Vi. By
definition, (a, b, c) ∈ Ui maps to (x, y) under Φ if and only if

Φc(a, b) = (x, y),

which by Proposition 6 is equivalent to

Φδ(c)(x, y) = (a, b).

Thus the cardinality of the fibre of Φ over (x, y) agrees with that of the set

D(x, y) := {d ∈ Cr(µi) : Φd(x, y) ∈ Ci}.

Now let d1, d2 ∈ D(x, y). Then, by definition,

ϕd1(x, y) ∈ A, ϕd∨2 (x, y) ∈ B.

Because the map
d 7→ ϕd(x, y)

is an isometry, this implies

d(d1, d
∨
2 ) = d(ϕd1(x, y), ϕd∨2 (x, y)) > d(A,B),
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and hence
d(D(x, y), D(x, y)∨) > d(A,B).

Hence, assuming Conjecture 10, we have that

|D(x, y)| 6 e
− εd(A,B)2

n−`(µi) |Cr(µi)| 6 e−
εd(A,B)2

n−1 |Cr(µi)|.

Summing over all (x, y) ∈ Vi we thus obtain

|Ui| 6 e−
εd(A,B)2

n−1 |Cr(µi)||Vi|.

Since |Ui| = |Ci||Cr(µi)|, this implies

|Ci| 6 e−
εd(A,B)2

n−1 |Vi|.

Summing over 1 6 i 6 m, we get

m∑
i=1

|Ci| 6 e−
εd(A,B)2

n−1

m∑
i=1

|Vi|,

whence

|A×B| 6 e−
εd(A,B)2

n−1 |M ×M |.

Taking logs, we obtain the curved Brunn-Minkowski inequality with

K =
4ε

n− 1
.
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