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Self-similar solutions to the mean curvature flow
in the Minkowski plane R1;1

By Hoeskuldur P. Halldorsson at Cambridge, MA

Abstract. We introduce the mean curvature flow of curves in the Minkowski plane R1;1

and give a classification of all the self-similar solutions. In addition, we describe five other exact
solutions to the flow.

1. Introduction

Minkowski space Rn;1 is the linear space RnC1 endowed with the Minkowski metric

h� ; �i D dx21 C � � � C dx
2
n � dx

2
nC1:

The mean curvature flow (MCF) of immersed hypersurfaces in Minkowski space is defined
as follows: Let M n be an n-dimensional manifold and consider a family of smooth immer-
sions Xt D X. � ; t / WM n ! Rn;1 for t 2 I . Write Mt D Xt .M

n/. The family of hypersur-
faces .Mt /t2I is said to evolve by mean curvature if

@X

@t
.p; t/ D H.p; t/

for p 2M n and t 2 I . Here H is the mean curvature vector of Mt , which is normal to the
surface and satisfies hH;ni D � divMt

n where n is a unit normal field. This flow has been
studied in [1, 5–9, 13–15].

A natural question to ask is whether there exist any self-similar solutions to the flow, i.e.,
hypersurfaces which move under a combination of dilations and isometries of the Minkowski
space. The most basic example is the hyperboloid x2nC1 D x

2
1 C � � � C x

2
n C 2nt , which is

a time-like contracting solution for t < 0, and a space-like expanding solution for t > 0. There
are also examples of space-like hypersurfaces translating with constant speed along the
xnC1-axis, both rotationally symmetric in [7, 15], and more general in [5]. Of course, we also
have the trivial examples of space-like maximal and time-like minimal surfaces, which are not
affected by the flow due to their vanishing mean curvature.

In this paper, we consider the case n D 1, the MCF of curves in the Minkowski
plane R1;1. Our main result is the following classification of all self-similar solutions to the
flow. More details are provided in later sections of the paper.
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210 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

Theorem 1.1. Up to rescalings and isometries of the Minkowski plane, the following
list contains all self-similar solutions to the mean curvature flow of space-like curves in the
Minkowski plane:

� Translation: three curves,

cosh x D ey�t ; sinhy D et�x; x C y D ex�y C t;

which translate along the y-axis, x-axis and the line y D x, respectively. See Figure 3.

� Expansion: six types of curves, including the expanding hyperbola

y2 D x2 C 2t; t > 0:

See Figures 4b, 4c.

� Contraction: one type of curves. See Figure 5b.

� Hyperbolic rotation: three types of curves. See Figure 6b.

� Hyperbolic rotation and expansion: eighteen types of curves, including the exact solu-
tions

x C y D 2t tan.x � y/; x C y D �2t coth.x � y/; t > 0:

See Figures 7b, 10b, 10c, 11b, 11c.

� Hyperbolic rotation and contraction: seven types of cures, including the exact solution

x C y D �2t tanh.x � y/; t < 0:

See Figures 7a, 8b, 9b.

� Hyperbolic rotation, expansion and translation: five types of curves. See Figure 12b.

� Hyperbolic rotation, contraction and translation: three types of curves. See Figure 12c.

Reflecting these curves across the line y D x gives all time-like self-similar solutions, with the
direction of t reversed.

The corresponding classification in the Euclidian plane was previously done by the author
in [11]. There are a few notable differences between the flows in the two planes. In the Euclid-
ean plane, the flow reduces the length of any simple closed curve, hence it is usually called
the curve shortening flow. In the Minkowski plane, however, the flow is not defined for simple
closed curves, since the curvature blows up at light-like points. It is only defined for space-like
and time-like curves but these can have finite Minkowski-length (without having endpoints).
In this paper, we have examples of both space-like curves that decrease in length and that in-
crease in length under the flow, so the flow is neither purely shortening nor lengthening. This
is illustrated in Figure 16.

Many of the curves in this paper have Minkowski-finite ends where the curvature
blows up. Therefore, the maximum principle does not apply to them. In fact, we have examples
of curves that are initially disjoint but then intersect under the flow. We also have examples of
non-uniqueness of the flow, i.e., different solutions starting at the same curve. In comparison,
all the curves which arose in the classification in the Euclidean plane have bounded curvature
and hence do not show this behavior.
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Halldorsson, Self-similar solutions to the MCF in the Minkowski plane 211

For various reasons, the classification problem is simpler in the Euclidean plane than
in the Minkowski plane. In each plane, the problem of finding curves which move under
a (hyperbolic) rotation and a dilation can be reduced to the study of a two-dimensional sys-
tem of ODEs, such that each curve corresponds to a trajectory in the phase plane of the system.
In the Minkowski plane, when the dilation is an expansion, the system has two saddle points.
As a result, there are many different types of trajectories in the phase plane and hence many
different types of curves. In the Euclidean plane, however, the system only has a sink and
a source (when the dilation is a contraction), which does not result in as many different types
of trajectories. Also, in the Minkowski plane, the self-similar solutions consisting of a hy-
perbolic rotation and a dilation show very different behavior depending on whether a2 < b2,
a2 D b2 or a2 > b2, the constants a and b denoting the initial speeds of the hyperbolic rotation
and the dilation, respectively. No trichotomy like this is present in the Euclidean plane.

Another reason for the simpler classification in the Euclidean plane is that any self-similar
solution to the flow consisting of translation and either rotation, dilation or both, can actually be
described without the translation by moving the origin to a different location. In the Minkowski
plane, this simplification can only be made in the case a2 ¤ b2. As a result, the classification
contains self-similar solutions combining all three motions, i.e., hyperbolic rotation, dilation
and translation.

The paper is structured as follows. Section 2 covers basic properties of the Minkowski
plane and introduces the hyperbolic numbers and the diagonal basis, both of which are well
suited for making calculations in the Minkowski plane. In Section 3 we discuss curves in the
Minkowski plane, derive the Frenet formulas, and show how the MCF is equivalent to a few
different PDEs. Section 4 is devoted to self-similar solutions. First we find all possible self-
similar motions that can arise as solutions to the flow and derive the equation the corresponding
curves must satisfy. We then rewrite the curve equation as two separate second order ODEs and
as a two-dimensional system of ODEs. These three forms make it easier to find and describe
the curves, which we do in Sections 5 through 10, one self-similar motion at a time.

In Section 11 we derive five exact solutions that are not self-similar; namely,

cosh x D e�t coshy; t > 0;

cosh x D e�t sinhy; t 2 R;

sinh x D e�t sinhy; t < 0;

siny D e�t sin x; t > 0;

tanh.x C y/ D tan.x � y/ tan 2t; 0 < t < �
4
;

as shown in Figures 14 and 15. Finally, an appendix discusses how one finds all curves in the
Minkowski plane that are invariant under some self-similar motion. We include this to explain
why one curve appears in two categories in the classification of the self-similar solutions.

2. Minkowski plane and hyperbolic numbers

The Minkowski plane R1;1 is just R2 endowed with the non-degenerate bilinear sym-
metric form

h.x1; y1/; .x2; y2/i D x1x2 � y1y2;

which is called the Minkowski metric. A nonzero vector z is called space-like if hz; zi > 0,
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212 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

time-like if hz; zi < 0, and light-like if hz; zi D 0. The Minkowski norm is defined as

kzk D
p
jhz; zij;

and two vectors z1 and z2 are said to be orthogonal if hz1; z2i D 0.
In this paper, we will use the language of hyperbolic numbers (also called split-complex

numbers), which are well suited for making calculations in the Minkowski plane, much like
the complex numbers are useful when dealing with the Euclidean plane. We identify the point
.x; y/ with the hyperbolic number x C hy, which is just an ordered pair of real numbers, with
addition and multiplication defined as follows:

.x1 C hy1/C .x2 C hy2/ D .x1 C x2/C h.y1 C y2/;

.x1 C hy1/ � .x2 C hy2/ D .x1x2 C y1y2/C h.x1y2 C x2y1/:

In particular, h2 D C1 as opposed to i2 D �1 for the complex numbers. The hyperbolic num-
bers form a commutative associative algebra which is isomorphic to the quotient RŒx�=.x2�1/,
and to the algebra of symmetric 2 � 2 matrices with equal diagonal elements, where

x C hy $

 
x y

y x

!
:

The basic properties of the hyperbolic numbers are the same as those of the complex numbers,
with a few notable exceptions.

x

y �

�

h

1

hC

h�

eh�

heh�

-eh�

-heh�

Figure 1. The hyperbolic number plane.

The hyperbolic conjugate of z D x C hy is Nz D x � hy, and the hyperbolic modulus is
defined as

jzj D
p
jz Nzj:

They satisfy the usual properties

z1 C z2 D z1 C z2; z1z2 D z1 z2; z D z; jz1z2j D jz1jjz2j:
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Halldorsson, Self-similar solutions to the MCF in the Minkowski plane 213

Note that
z1z2 D .x1x2 � y1y2/C h.x1y2 � x2y1/

and if we take the real part, we recover the Minkowski metric. In particular,

Nzz D x2 � y2 D hz; zi;

so the hyperbolic modulus coincides with the Minkowski norm.
Now, h.x C hy/ D y C hx, so multiplication by h corresponds to reflection across the

line y D x. Moreover, z and hz are always orthogonal, just like z and iz in the complex plane.
However,

hhz1; hz2i D �hz1; z2i:

Perhaps the biggest difference between the hyperbolic numbers and the complex numbers
is that the former do not form a field. The reason is that .1C h/.1 � h/ D 0, so all points on the
two lines y D x and y D �x are zero-divisors and hence do not have a multiplicative inverse.
These are exactly the points with hyperbolic modulus zero, i.e., light-like points. For other
points, the multiplicative inverse is given by

z�1 D
Nz

zz
D

x � hy

x2 � y2
:

It is often convenient to use the conjugate light-like points hC D 1Ch
2

and h� D 1�h
2

as
an alternate basis for the hyperbolic numbers, called the diagonal basis. In this paper, we will
use the notation

x C hy D �hC C �h� DW .�; �/

where � D x C y and � D x � y, and refer to the light-like lines y D x and y D �x as the �-
and �-axes, respectively. Since h2

C
D hC, h2� D h� and hCh� D 0, the basic operations now

take the simple form
.�1; �1/C .�2; �2/ D .�1 C �2; �1 C �2/;

.�1; �1/ � .�2; �2/ D .�1�2; �1�2/;

.�; �/ D .�; �/;

h.�; �/; .�; �/i D ��:

In particular, we see that the hyperbolic numbers are isomorphic to R˚R with pairwise addi-
tion and multiplication.

The set of points with hz; zi D 1 is the unit hyperbola x2 � y2 D 1, i.e., �� D 1. Note
that by plugging h� into the power series of the exponential function, we get the following
hyperbolic analogue of Euler’s formula

eh� D cosh � C h sinh � D .e� ; e�� /:

These points lie on the right arm of the unit hyperbola and they form a one-parameter group,
much like the unit circle in the complex plane. The parameter � is called the hyperbolic angle.

Maps of the form z 7! eh�z preserve the hyperbolic modulus and are called hyperbolic
rotations (also known as Lorentz boosts or squeeze maps). If we include translations and re-
flections across the x and y-axes, we have the full group of isometries in the Minkowski plane.

For further background on the hyperbolic number plane we refer to [4, 17].
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214 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

3. Curves in the Minkowski plane

Let X W I ! R1;1 be a regular curve. At each point on the curve, the tangent vector Xu
is either space-like, light-like or time-like. The curvature blows up at points where Xu is light-
like, so we will only look at curves where it is everywhere space-like or time-like. Those curves
are called space-like and time-like respectively and are always embedded. Note that reflection
across the �-axis maps space-like curves to time-like and vice versa.

T

N T

N

T

N

k > 0

k � 0
k < 0

1
x

1

y

Figure 2. A space-like curve in the Minkowski plane.

The Minkowski arc-length parameter is defined as

ds D
p
jhXu; Xuijdu

and the unit tangent vector is

T D Xs D
1p

jhXu; Xuij
Xu:

We choose the unit normal N D hT , i.e., the vector obtained by reflecting T across the �-axis.
Since hT; T i D � D ˙1 is constant, Ts is parallel to N , and we define the signed curvature k
by the equation Ts D kN . Then we also have Ns D kT , so the Frenet formulas take the form

Ts D kN;

Ns D kT:

By definition, the mean curvature vector of X is then given by H D �Xss D �Ts D �kN , so
we always have hH; N i D �k. Note that many authors chooseN such that ¹T;N º is positively
oriented, resulting in some different signs in the Frenet formulas above.

If we reflect a time-like curve across the �-axis, it not only becomes space-like but the
mean curvature vector also changes its direction (because of the � factor). This means the
direction of the MCF of the curve is reversed, but besides that the flow is the same. For this
reason, it suffices to look at the flow of space-like curves, even though we will use time-like
curves to simplify some arguments.
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Halldorsson, Self-similar solutions to the MCF in the Minkowski plane 215

We will parametrize our space-like curves such that T lies in the right arm of the unit
hyperbola x2 � y2 D 1. Then T D eh� , for some real number � called the hyperbolic tangent
angle. Note that Ts D �sheh� D kN , so � satisfies �s D k. The upper arm of the unit hyper-
bola x2 � y2 D �1 (or its translates) is the unique space-like curve with constant curvature
k D 1. A curve such that k > 0 (or k < 0) everywhere is called convex.

Besides the arc-length parametrization, every space-like curve in the Minkowski plane
has two other natural parameterizations that we will use. The curve can globally be viewed as
a graph where either y is a function of x satisfying jy0.x/j < 1, or � is an increasing function
of �. In the former case, the parametrization isX.x/ D x C hy.x/ and direct calculations yield

(3.1) T D
1C hy0.x/

.1 � y0.x/2/
1
2

; N D
y0.x/C h

.1 � y0.x/2/
1
2

; k D
y00.x/

.1 � y0.x/2/
3
2

:

If we think of y as also being a function of the time variable t , we have a solution to the MCF
(up to tangential diffeomorphisms) if and only if y satisfies the parabolic PDE

(3.2) yt D
yxx

1 � y2x
:

In the Euclidean plane, the PDE corresponding to the curve shortening flow is

(3.3) yt D
yxx

1C y2x
:

The following lemma shows how one can transform certain solutions in the Euclidean plane
into solutions in the Minkowski plane. Examples of this are given in Section 11.

Lemma 3.1. If y.x; t/ is a solution to (3.3) which is analytic and even in x, then
Oy.x; t/ D y.ix;�t / is a solution to (3.2), where i2 D �1:

In the case where � is an increasing function of �, the parametrization isX.�/ D .�.�/; �/
and direct calculations yield

(3.4) T D .� 0.�/
1
2 ; � 0.�/�

1
2 /; N D .� 0.�/

1
2 ;�� 0.�/�

1
2 /; k D

� 00.�/

2� 0.�/
3
2

:

The parabolic PDE for the flow now takes the simple form

(3.5) �t D
���

��
:

Note that if we instead let jy0.x/j > 1 or � 0.�/ < 0, the curve X becomes time-like. Equa-
tions (3.1) and (3.4) take on a slightly different form but the PDEs (3.2) and (3.5) remain the
same. However, now they are only parabolic if we reverse the direction of the time variable,
corresponding to what we said before.

It was shown in [10] that for convex curves in the Euclidean plane, the flow is equivalent
to the following PDE for the curvature k:

(3.6) kt D k
2k�� C k

3;

where the derivative with respect to t is taken with � held fixed. The corresponding PDE in the
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216 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

Minkowski plane is

(3.7) kt D k
2k�� � k

3;

which can be seen by carrying out the Minkowski version of the calculations in [10]. The
following lemma gives another method for transforming solutions between the two planes.

Lemma 3.2. If k.�; t/ is a solution to (3.6) which is analytic and even in � , then
Ok.�; t/ D k.i�;�t / is a solution to (3.7).

4. Self-similar motions of curves under the MCF

Let X W I ! R1;1 be a curve. A self-similar motion of X is a map OX W I � J ! R1;1 of
the form

(4.1) OX.u; t/ D g.t/ehf .t/X.u/CH.t/:

Here J is an interval containing 0 and f; g W J ! R and H W J ! R1;1 are differentiable
functions such that f .0/ D 0, g.0/ D 1 and H.0/ D 0, and hence OX.u; 0/ D X.u/. The func-
tion f determines the hyperbolic rotation, g determines the dilation and H is the translation
term.

This motion is the mean curvature flow of X (up to tangential diffeomorphisms) if and
only if the equation �

@ OX

@t
.u; t/; N.u; t/

�
D �k.u; t/

holds for all u 2 I , t 2 J . Simple calculations yield that this equation is equivalent to

g2.t/f 0.t/hX.u/; T .u/i � g.t/g0.t/hX.u/;N.u/i(4.2)

� g.t/he�hf .t/H 0.t/; N.u/i D k.u/:

By looking at this equation at time t D 0, we see that X has to satisfy

(4.3) ahX; T i � bhX;N i � hC;N i D k;

where a D f 0.0/, b D g0.0/ and C D H 0.0/. It turns out that satisfying an equation of this
form is also a sufficient condition for X to move in a self-similar manner under the MCF.
To see that, we treat separately three cases.

Translation. First assume X satisfies the pure translation equation

�hC;N i D k:

Then we can take H D Ct , and easily verify that equation (4.2) is satisfied for all u 2 R,
t 2 J . Thus, under the flow, the curve X translates with constant velocity vector C .

Dilation and rotation. Now assume X satisfies the screw-dilation equation

(4.4) ahX; T i � bhX;N i D k:
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Halldorsson, Self-similar solutions to the MCF in the Minkowski plane 217

If the functions g and f satisfy g.t/g0.t/ D b and g2.t/f 0.t/ D a for all t 2 J , then equa-
tion (4.2) is satisfied for all u 2 I , t 2 J . Solving these differential equations with our initial
values gives

(4.5) g.t/ D
p
2bt C 1 and f .t/ D

´
a
2b

log.2bt C 1/ if b ¤ 0;

at if b D 0:

Therefore, under the MCF the curve X rotates and dilates around the origin as governed by the
functions f and g.

Note that when b ¤ 0, the screw-dilation factor g.t/ehf .t/ takes the following form in
the diagonal basis:

.g.t/ef .t/; g.t/e�f .t// D .g.t/1C
a
b ; g.t/1�

a
b /

D ..2bt C 1/
bCa
2b ; .2bt C 1/

b�a
2b /:

In the cases a D b and a D �b, the factor is simply ..2bt C 1/; 1/ and .1; .2bt C 1//, respec-
tively, so the screw-dilation reduces to a linear dilation in one of the variables � and �, leaving
the other one intact.

Dilation, rotation and translation. Now assume X satisfies the full equation (4.3),
which can also be written in the form

(4.6) � h.b C ha/X C C;N i D k:

In the Euclidean plane, the author showed in [11] that we can always get rid of the translation
term C by translating X by a fixed vector. The same thing can be done here, but only when
a2 ¤ b2, since otherwise b C ha is a zero divisor. If we put OX D X C C

bCha
, then OX satisfies

an equation of the form (4.4). Therefore, X screw-dilates around the point � C
bCha

.
We are left with the case a2 D b2. By reflecting the curve across the y-axis if necessary,

we may assume a D b. By translating X along the �-axis, we can cancel out the �-component
of C , so we may assume C only has a �-component, i.e., C D .0; c/. As before, f and g are
given by (4.5) and the screw-dilation factor is ..2bt C 1/; 1/, so we just have scaling in the
variable � . We want the translation function H to satisfy

g.t/e�hf .t/H 0.t/ D C; i.e., H 0.t/ D
ehf .t/

g.t/
.0; c/ D

�
0;

c

1C 2bt

�
;

which by integration results in

H.t/ D

�
0;
c

2b
log.2bt C 1/

�
:

The self-similar motion under the flow therefore consists of scaling in the � variable and trans-
lation in the � variable.

Thus the classification of all self-similar solutions to the MCF in the Minkowski plane
has been reduced to finding all curves that satisfy equation (4.3). To find these curves, we use
two different approaches. The straightforward one is to use (3.1) or (3.4) to rewrite (4.3) as an
ODE for y as a function of x, or for � as a function of �. The two ODEs are

(4.7) y00.x/ D .1� y0.x/2/
�
a.x � y.x/y0.x//� b.xy0.x/� y.x//� .c1y

0.x/� c2/
�
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218 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

and
� 00.�/ D � 0.�/..aC b/�.�/C .a � b/�� 0.�/C d1 � d2�

0.�//

where C D c1 C hc2 D .d1; d2/. Depending on the values of a, b and C , one of the ODEs
can be easier to analyze than the other. It can be verified that the equations remain the same
when the curve X is assumed to be time-like.

A nice property that we see from (4.7) is the following.

Lemma 4.1. All space-like curves satisfying equation (4.3) are entire graphs over
the x-axis.

Proof. First notice that every light-like line y.x/ D x C B or y.x/ D �x C B is a so-
lution to (4.7). Therefore, if we have a solution to (4.7) which satisfies jy0.x/j < 1 at some
point, it will satisfy that strict inequality everywhere, since if y0 reached �1 or 1, we would
contradict uniqueness (because the ODE is of order 2). Since y0 is bounded, the solution ex-
tends uniquely to all of R.

A consequence of this is that all the curves are complete as Euclidean curves. However,
as we will see below, they are not necessarily complete as Minkowski curves. We also note
that for each value of a, b and C , we have a two-parameter family of curves satisfying equa-
tion (4.3) (parametrized for example by the values of y.0/ and y0.0/). However, by identifying
curves that are equal up to a hyperbolic rotation, there is actually only a one-parameter family
of curves.

The other approach to describing the curves is similar to what was done by the author
in [11, 12]. It can be used for curves that satisfy equation (4.4) and goes as follows. We intro-
duce the functions � D hX; T i and � D hX;N i. They satisfy

�s D 1C k�;(4.8)

�s D k�

and furthermore,

(4.9) X D .� � h�/T and hX;Xi D �2 � �2:

The Minkowski analogue of [12, Lemma 3.1] is as follows.

Lemma 4.2. For every smooth function ˆ W R2 ! R, point z0 2 R1;1 and hyperbolic
angle �0 2 R, there is a unique nonextensible space-like curve X W I ! R1;1 satisfying the
equation k D ˆ.�; �/ and going through z0 with hyperbolic angle �0.

Proof. Keeping in mind (4.8) and (4.9), we let �; �; � be the unique maximal solution to
the ODE system 8̂<̂

:
� 0 D 1C �ˆ.�; �/;

�0 D �ˆ.�; �/;

� 0 D ˆ.�; �/

with initial values �.0/ D �0, �.0/ � h�.0/ D e�h�0z0, and then define the curve as

(4.10) X D .� � h�/eh� :
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Halldorsson, Self-similar solutions to the MCF in the Minkowski plane 219

Note that
X 0 D .� 0 � h�0 C h� 0.� � h�//eh� D eh� ;

so X is parametrized by Minkowski arc-length with tangent T D eh� , and hence the curva-
ture k is equal to � 0 D ˆ.�; �/. Finally,

hX; T i D Re.Xe�h� / D �;

hX;N i D Re.X.�h/e�h� / D �;

finishing the proof.

So all curves satisfying equation (4.4) (i.e., k D a� � b�) can be found by solving the
system of ODEs

(4.11)

´
� 0 D 1C �.a� � b�/;

�0 D �.a� � b�/:

We can also let l D �b� C a� and study the equivalent system´
k0 D aC kl;

l 0 D �b C k2:

Note that k C hl D .a � hb/.� C h�/. The corresponding Euclidean system was used by the
author in [11]. From (4.10) we see that

� D e� .� � �/ D e�
k � l

aC b
; � D e�� .� C �/ D e��

k C l

a � b
:

Hence, X intersects the light-like axes exactly when the .�; �/- and .k; l/-trajectories intersect
the diagonals in the respective phase planes.

Also note that the right hand side of (4.11) remains the same when .�; �/ is replaced
by .��;��/. Therefore, s 7! �.�.�s/; �.�s// is also a solution to the system, which of course
just corresponds to the curveX parametrized backwards (and reflected across the origin to keep
T in the right arm of the unit hyperbola). This symmetry will simplify some of our arguments.

Unlike the Euclidean case, the solutions to this ODE system are not necessarily defined
on all of R and the curvature k can blow up for finite values of s. That means the corresponding
end of the curve has finite Minkowski arc-length and hence is geodesically incomplete, even
though it is always complete as a Euclidean curve, as we showed above.

In the next six sections of the paper, we look separately at different values of a, b and C ,
i.e., different self-similar motions, and describe some properties of the corresponding curves.

5. Translation

A curve X translates with constant velocity vector C if and only if it satisfies the trans-
lation equation �hC;N i D k. By scaling the curve, reflecting it across the x and y-axes and
applying a hyperbolic rotation, it suffices to consider translations with velocity vectors 1, h
and hC. The solutions below are unique up to constant translations in each variable.
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(a) cosh x D ey�t translates along the y-axis and
sinhy D et�x along the x-axis.
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(b) � D e� C t translates along the �-axis.

Figure 3. Translation.

Theorem 5.1. There are three translating solutions:

� cosh x D ey�t , with k D 1
cos s , ��

2
< s < �

2
, translates along the y-axis,

� sinhy D et�x , with k D 1
sinh s , s > 0, translates along the x-axis,

� � D e� C t , with k D 1
s

, s > 0, translates along the �-axis.

The three curves appear in Figure 3. Each end is labeled with the corresponding limit of
the curvature k, a convention we will use throughout the paper.

Proof. Let us start with C D h, i.e., translation with unit speed along the y-axis. Then
the translation equation results in the ODE

y00.x/ D 1 � y0.x/2;

which can also be seen by putting yt D 1 in equation (3.2). To find the solution, let v D y0.
Then v0 D 1 � v2 and jvj < 1 (since the curve is space-like), so v D tanh x. Therefore, the
curve is y D log cosh x. It has finite Minkowski-length � and curvature given by k D 1

cos s ,
�
�
2
< s < �

2
. Since the curvature blows up, the maximum principle does not apply to the

curve. In fact, as observed by Ecker [7], the translating curve y D log cosh x C t is initially
below the expanding hyperbola y D

p
x2 C 2t , but crosses it at infinity at time t D log 2.

If we instead take jvj > 1, we get v D coth x so y D log sinh x, x > 0 (or its reflection
across the y-axis). This is a time-like curve that translates with unit speed along the y-axis.
If we reflect it across the �-axis and then across the y-axis (since the first reflection reverses
the direction of the flow), we get the space-like curve x D � log sinhy, which translates with
unit speed along the x-axis. Alternatively, this curve could be found by taking C D 1, which
results in the ODE

y00.x/ D �y0.x/.1 � y0.x/2/:

This curve is Minkowski-finite in one direction and Minkowski-infinite in the other, with
k D 1

sinh s , s > 0. In Section 11, we show how each of these two translating solutions can
be obtained by applying a simple transformation to the translating solution in the Euclidean
plane, the Grim Reaper y D log cos x C t .
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Finally, let us look at the caseC D hC, i.e., translation along the �-axis. Here it is simpler
to work in the diagonal basis, where the ODE takes the form

� 00.�/ D � 0.�/:

This could also be seen by putting �t D 1 in (3.5). The solution is � D e�. This curve is
Minkowski-finite in one direction and Minkowski-infinite in the other, with k D 1

s
, s > 0.

Another interpretation of the movement of this curve is given in Section 9 and in the Ap-
pendix.

Note that the three translating curves respectively satisfy

k D cosh �; � 2 R;

k D � sinh �; � < 0;

k D e�� ; � 2 R:

They also could have been derived by putting kt D 0 in equation (3.7), resulting in the ODE

k�� � k D 0:

6. Expansion

A curve expands under the flow if and only if it satisfies equation (4.4) with a D 0 and
b > 0. By scaling the curve we may assume b D 1.

Theorem 6.1. There are six types of curves which expand under the flow with scaling
function

p
2t C 1 for t > �1

2
, including the expanding hyperbola

y2 � x2 D 2t C 1:

Each curve is convex, asymptotic to a cone and k2ehX;Xi is constant. It comes out of this
cone (translated such that its vertex lies at the origin) at t D �1

2
, and expands out to infinity,

as t !1.

The curves appear in Figures 4b and 4c.

Proof. Here k D ��, so the system for � and � becomes´
� 0 D 1 � �2;

�0 D ���:

The phase portrait appears in Figure 4a. The trivial solution � D s, � D 0, corresponds to X
being a straight (space-like) line through the origin, making the expansion vacuous. For the
other trajectories, it suffices by symmetry to consider only those in the lower half-plane (� < 0).
There k > 0, so the corresponding curve X is always convex. Notice that we have a fixed
point .0;�1/, which corresponds to X being the upper arm of the unit hyperbola y2 � x2 D 1.
It is a saddle point. To find the other trajectories, note that the function �2e�

2��2 D k2ehX;Xi is
a constant A > 0. The number and type of the trajectories depend on the value of A as follows.

Brought to you by | MIT Libraries
Authenticated

Download Date | 5/9/16 8:02 PM



222 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

1
Τ

-1

Ν

(a) Phase portrait.

0

¥¥

0

¥

0

1
x

1

y
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(c) A D e�1.

Figure 4. Expansion, a D 0, b D 1.

When A < e�1, we have two types of trajectories, both symmetric across the �-axis.
One of them has � !˙1 and � ! 0 as s !˙1. It crosses both lines � D � and � D ��.
The corresponding X crosses each light-like axis and has two Minkowski-infinite ends with
k ! 0 on each. The other trajectory has � and � going to �1 for a finite s. Similarly, in the
backwards direction, � and �� go to1 for a finite s. It lies completely in the region �� > j� j.
The corresponding curve X crosses neither light-like axis and has finite Minkowski-length
(which increases under the flow) with k !1 on each end. Both curves appear in Figure 4b.

When A D e�1, we have two trajectories besides the fixed point .0;�1/ (up to reflec-
tion across the �-axis which corresponds to reflecting the curve X across the y-axis). One of
them has � !1, � ! 0, as s !1, and .�; �/! .0;�1/, as s ! �1. It crosses the line
� D ��. The corresponding curve X crosses the �-axis and has two Minkowski-infinite ends
with the k ! 0 on one and k ! 1 on the other. The other trajectory has .�; �/! .0;�1/, as
s !1, and in the backwards direction, � and �� go to 1 for a finite s. It lies completely
in the region �� > j� j. The corresponding curve X crosses neither light-like axis, has one
Minkowski-infinite end with k ! 1, and one Minkowski-finite end with k !1. Both curves
appear in Figure 4c.

When A > e�1, we have one trajectory type (up to reflection across the �-axis). It has
� !1, � ! 0, as s !1, and in the other direction, � and�� go to1 for a finite s. It crosses
the line � D ��. The corresponding curve X crosses the �-axis, has one Minkowski-infinite
end with k ! 0, and one Minkowski-finite end with k !1. It can be seen in Figure 4b.

For a more detailed description of the curves, we consider the ODE for y as a function
of x,

y00.x/ D .1 � y0.x/2/.y.x/ � xy0.x//:
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Since �� D k > 0, it is clear that y is convex and y.0/ > 0. Put w.x/ D y.x/ � xy0.x/.
Then w0.x/ D �xy00.x/, and since y00.x/ > 0, the positive function w has a global maximum
w.0/ D y.0/, i.e., 0 < y.x/ � xy0.x/ � y.0/ for all x. From this it follows that for x > 0,
y.x/
x

is decreasing and y.x/�y.0/
x

is increasing, and since jy0.x/j < 1, they have the same limit
L 2 .y0.0/; 1�, as x !1. In particular,

y.x/ � y.0/

x
< L <

y.x/

x
;

so the convex function y.x/ � Lx lies in the interval Œ0; y.0/�. Hence, it must be decreasing
with a limit in that same interval.

So we have shown that X is asymptotic to a straight line with slope L, as x !1. If X
does not cross the �-axis, then y.x/ > x for all x > 0, so L D 1. However, if X does cross
the �-axis, then y.x/ goes below x, so L < 1. By symmetry, X is also asymptotic to a straight
line, as x ! �1. Its slope lies in the interval Œ�1;�y0.0//, and it is �1 if and only if X never
crosses the �-axis.

The curve X is therefore asymptotic to a cone. Under the flow, it comes out of this cone
(translated such that its vertex lies at the origin) at t D �1

2
, and expands out to infinity, as

t !1.

Note that the initial values y.0/ D ˛, y0.0/ D 0, correspond to the .�; �/-trajectory going
through .0;�˛/, so varying ˛ > 0 gives all curves with A < e�1, in addition to the hyperbola
y D
p
x2 C 1 when ˛ D 1. They are symmetric w.r.t. the y-axis. Similarly, the curves with

A > e�1 can be obtained by taking the initial values y.˛/ D 1, y0.˛/ D 0, and varying ˛ > 0.

7. Contraction

Now suppose a D 0, b < 0, so by scaling the curve we may assume b D �1.

Theorem 7.1. There is a one-parameter family of curves which contract under the flow
with scaling function

p
1 � 2t for t < 1

2
. Each curve is convex, asymptotic to a cone and sym-

metric w.r.t. the y-axis with k2e�hX;Xi constant. It comes from infinity as t ! �1, and con-
tracts to the union of the positive �-axis and the negative �-axis, as t ! 1

2
.

The curves appear in Figure 5b.

Proof. Here k D � so the system of ODEs for � and � becomes´
� 0 D 1C �2;

�0 D ��:

The phase portrait appears in Figure 5a. There are no fixed points, � is increasing and � never
changes sign. The trivial solution � D s, � D 0, corresponds to X being a (space-like) line
through the origin, making the contraction vacuous. To find the other trajectories, note that
the function �2e�

2��2 D k2e�hX;Xi is constant. By symmetry, it suffices to look at trajectories
with � > 0. These trajectories all have � and � going to1 for a finite s. Similarly, when we
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(b) Two contracting curves.

Figure 5. Contraction, a D 0, b D �1.

follow the trajectories backwards, � goes to �1 and � to1 for a finite s. Each trajectory hits
both lines � D � and � D ��. Therefore, the corresponding curve X is convex, crosses each
light-like axis, has finite Minkowski-length with k !1 on each end.

For a more detailed description, we consider the ODE for y as a function of x,

y00.x/ D .1 � y0.x/2/.xy0.x/ � y.x//:

The initial values y.0/ D �˛, y0.0/ D 0, correspond to the .�; �/-trajectory going through
.0; ˛/, so by varying ˛ > 0 we get all contracting curves. Also, with these initial values y is
an even function of x.

Now, it is clear that y is convex, since k > 0. Put

w.x/ D xy0.x/ � y.x/:

Since w0.x/ D xy00.x/ and y00.x/ > 0, w has a global minimum w.0/ D ˛. Therefore,

y00.x/ � ˛.1 � y0.x/2/;

so by integration we get
artanhy0.x/ � ˛x;

i.e., y0.x/ � tanh˛x, for x > 0. Integrating again yields

y.x/ �
1

˛
log cosh˛x � ˛ � x � ˛ �

log 2
˛
:

So the increasing function x � y.x/ has a limit in the interval .˛; ˛ C log2
˛
/.

Therefore, the curve X is asymptotic to a cone. Under the flow, it comes from infinity as
t ! �1, and contracts to the union of the positive �-axis and the negative �-axis, as t ! 1

2
.

Its finite length decreases under the flow.

In [7], Ecker proved that for every space-like curve, there exists a solution to the flow
starting at the curve which exists for all t � 0. For the curve X , this solution must be different
from the contracting solution, which develops a singularity at t D 1

2
. This non-uniqueness

should not be too surprising, as the curvature of X blows up on each end.
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(b) All three curve types.

Figure 6. Hyperbolic rotation, a D 1, b D 0.

8. Hyperbolic rotation

Now suppose a ¤ 0, b D 0, so by scaling and reflecting the curve if necessary, we may
assume a D 1.

Theorem 8.1. There are three types of curves which move forever under a hyperbolic
rotation with unit angular velocity.

The curves appear in Figure 6b.

Proof. Here k D � so the system of ODEs for � and � becomes´
� 0 D 1C ��;

�0 D �2:

The phase portrait appears in Figure 6a. The system has no fixed points and � is increasing.
Direct calculations show that the function �2 � �2 � 2� D hX;Xi � 2� is constant. All trajec-
tories in the right half of the phase plane have � and � going to1 for finite values of s. But
when we follow a trajectory in the backwards direction, three things can happen:

The trajectory crosses the �-axis. Then, by symmetry, � and � go to �1 for a finite s.
The corresponding curve X has finite Minkowski-length with the curvature k increasing from
�1 to1, so the curve has an inflection point.

The trajectory crosses the curve �� D �1. Then � !1, � ! �1 for a finite s. The
curve X is convex, with finite Minkowski-length and k !1 on each end.

The trajectory gets trapped between them the �-axis and �� D �1. Then � ! 0 and
� ! �1, and this happens as s ! �1, since 0 < � 0 < 1. So the curveX is convex, Minkow-
ski-finite in one direction and Minkowski-infinite in the other, with k increasing from 0 to1.
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226 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

To get a better description of the curves X , we look at the ODE for � as a function of �,

� 00.�/ D � 0.�/.�� 0.�/C �.�//:

Here the function � 0.�/e���.�/ is constant and by applying a hyperbolic rotation, we can as-
sume the constant is 1 (which corresponds to hX;Xi D 2� ). So we are left with the ODE

� 0.�/ D e��.�/:

It is easy to see that all solutions cross the �-axis. This corresponds to the fact that each
.�; �/-trajectory crosses the line � D ��. By symmetry, it suffices to look at curves such
that �.0/ � 0. Each one of them blows up for a finite positive value of �. When we go in the
negative � direction, two things can happen:

The curve crosses the � axis and goes to �1 for a finite negative value of �. It is then of
the first kind in the trichotomy above. Under the flow, it goes from the �-axis, as t ! �1, to
the �-axis, as t !1.

The curve is bounded from below by a nonnegative numberL. The curve is of the second
kind when L > 0, and of the third kind when L D 0. Under the flow, it goes from the �-axis,
as t ! �1, and out to infinity, as t !1.

9. Hyperbolic rotation and dilation

Here we assume neither a nor b is 0, soX satisfies the full equation k D a� � b�. As we
saw earlier, the screw-dilation factor is ..2bt C 1/

bCa
2b ; .2bt C 1/

b�a
2b /. The dilation is a con-

traction when b < 0 and an expansion when b > 0.

Theorem 9.1. There are seven types of curves which move under a hyperbolic rotation
and contraction, including the exact solution

� � D .1 � 2t/ tanh �, t < 1
2

, with k D � tan s, ��
2
< s < �

2
, at t D 0.

There are eighteen types of curves which move under a hyperbolic rotation and expansion,
including the exact solutions

� � D .1C 2t/ tan �, t > �1
2

, with k D tanh s at t D 0,

� � D �.1C 2t/ coth �, t > �1
2

, with k D coth s, s > 0, at t D 0.

The curves appear in Figures 7a, 8b, 9b, and Figures 7b, 10b, 10c, 11b, 11c, respectively.

Proof. We start with the special case a2 D b2, where the screw-dilation is just a linear
dilation in one of the variables � and �. By scaling the curve and possibly reflecting it across
the y-axis, it suffices to consider a D b D ˙1. The screw-dilation factor is .2bt C 1; 1/, so
under the flow the curve simply scales linearly in the �-variable. The curves we find below are
unique, up to a hyperbolic rotation and a translation in �.

Assume a D b D �1, i.e., dilation towards the �-axis. Then k D �� C � and the ODE
for � as a function of � is

� 00.�/ D �2�.�/� 0.�/:
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(b) � D .1C 2t/ tan �, � D �.1C 2t/ coth �.

Figure 7. Hyperbolic rotation and dilation, a D b D �1.

This gives � 0.�/ D ��.�/2 C A, and since �.�/ is increasing, we must takeA > 0. By applying
a hyperbolic rotation, we can assume A D 1. The solution is � D tanh �, shown in Figure 7a.
This curve has finite Minkowski-length � (which decreases under the flow) and k D � tan s,
�
�
2
< s < �

2
. The solution to the flow is

� D .1 � 2t/ tanh �; t < 1
2
:

It goes from the �-axis, as t ! �1, to the �-axis, as t ! 1
2

.
Assume a D b D 1, i.e., dilation away from the �-axis. Then k D � � � and the ODE

for � as a function of � is
� 00.�/ D 2�.�/� 0.�/:

This gives � 0.�/ D �.�/2 C A. By applying a hyperbolic rotation, it suffices to look at A D 1,
A D 0 and A D �1.

When A D 0, we just get the space-like unit hyperbola � D �1
�

, and the motion is the
same as before (since the hyperbolic rotation is vacuous).

When A D 1, the solution is � D tan �, shown in Figure 7b. It has infinite Minkowski-
length and k D tanh s. The solution to the flow is

� D .1C 2t/ tan �; t > �1
2
:

It goes from the broken line ¹� � 0; � D ��
2
º [ ¹� D 0;��

2
� � � �

2
º [ ¹� � 0; � D �

2
º, as

t ! �1
2

, to the �-axis, as t !1.
When A D �1, the solution is � D � coth �, � < 0, (or its reflection across the origin),

shown in Figure 7b. This curve is Minkowski-finite in one direction and Minkowski-infinite in
the other, with k D coth s, s > 0. The solution is

� D �.1C 2t/ coth �; t > �1
2
:

It goes from the broken line ¹� D 0; � � 0º [ ¹� � 0; � D 0º, as t ! �1
2

, and out to infinity,
as t !1.
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Figure 8. Hyperbolic rotation and contraction, a D 1, b D �12 .

Now consider the case where a2 ¤ b2. Here we will for simplicity work with the system
in k and l , i.e.,

(9.1)

´
k0 D aC kl;

l 0 D �b C k2;

where k C hl D .a � hb/.� C h�/. Note that the ODE for � as a function of � can also be
written as

(9.2)
d

d�

�
�.�/�

aCb
a�b

�
D
�
2b
a�b

a � b

� 00.�/

� 0.�/
:

We already saw a special case of this for rotating curves (b D 0).
By scaling and reflecting the curve, we may assume a D 1. We look separately at the

cases where b < 0 and b > 0.
First assume b < 0 and write b D �ˇ2 where ˇ > 0. The system (9.1) then takes

the form ´
k0 D 1C kl;

l 0 D ˇ2 C k2:

The phase portrait appears in Figures 8a, 9a. This system behaves similarly to the .�; �/-system
for the rotating curves, which is of course nothing but the special case ˇ D 0. There are no
fixed points and l is strictly increasing. Each trajectory in the right half-plane (k > 0) has k
and l going to1 for a finite value of s. When we follow a trajectory in the backwards direction,
three things can happen:

The trajectory crosses the l-axis. Then, by symmetry, k and l go to �1 for a finite s.
The corresponding curveX has finite Minkowski-length (which decreases under the flow) with
the curvature k increasing from �1 to1, so the curve has an inflection point.

The trajectory crosses the curve kl D �1. Then k !1, l ! �1 for a finite s. The
curve X is convex with finite Minkowski-length and k !1 on each end.
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(b) All three curve types.

Figure 9. Hyperbolic rotation and contraction, a D 1, b D �2.

The trajectory gets trapped between the l-axis and kl D �1. Then k ! 0 and l ! �1,
and this happens as s ! �1, since 0 < k0 < 1. So the curve X is convex, Minkowski-finite
in one direction and Minkowski-infinite in the other, with k increasing from 0 to1.

As in the case of rotating curves, each of these trajectories crosses the line k D �l ,
which corresponds to X crossing the �-axis. When ˇ > 1, each trajectory also crosses the line
k D l , corresponding to X crossing the �-axis. However, when ˇ < 1, this only happens to
the trajectories of the first kind above, just like in the case of rotating curves. This difference
should not be too surprising, considering that the screw-dilation factor has the form�

.1 � 2ˇ2t /
ˇ2�1

2ˇ2 ; .1 � 2ˇ2t /
ˇ2C1

2ˇ2

�
;

so the behavior of the �-component is quite different for ˇ < 1 and ˇ > 1. The curves can be
seen in Figures 8b and 9b.

Now, assume b > 0 and write b D ˇ2 where ˇ > 0. Then the system takes the form´
k0 D 1C kl

l 0 D k2 � ˇ2:

In the right half of the phase plane, we have a fixed point . 1
ˇ
;�ˇ/, which corresponds to X

being the expanding hyperbola, making the rotation vacuous. The fixed point is a saddle point.
There are two trajectories coming into it, two coming out of it, and between these four trajec-
tories we have four families of trajectories, as can be seen in the phase portraits in Figures 10a
and 11a. So there are eight types of curves (excluding the hyperbola). As before, the curves
show different behavior depending on whether ˇ < 1 or ˇ > 1. Instead of describing each of
these sixteen curve types in detail, we refer to Figures 10b, 10c, 11b, 11c. We just mention that
by (9.2), when ˇ > 1, the function �.�/��.ˇ

2C1/=.ˇ2�1/ is decreasing for � > 0, preventing �
from blowing up for a finite positive �.
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(a) Phase portrait.
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(c) Three curve types.

Figure 10. Hyperbolic rotation and expansion, a D 1, b D 1
2 .

10. Hyperbolic rotation, dilation and translation

The only self-similar motion under the flow that remains to be investigated is the one
with a D b ¤ 0 and C D .0; c/, i.e., dilation with factor .2bt C 1/ in the �-variable and trans-
lation of c

2b
log.2bt C 1/ in the �-variable. By scaling the curve if necessary, we may assume

jbj D 1. By applying a hyperbolic rotation to X and reflecting it across the origin if necessary,
we can assume C D .0; 1/.

Theorem 10.1. There are eight types of curves that move under a combination of hy-
perbolic rotation, dilation and translation. Five of them are expanding and three contracting,
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(c) Three curve types.

Figure 11. Hyperbolic rotation and expansion, a D 1, b D 2.

given respectively by the equations

� D ˙
1

2

Z
e�

e�� � e� C A
d�;

for different values of the constant A.

These curves appear in Figures 12b and 12c.

Proof. Instead of looking separately at the cases b D 1 and b D �1, we will only con-
sider b D 1 and find both the space-like and time-like curves that satisfy the corresponding
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232 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

equation. Reflecting the time-like curves across the �-axis then gives the space-like curves
with a D b D �1 and C D .0; 1/.

Now, the ODE for � as a function of � is

� 00.�/ D � 0.�/.2�.�/ � � 0.�//:

Direct calculations show that the function e�.1
2
� 0 � � C 1/ is constant. If we call the con-

stant A, we have

(10.1) � 0 D 2� � 2C 2Ae�� :

The phase portrait of .�; � 0/ can be seen in Figure 12a. By separation of variables, the curves
are given by the integral

(10.2) � D
1

2

Z
e�

e�� � e� C A
d�:

We divide the values of A into a few cases, depending on the number of zeros in the denomi-
nator.

� When A � 0, the denominator has a single root. We get a convex space-like curve and a
convex time-like curve.

� When 0 < A < 1, the denominator has two single roots. We get two convex space-like
curves and a time-like curve with an inflection point.

� When A D 1, the denominator has a double root. We get two convex space-like curves.

� When A > 1, the denominator has no roots. We get a space-like curve with an inflection
point.

The curvature is given by

k D
1 � Ae��

.2� � 2C 2Ae��/
1
2

which follows from (3.4) and (10.1). The three curves at the top Figure 12b have the same
curvature limits so we consider them as being of the same type.

In the special case A D 0, the curves are the space-like � D e2� C 1 and the time-like
� D �e2� C 1, which after reflection becomes the space-like � D �e�2� C 1. Note that in
Section 5 we saw that the curve � D e2� C 1 translates with constant velocity vector 2hC
under the flow. For this curve, the two self-similar motions turn out to be the same (up to
reparametrization), although one of them is defined only for t > �1

2
and the other one for

all t 2 R. Similarly, the self-similar motion of � D �e�2� C 1 is identical (up to repara-
metrization) to the translation with constant velocity vector �2hC, even though the former
is only defined for t < 1

2
. The reason for this is explained in the Appendix.

The space-like solution when A D 0 comes out of the smooth curve � D e2� at time
t D �1

2
. Something similar holds for other values of A. Let �A be the biggest root in the

denominator of (10.2) (or �A D 0 if A > 1) and take any �A > �A. Then we have a space-like
solution which at time t is given by

� D
1

2
log.2t C 1/C

1

2

Z �
2tC1

�a

eu

euu � eu C A
du; � > .2t C 1/�A:

Brought to you by | MIT Libraries
Authenticated

Download Date | 5/9/16 8:02 PM



Halldorsson, Self-similar solutions to the MCF in the Minkowski plane 233
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(a) Phase portrait of .�; � 0/, showing the trajectories
for A D 3

2 , A D 1, A D 1
2 , A D 0 and A D �1 (in

order of decreasing � 0-intercept).
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(c) In order of decreasing y-intercept, A D �1; 0; 12 .

Figure 12. Hyperbolic rotation, dilation and translation, C D h� and a D b D ˙1 on the left and
right, respectively.

By direct calculations, it can be shown that for each � > 0, the right hand side converges to
1
2

log � C C.A;�A/, as t ! �1
2

, where C is a constant that we can get rid of by translating
the curve in the �-variable. Hence these solutions also come out of the curve � D e2� at time
t D �1

2
. So for each A, there is a different self-similar solution to the flow coming out of the

space-like curve � D e2�, the one with A D 0 coinciding with the translating solution. This
non-uniqueness of the flow should not be too surprising, as this curve is Minkowski-finite in
one direction where its curvature blows up.
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234 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

11. Other exact solutions

We conclude this paper with the derivation of five simple exact solutions to the flow that
are not self-similar.

Recall that by Lemma 3.1, if y.x; t/ is a solution in the Euclidean plane which is analytic
and even in x, then Oy.x; t/ D y.ix;�t / is a solution in the Minkowski plane, where i2 D �1:
We have already seen examples of this. The contracting circle in the Euclidean plane,

x2 C y2 D �2t; t < 0;

transforms into the expanding space-like hyperbola in the Minkowski plane,

�x2 C y2 D 2t; t > 0:

The downward translating Grim Reaper in the Euclidean plane,

cos x D eyCt ; t 2 R;

becomes the space-like upward translating solution in the Minkowski plane, that we found in
Section 5,

cosh x D ey�t ; t 2 R:

The same method works if the Euclidean solution is analytic and odd in x if we are able
to cancel out the extra i factor that we get. In the presence of a factor of et , this can be done
by a complex translation in t , since ei

�
2 D i . As an example, note that by translating the Grim

Reaper in the x variable, we can write it as

sin x D eyCt ; t 2 R:

If we replace x by ix and t by�t C i �
2

in this equation, we get the time-like upward translating
solution in the Minkowski plane from Section 5,

sinh x D ey�t ; t 2 R:

Now, in the Euclidean plane, two examples are known of exact solutions to the flow
which are not self-similar. They are Angenent’s oval/paperclip [2],

cos x D et coshy; t < 0;

and its sister solution, the Grim Reaper wave [3, 16],

cos x D et sinhy; t 2 R;

which can be seen in Figure 13.
By applying the transformations to these solutions (i.e., replacing cos x with either cosh x

or sinh x and swapping the sign of t ), we get three exact space-like solutions in the Minkowski
plane. The fourth one is obtained by first reflecting Angenent’s oval across y D x, then replac-
ing cosh x with cos x and swapping the sign of t , and finally translating it by �

2
along each axis

(for aesthetic reasons).
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1
x

1

y

(a) Angenent’s oval, cos x D et coshy, at
t D �4;�1;�14 .

1
x

1

y

(b) The Grim Reaper wave, cos x D et sinhy, at
t D �4;�1; 1.

Figure 13. Exact non-self-similar solutions in the Euclidean plane.

Theorem 11.1. The following are space-like solutions to the MCF in the Minkowski
plane:

cosh x D e�t coshy; t > 0;

cosh x D e�t sinhy; t 2 R;

sinh x D e�t sinhy; t < 0;

siny D e�t sin x; t > 0:

The curves appear in Figure 14. Each of the first three solutions behaves like a self-similar
solution near each of the two boundaries of the time interval where it is defined, serving as
some sort of interpolation between them. This can be made precise by comparing the Taylor
approximations and looking at Figure 16, where the Minkowski-lengths of the curves are shown
as a function of t .

The first solution consists of a curve in the upper half-plane (and its reflection across the
x-axis) and it behaves like the expanding hyperbola y2 D x2 C 2t for t close to 0, and like the
upward translating solution cosh x D e�tCy for t close to 1. The Minkowski-length of the
curve is finite and increases with t from 0 to � .

The second solution behaves like the right and leftward translating solutions

e�x D e�t sinhy

for t close to �1, and like the upward translating solution

cosh x D e�tCy

for t close to1. The Minkowski-length of the curve is finite and decreases with t down to the
limit � .

The third solution behaves like the right and leftward translating solutions

�e�x D e�t sinhy
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(a) cosh x D e�t coshy for t D 1
8 ; 3.
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(b) cosh x D e�t sinhy for t D �4; 0; 3.
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(c) sinh x D e�t sinhy for t D �4;�34 .
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(d) siny D e�t sin x for t D 1
100 ;

1
3 ; 1.

Figure 14. Exact non-self-similar solutions in the Minkowski plane.

for t close to �1, and converges to the �-axis as t ! 0, in a manner similar to the screw-
contracting solution

x � y D �t tanh
x C y

2
:

The Minkowski-length of the curve is finite and decreases with t down to 0.
The fourth solution is in some sense the Minkowski analogue of the Euclidean Grim

Reaper wave. It is periodic in x with period 2� and comes out of the triangle wave at t D 0,
leaving each corner like the expanding hyperbola. As t !1, it converges to the x-axis.

Another way to find exact solutions is to work with the PDE (3.7), i.e., kt D k2k�� � k3.
Note that if we impose the condition k� D 0 or kt D 0, we get four familiar exact solutions:

� k D 1p
2t

, t > 0: X is the expanding hyperbola y2 � x2 D 2t , t > 0.

� k D cosh � : X is the translating solution cosh x D ey�t , t 2 R.

� k D � sinh � , � < 0: X is the translating solution sinhy D et�x , t 2 R.

� k D e�� : X is the translating solution � D e� C t , t 2 R.
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Figure 15. The exact non-self-similar solution tanh � D tan � tan 2t for t D 1
100 ;

�
8 ;

�
4 �

1
10 .

A
B

C

D

EF

1-
Π

4

t

Π

Minkowski-length

Figure 16. The Minkowski-lengths of all the finite length exact solutions as a function of t .
A: cosh x D ey�t , B: � D �2t tanh �, C: sinh x D e�t sinhy, D: cosh x D e�t sinhy,
E: cosh x D e�t coshy, F: tanh � D tan � tan.2t C �=2/.

Now consider solutions of the form k.�; t/2 D A.�/C B.t/. With this substitution, the
PDE takes the form

A00.�/A.�/ �
1

2
A0.�/2 � 2A2.�/C

�
A00.�/ � 4A.�/

�
B.t/ � 2B.t/2 � B 0.t/ D 0:

In order for this to hold, we need A00.�/ � 4A.�/ to be constant, so (after possibly rescaling,
reflecting and rotating the curve, and letting any additive constant be included in B) we have 5
possibilities: A.�/ D ˙e�2� , A.�/ D ˙ cosh 2� , A.�/ D sinh 2� . Then

A00.�/ � 4A.�/ D 0

and
A00.�/A.�/ �

1

2
A0.�/2 � 2A2.�/
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238 Halldorsson, Self-similar solutions to the MCF in the Minkowski plane

takes on the constant values 0; 0; 2; 2;�2, respectively. If we denote the constant by 2C , we
are left with the easily solvable ODE

B 0.t/ D 2.C � B.t/2/:

Thus we get the following exact solutions, where in each case, X is found by integration:

� k2 D e�2� C 1
2t

, t < 0: X is the solution � D �2t tanh �, t < 0.

� k2 D e�2� C 1
2t

, t > 0: X is the solution � D �2t coth �, t > 0.

� k2 D �e�2� C 1
2t

, t > 0: X is the solution � D 2t tan �, t > 0.

� k2 D cosh 2� C coth 2t , t < 0: X is (after rescaling) the solution sinh x D e�t sinhy,
t < 0.

� k2 D cosh 2� C coth 2t , t > 0: X is (after rescaling) the solution cosh x D e�t coshy,
t > 0.

� k2 D cosh 2� C tanh 2t , t 2 R: X is (after rescaling) the solution cosh x D e�t sinhy,
t 2 R.

� k2 D � cosh 2� C coth 2t , t > 0: X is (after rescaling) the solution siny D e�t sin x,
t > 0.

� k2 D sinh 2�Ccot 2t , 0 < t < �
2

:X is (after rescaling) the solution tanh � D tan � tan 2t ,
0 < t < �

4
.

We recover all our previous exact solutions in addition to one new solution:

Theorem 11.2. The following is a solution to the MCF in the Minkowski plane:

tanh � D tan � tan 2t; 0 < t < �
4
:

The curve appears in Figure 15. As t ! 0, it comes out of the broken line²
� � 0; � D �

�

2

³
[

²
� D 0;�

�

2
� � �

�

2

³
[

²
� � 0; � D

�

2

³
;

behaving like the solution � D 2t tan � as t ! 0C. As t ! �
4

, it converges to the �-axis,
behaving like the solution � D �2t tanh � as t ! 0�. So this new solution serves as some
sort of interpolation between these two exact self-similar solutions. Moreover, its Minkowski-
length is finite, increases from 0 to a maximum value and then decreases to 0 again.

Note that we have a total of twelve exact solutions in the Minkowski plane, compared
to only four in the Euclidean plane (known to the author). The curvature of the Euclidean
solutions is as follows:

� k D 1p
�2t

, t < 0: X is the contracting circle x2 C y2 D �2t , t < 0.

� k D cos � : X is the translating Grim Reaper cos x D et�y , t 2 R.

� k2 D cos 2� � coth 2t , t < 0: X is (after rescaling) Angenent’s oval cos x D et coshy,
t < 0.

� k2 D cos 2� � tanh 2t , t 2 R: the curve X is (after rescaling) the Grim Reaper wave
cos x D et sinhy, t 2 R.
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Halldorsson, Self-similar solutions to the MCF in the Minkowski plane 239

In particular, we see that many of the exact Minkowski solutions above correspond to these
four exact Euclidean solutions under the transformation from Lemma 3.2, which would have
been another way of deriving them.

A. Appendix

In this Appendix we find all space-like curves in the Minkowski plane which are invariant
under some self-similar motion.

As a warm up, we solve the same task for curves in the Euclidean plane. LetX W I ! R2

be a curve in the Euclidean plane. A self-similar motion of X is a map OX W I � J ! R2 of the
form

OX.u; t/ D g.t/eif .t/X.u/CH.t/:

Here J is an interval containing 0 and f; g W J ! R and H W J ! R2 are differentiable func-
tions such that f .0/ D 0, g.0/ D 1 andH.0/ D 0, and hence OX.u; 0/ D X.u/. The function f
determines the rotation, g determines the dilation and H is the translation term.

The self-similar motion leaves the curve invariant if and only if�
@ OX

@t
.u; t/; N.u; t/

�
D 0;

or equivalently
g.t/f 0.t/hX.u/; T .u/i C g0.t/hX.u/;N.u/i

C he�if .t/H 0.t/; N.u/i D 0;

for all u 2 I , t 2 J . Here T D Xs is the unit tangent (s is the Euclidean arc-length) and
N D iT is the leftward pointing unit normal. By looking at this equation at time t D 0, we see
that X has to satisfy

(A.1) ahX; T i C bhX;N i C hC;N i D 0;

where a D f 0.0/, b D g0.0/ and C D H 0.0/. Satisfying an equation of this form is also a suf-
ficient condition for X to be invariant under a self-similar motion. To see that, we look at three
cases.

When .a; b/ D .0; 0/ and C ¤ 0, equation (A.1) reduces to hC;N i D 0, so X is any
straight line with direction vector C , which is of course invariant under any translation in
direction C .

When .a; b/¤ .0; 0/ andC D 0, we introduce the functions � D hX; T i and � D hX;N i.
Much like their Minkowski counterparts, they always satisfy

�s D 1C k�;

�s D �k�;

where k D hTs; N i is the signed curvature. Here (A.1) becomes a� C b� D 0. The case b D 0
yields � D 0, so X is a circle with center at the origin, which is of course invariant under any
rotation around the origin. Now assume b ¤ 0. Then we note that

d

ds
.b� � a�/ D b
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Figure 17. Logarithmic spirals in the Euclidean plane.

so b� � a� D bs and hence � D b2

a2Cb2
s, � D � ab

a2Cb2
s and k D a

bs
. Therefore, the curve is

given by the formula

X D .� C i�/ei
R
kds
D

b

b C ia
s
bCia
b ; s > 0:

Curves of this form are known in the literature as logarithmic spirals (Figure 17) and they
remain invariant under any combination of rotation and dilation such that

bg.t/f 0.t/ D ag0.t/;

i.e., ebf .t/ D g.t/a. When a D 0, the spiral reduces to a straight line through origin, which is
invariant under any scaling.

When .a; b/ ¤ .0; 0/ and C ¤ 0, we can get rid of the translation term C from (A.1)
by translating X by the fixed vector C

bCia
. Then we are back in the case above, so X is

a logarithmic spiral (circle/line) with center at � C
bCia

.
So we have recovered the following well-known result.

Theorem A.1. The only curves in the Euclidean plane that are invariant under a self-
similar motion are:

� lines, invariant under translations along their direction vector and dilations about a point
on the line,

� circles, invariant under rotations around their midpoint,

� logarithmic spirals,X D 1
1Ci˛

s1Ci˛, s > 0, invariant under any combination of rotation
and dilation such that

ef .t/ D g.t/˛:
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Now we move to the Minkowski plane. Let X W I ! R1;1 be a space-like curve in the
Minkowski plane. The self-similar motion given by (4.1) leaves the curve invariant if and
only if �

@ OX

@t
.u; t/; N.u; t/

�
D 0;

or equivalently,

g.t/f 0.t/hX.u/; T .u/i � g0.t/hX.u/;N.u/i

� he�hf .t/H 0.t/; N.u/i D 0;

which at time t D 0 results in

(A.2) ahX; T i � bhX;N i � hC;N i D 0:

Satisfying an equation of this form is also a sufficient condition for X to be invariant under
a self-similar motion. As before, we look at three cases.

When .a; b/ D .0; 0/ and C ¤ 0, we have hC;N i D 0 so X is any straight line with
direction vector C , which is of course invariant under any translation in direction C .

Assume .a; b/ ¤ .0; 0/ and C D 0. Then equation (A.2) reduces to a� � b� D 0. When
b D 0, we have � D 0 soX is a hyperbola (asymptotic to the light-like axes), which is invariant
under any hyperbolic rotation. When a D 0, we have � D 0 so X is a line through the origin,
which is invariant under any scaling. In the general case, note that

d

ds
.b� � a�/ D b

so b� � a� D bs. This has no solutions when a2 D b2, but when a2 ¤ b2, we get

� D
b2

b2 � a2
s; � D

ab

b2 � a2
s and k D

a

bs
:

Therefore, the curve is given by the formula

X D .� � h�/e
R
kds
D

b

b C ha
s
bCha
b ; s > 0:

In the diagonal basis, it takes the form

� D
b

b C a
s
bCa
b ; � D

b

b � a
s
b�a
b ; s > 0:

These Minkowski analogues of logarithmic spirals are invariant under any combination of hy-
perbolic rotation and dilation such that bg.t/f 0.t/ D ag0.t/, i.e., ebf .t/ D g.t/a. They show
different behavior depending on whether a2 < b2 or a2 > b2, as can be seen in Figure 18.

Assume .a; b/ ¤ .0; 0/ and C ¤ 0. When a2 ¤ b2, we can get rid of the translation
term C from equation (A.2) by translating the curve X by the fixed vector C

bCha
. Then we are

back to the case above, so X is one of those curves centered at � C
bCha

. We are left with the
case a2 D b2. By reflecting across the y-axis if necessary, we may assume a D b. By trans-
lating X along the �-axis, we can cancel out the �-component of C , so we may assume C
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Figure 18. Minkowski analogues of logarithmic spirals.

only has a �-component, i.e., C D .0; c/. By applying a hyperbolic rotation to X and reflect-
ing across the origin if necessary, we can assume c D b. Then equation (A.2) takes the form
� � � � h.0; 1/; N i D 0. The equivalent ODE for � as a function of � is � 0.�/ D 2�.�/, whose
solution is � D e2�. This curve is invariant under any combination of hyperbolic rotation,
dilation and translation such that g.t/ D ef .t/ and H.t/ D .0; f .t//. Here the screw-dilation
factor has the form g.t/ehf .t/ D .e2f .t/; 1/, so it is just a dilation in the �-variable.

So we have proved the following.

Theorem A.2. The only curves in the Minkowski plane that are invariant under a self-
similar motion are:

� lines, invariant under translations along their direction vector and dilations about a point
on the line,

� hyperbolas with light-like asymptotes, invariant under hyperbolic rotations around their
midpoint,

� Minkowski analogues of logarithmic spirals, X D 1
1Ch˛

s1Ch˛ D . s
1C˛

1C˛
; s
1�˛

1�˛
/, s > 0,

invariant under any combination of hyperbolic rotation and dilation such that

ef .t/ D g.t/˛;

� the curve � D e2�, invariant under any combination of hyperbolic rotation, dilation and
translation such that

g.t/ D ef .t/ and H.t/ D .0; f .t//:
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