Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

Home Search Collections Journals About Contactus My IOPscience

Polaron effects on the performance of light-harvesting systems: a quantum heat engine

perspective

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 New J. Phys. 18 023003
(http://iopscience.iop.org/1367-2630/18/2/023003)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 18.51.1.3
This content was downloaded on 09/05/2016 at 19:06

Please note that terms and conditions apply.



https://core.ac.uk/display/83225652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/18/2
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
17 September 2015

REVISED
13 December 2015

ACCEPTED FOR PUBLICATION
17 December 2015

PUBLISHED
28 January 2016

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 18 (2016) 023003 doi:10.1088/1367-2630/18,/2/023003

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Polaron effects on the performance of light-harvesting systems: a
quantum heat engine perspective

Dazhi Xu"’, Chen Wang™’, Yang Zhao' and Jianshu Cao™*

' School of Materials Science and Engineering, Nanyang Technological University, Singapore

> Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

* Department of Physics, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People’s Republic of China
* Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore

E-mail: jianshu@mit.edu

Keywords: quantum open system, heat engine, strong coupling

Abstract

We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium
baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium
quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-
induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting,
the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are
coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is
evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of
the system-phonon coupling strength can be covered. We show that the coupling with the phonon
bath not only modifies the steady state, resulting in population inversion, but also introduces a finite
steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling
limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by
Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).

1. Introduction

With the rapid developments in measurement and manipulation of microscopic systems, quantum effects such
as coherence and entanglement are often utilized to enhance the performance of microscopic devices. Even in
biological systems, both experiments [1] and theoretical models [2, 3] reveal that the long-lived quantum
coherence may play an important role in highly efficient energy and electron transfer processes. How biological
systems, such as light-harvesting complex, preserve such long-lived coherence and how nature benefits from the
coherence are two key questions that define the emerging field of quantum biology.

Taking a three-level system as a generic theoretical model, many interesting mechanisms can be well
demonstrated and understood. Recently, the sunlight-induced exciton coherence is studied in a V-configuration
three-level model [4, 5]. An interesting idea is to consider the energy transfer process from the perspective of heat
engine [6]. For example, the coherence introduced by an auxiliary energy level can enhance the heat engine
power [7, 8]. The early work considering a three-level maser model as a Carnot engine was carried out by Scovil
and Schulz-DuBois [9, 10], yielding the heat engine efficiency 7, and its relation with the Carnot efficiency. Later
papers elaborately reexamined the dynamics of this model by the Lindblad master equation and showed that the
thermodynamic efficiency ), is achieved when the output light-field is strongly coupled with the three-level
system [11-13]. The quantum heat engine provides us a heuristic perspective to better understand the basic
physical processes in energy transfer and presents useful insight to enhance the efficiency and output power in
small systems [14—17].

In this paper, we study the polaron effects of a phonon bath on the energy transfer flux and efficiencyin a
generic three-level model. The energy transfer efficiency is defined as the ratio between the trapping and
pumping fluxes. The canonical distribution of a thermal equilibrium system requires a negligible coupling

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. The light-harvesting energy transfer process is described by a three-level system: its ground state |0) and the excited state | 1)
(12)) is coupled with the pumping (trapping) bath; the excited states |1) and |2) are diagonal-coupled with the phonon bath; the
internal transition strength between |1) and |2) is characterized by J. The energy fluxes 7, J, and J; describe the energy exchange
rate of the system with the pumping, the phonon and the trapping baths, respectively. The flux into the system is defined as the positive
direction.

between the system and its environment. As the coupling strength grows, the steady state of the system will no
longer be canonical [18-22]. This non-canonical state actually introduces the steady state coherence into the
system without refereeing to specific forms of light—matter interaction or designing exotic system
configurations. The bath-induced coherent effect is investigated by the polaron-transformed Redfield equation
(PTRE) [23, 24], which bridges both the weak and strong system—bath coupling regions. The difference between
the steady state efficiency and strong coupling limit 7, depends strongly on the phonon-induced coherence.
Taking into account of the behavior of both the flux and efficiency, we are able to optimize coupling and
temperature in designing optimal artificial energy transfer systems.

In this paper, we first introduce the three-level model and its non-equilibrium environment in section 2, and
then formulate the PTRE in section 3. In section 4, the polaron effects of phonon-bath on the energy transfer flux
and efficiency are studied in detail. We summarize our results in the last section. We leave the detailed derivation
and properties of the PTRE in the appendix.

2. Three-level system model

2.1.Model system

We consider the energy transfer process in the three-level system illustrated in figure 1. The site energy of the
ground state |0) is set to zero. The two excited energy levels |1) and | 2) form a two-level system (TLS, in the
following the TLS is referred to the two excited states), with the corresponding site energy ¢; and ¢,. The
transition due to the dipole—dipole interaction is characterized by J. Then the three-level system is modeled by
the Hamiltonian H as:

Ho= X lipil + 201) (21 + [2) (1. M
i=1,2

We are interested in the transfer process in the single excitation subspace: the three-level system is firstly excited
to state | 1) by a photon field, then the excitation is transferred to state |2) through J (mediated by phonon
modes), and finally the excitation decays to the ground state |0) via spontaneous radiation. The pumping and
trapping processes are modeled by the interaction with the two independent photon baths, which are coupled
separately with two transitions |0) < |1)}and |0) « |2). The Hamiltonian of the photon baths and their
interactions with the three-level system are given by

H, = prka;kapk + (gpka;k [0) (1] + h.c.), )
k

H, = Zwtka;;{atk + (gtka:k [0) (2] + h.c.), 3)
k
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Figure 2. Realistic examples which can be studied by the three-level model with different heat baths. (a) In the photosynthesis process,
the three-level system works as an antenna that captures the energy from sunlight and then transfers to the reaction center. (b) Three
eigenstates manifolds in photoisomerization. The bright states are pumped by the light field, then the populations relax to the
intermedium and product states in the phonon environment. (c) The heat transfer in nanoscale can also use the three-level system as a
bridge connecting the high temperature and low temperature heat baths. (d) In the electron transport problem, electrons tunnel
through double quantum dots which can be described by a three-level system. The quantum dot connects with a source and a drain.

where wy. (i = p, t)is the eigen frequency of the bath mode described by the creation (annihilation) operator
a ;( (a;n), and its coupling strength to the excited state is g;z. We note that the rotating wave approximation is

applied in the system-bath interaction term. A phonon bath with creation and annihilation operators b and by
of the bath mode wyy is coupled to the TLS via diagonal interaction with the coupling strength of f;. Thus, the
phonon part is described by

Hy = wab{ b + (1) (1] = 12) (2D DO(fb{ + hec). )
k k

This microscopic three-level system immersed in the non-equilibrium environment was studied as a
quantum heat pump phenomenologically without considering the details of the system—bath coupling [10]. In
the case that the phonon bath is replaced by a single driving mode strongly coupled to the system, the dynamic
steady states have been solved and the efficiency is given by 1, = €,/ ¢, [12, 13]. Inreality, the three-level model
can be realized in both nature and laboratory. Taking the energy transfer process in photosynthetic pigment for
example (figure 2(a)), different baths could arise from different sources: the pumping light field (such as the sun-
light photons) is considered as a high temperature boson bath; the trapping bath is formed by the surrounding
electromagnetic environment which models the energy transfer to the reaction center; and the phonon bath
with inverse temperature (3, describes the phonon modes coupled with the excited states. In addition, such a
three-level (or more intermediate energy levels) system is used to describe photoisomerization (figure 2(b)),
nanoscale heat transfer [25] (figure 2(c)) or photovoltaic current in double quantum dots [26] (figure 2(d)).

In this paper, we focus on the effects of the phonon modes on energy flux and efficiency. Usually when the
system—phonon bath coupling strength is not weak, the Bloch—Redfield equation approach cannot be applied.
Therefore, we will introduce the PTRE [23, 24], which gives reliable results from the weak to strong coupling
region using super Ohmic bath spectrum with large cut-off frequency w, to study the bath-induced coherent
effects of this quantum system. The validity of the PTRE has been verified by comparing with the numerical path
integral method [21] and time-convolutionless polaron master equation [27, 28].

2.2. Definitions of energy flux and transfer efficiency
We are interested in the energy transfer flux and efficiency of the three-level system at its non-equilibrium steady
state. The steady state solution can be obtained by the master equation formally written as

dp(¥)

dt = (‘CO + ‘cp + [-:v + ‘Ct)p(t)> (5)
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which describes the dynamics of the reduced density matrix (RDM) p (¢) of the three-level system. The Liouville
operator £, denotes the non-dissipative term, £, £, and £, denote the dissipation effects associated with the
pumping, phonon coupling, and trapping, respectively.

To quantitatively investigate the energy transfer process, we define the steady state energy fluxes by
calculating the energy change of the three-level system

E(o0) = Trs[d[:i f) Ho]h_m = S TRlLilp(00) 1 Hol
i=p,v,t

=5+ I+ I (6)

It can be shown that Tr,[£oHy] = 0. The three energy fluxes J;, i = p, v, t are defined with respect to their
corresponding dissipation operator £;. These energy fluxes have clear physical meanings of the energy exchange
rate with the pumping field, phonon environment, and trapping field, respectively. In this work, we are
interested in the steady state, in equation (6) the fluxes are calculated with p (c0), which is obtained by solving
p(t) = 0. Straightforwardly, we define the energy transfer efficiency by

Ji(o0)
Tp(00)
which is the ratio between the output and the input energy fluxes.

Without losing generality, we assume the pumping (trapping) bath is weakly coupled with the system and
can be described phenomenologically by the local Liouville operator of the Lindblad form

, @)

Lilpl= %[(m + 1)Q0; pO;" — {007, p})
+ n; 20;" pO; — {O; O, pP]1, ®)

where i = p, t refers to the two photon baths, 5, and #; are the corresponding decay rate and average photon
number, and the system operators are defined as O, = [1) (0], O;" = [2)(0|. The system—phonon bath
coupling will be treated more rigorously as we are interested in how this coupling affects the energy transfer over
abroad range. To achieve this goal, we apply the PTRE equation, which will be introduced in the following
section.

3.PTRE

The Redfield master equation is valid up to the second-order perturbation of the system—bath interaction. In
order to go beyond this weak coupling limit, polaron transformation is introduced to incorporate the high-order
system—bath interaction into the dynamics of the system. Here we focus on the coupling strength between the
system and phonon bath, and the polaron transformation is only related to the two excited states. Therefore it is
convenient to consider the TLS first, then the resulting Liouville operator describing the TLS dissipative process
can be incorporated into the dynamics of the three-level system.

We employ the Pauli matrix o, = |1) (2| 4 |2)(1|and 0, = |1) (1| — |2) (2|, and define the polaron
transformation

A = e ioB2[eiB'/2 — F, + A, + V, 9)

where H' = Hy, + H, is the Hamiltonian of the TLS with the phonon bath, the collective bath operator is
B= ZiZk (fb{ — fk*bk)/ka and

. € J
Hy = =0, + “koy, 10
0 20 250 (10)
_— i | f?
Hy = wubiby — > ——, (11)
k Kk Wk
V= é[ox(cosB — K) + 0, sinB]. (12)

The transformed system-bath interactionis V and € = ¢; — ¢,. The expectation value of the bath operator

k= "Try [pz cos B]

N 1
_exp[ j; dwwwz(nv(w)—kz)] (13)

is subtracted from V as a renormalization factor, with pg = exp(— Gy Hp) / Try[exp(— B, Hy)] the thermal state
of the phonon bath and 1, (w) = [exp(B,w) — 1]7! the average phonon number. The spectrum function is

4
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chosen to be super-Ohmic as

JWw) = 47> |fiP6(w — wy) = anwiu; temw/ v, (14)
k

where w. is the cut-off frequency and « is a dimensionless parameter characterizing the system—bath coupling
which is proportional to \/w, (\is the reorganization energy). It can be verified that the thermal average of V is
zero, i.e., V is of the order of bath fluctuations and thus is a reliable perturbation parameter. Based on this
consideration, the Born—-Markov approximation is applied to derive the PTRE in the Schrodinger picture as

do(®) . - -
—— =—i[Hy, p\()] — Y [Timmipl(t) + Tipl (7T
dt ij=z,%
— T5mpl ()75 — Dfripl(6)7l. (15)

Here, F?j[ is defined by the bath correlation function. We denote pg (p,) as the RDM of the TLS in the polaron
(local) frame, and define a new set of Pauli operator

=+ (+ = 1=)(—I, (16)
T+:|+><_|r7—:|_><+|r 17)

where Hy |+) = €5 | £ ). The detailed derivation of the PTRE can be found in appendix A.

The PTRE was firstly introduced by Silbey and coworkers [23, 24], and has been widely used in solving the
strong system—bath coupling problems. The validity of the PTRE in the whole range of coupling strength
requires the bath cut-off frequency should be much larger than the internal coupling strength, w, > J; if
w. < J,the PTRE only works well in the strong coupling regime [21]. To extend the valid regime of the polaron
approach even for small w, a variational polaron transformation can be applied, where f; in the bath operator B
is substituted with a variational parameter [21, 24, 29]. Moreover, it will be shown in B that the results given by
PTRE are consistent with those given by the Redfield equation in the weak coupling limit and the Fermi’s golden
rule (or Frster theory) in the strong coupling limit [21, 25, 26]. Therefore, the PTRE smoothly connects the two
limits, and provides a useful tool to study the intermediate coupling region where there are usually no reliable
approximation methods.

For further discussion on the property of the entire three-level system with the other two weakly coupled
photon baths, equation (15) for the two excited states is transformed back into the local basis and rewritten as
[b®]; = Zmn (L )j,mm Lo, (£) Iun- Then the expressions for the Liouville operator £, are obtained
accordingly. The relations between the elements of pg (t) and p, () are also given in appendix A.

The Bloch-form equation of the three-level system is derived following from equation (5). One thing should
be noted, the population conservation of the TLS gives [p,(£) 1 + [p,(t) ]2 = 1; while for the three-level
system, the ground state population should be included and population conservation becomes
Poo () + p11(t) + p,, (1) = 1, where we denote Py () = (i| p(#)|j)- The Liouville operator £, which
considers the polaron effects has been obtained from the PTRE of the TLS. The effects of the pumping and
trapping baths are described by the Lindblad operator £, and £, defined in equation (8). Therefore, the PTRE
for the three-level system is given as

P11 () — pyy (t) P11 () — pyy (t) YpMp — Vil
d [P () + py (D) _ P11 (1) + pyy (t) T2t + yeme (18)
de|  Rlp,®)] Rlp (] 4 0 ’
Ilp (O] Jlp ] 0

where the matrix M is shown in appendix B. The equations for the off-diagonal terms py, (t) and p,, () are
decoupled from equation (18) and not related with the energy flux and transfer efficiency, thus will not involve in
the following discussion.

4. Energy transfer flux and efficiency

4.1. Steady state flux

The steady state of the three-level system can be easily obtained from equation (18), which incorporates the
polaron effects of the phonon bath. Then the steady state energy fluxes defined in equation (6) are
straightforwardly given as

Mo

Jp = ayplnppy — (np + Dyl — 5

(np + DR[py,]s 19)
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Figure 3. The steady state pumping (red solid line) and trapping (blue dashed line) energy fluxes versus . The minus sign in front of
the trapping flux suggests the energy flows into the trapping bath. Both fluxes show a maximal value in the weak coupling case and
then quickly decreases to zero when «vincreases. The inset shows the strong coupling case. We choose the parameters in units of
Ja/] =5 6/] = 45, w/] =5, Bp) = 0.02, 3] = B,] = Land v, /] = /] = 0.0L

Tt = M [”tpoo — (n¢ + 1)022] - %(”t + 1)9{[912]) (20)

where we denote the steady state elements of RDM by pj = (i p, (00) | j) for brevity. Figure 3 presents energy
fluxes with respect to av. In the extreme case that the system bath coupling is switched off (o« = 0), there is no loss
of excitation energy, which resultsin J, = — J;, suggesting the input energy flux from the pump completely
flows into the trap through the three-level system (note that we chose the positive direction as that the flux flows
into the system). When the coupling turns on, a portion of energy flux leaks into the phonon bath thus
J» > —J;- Both the pumping and trapping energy fluxes reach their optimal values in the intermediate coupling
region and decrease to zero when the coupling strength is strong.

In the context of heat engine, the trapping energy flux J; in our model corresponds to the output power and
J,, corresponds to the input power. Usually, the power of a heat engine is small when the efficiency is high.
Particularly, at the maximal efficiency, all the processes are required to be quasi-static and take infinite time, and
thus the power will be zero. To balance the conflict between the efficiency and power, much work has been done
to study the efficiency at maximum power [30-32]. In the following, we will calculate the energy transfer
efficiency of our system and show its competitive relation with the trapping flux, in analogy to the efficiency and
power in the heat engine.

4.2. Steady state efficiency

Before presenting the result of efficiency defined in equation (7), we begin with the analysis of the limiting cases.
The first term on the right side of equations (19) and (20) depends only on the populations of the three-level
system, and the second term represents the contribution of the off-diagonal terms (coherence in the local basis).
Aswe show in figure C1 of appendix C, the steady state coherence in the local bases p,, vanishes in the strong
coupling limit, then the efficiency is completely determined by the populations. According to the steady state
solution of the second equation in equation (18), we obtain the relation

Yolnppg — (np + D] = el + 1) pyy — nepgel- (21)

With this relation, the efficiency in the strong coupling limit reads

— eYl(ne + 1)P22 - ”tpoo] _ &

. (22)
avpl(np + 1) py — npph0 €1

This result indicates that when the coherence is negligible due to the strong system-phonon coupling, the energy
transfer efficiency ) approaches 7, which is consistent with the key result of [12]. We notice that equation (21)
shows that the net rate of pumping one excitation to | 1) equals to the net rate of trapping one excitation from |2)
to |0). In general, the efficiency is closely related to the phonon bath induced coherence [33] of the excited states.
If we require the system outputs positive energy, i.e., 7, (11; + 1) p,, > 7,1 pyp> then according to equations (19)—
(21), R[p,,] > 0leadsto n > 7, and vise versa.

According to our discussion of the flux in the last subsection, when the coupling strength o« = 0, the energy
transfer efficiency 7 = 1because there is no loss of energy flux. When the coupling strength gradually increases,
the efficiency decreases. However, after reaching its minimum value, the efficiency starts to rise with a, which is
shown in figure 4(a). The increase of efficiency assisted by noise was studied extensively in the context of energy
transfer in light-harvesting systems [34—36]. As we further increase «, the efficiency grows beyond the strong

6
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Figure 4. (a) The steady states efficiency 7, (b) the excited states population p,, — p,, and coherence R[p,,] versus the system-
phonon bath coupling strength characterized by dimensionless parameter cv. The dashed line indicates the strong coupling limit 7, in
(a). When the populations are inverted, 7 is less then 7, the red dots indicate the corresponding range of a. The results given by the
Redfield equation and the Fermi’s golden rule are shown with the dashed—dotted lines. The strong coupling regions are plotted in the
insets. All the parameters are chosen as the same as in figure 3.

coupling limit 77, and then gradually approaches this limit from above. The strong coupling region is plotted in
the inset of figure 4(a).

Interestingly, we find population inversion of the two excited states in the regimes of 7 > 7,. We plot the
population difference between states | 1) and | 2) in figure 4(b). In the intermediate coupling region indicated
between the two red dots, the steady state population satisfies p;, < p,, (the effective temperature associates
with these two states is positive), the corresponding efficiency nis less then 7, as shown in figure 4(a). On the
contrary, outside this intermediate region, i.e., when the coupling is either very weak or very strong, the
populations are inverted p;; > p,, (the effective temperature is negative); meanwhile ry increase beyond 7,. In
the local basis, the population and coherence are coupled with each other due to the polaron effects: the
population inversion happens when 2 [p;,] < 0 (figure 4(b)). The fact that the population and coherence in the
local basis have similar behavior can be explained from equation (A9) and equation (A10). Here, the coherence
(7% (t)) in the polaron basis is negligibly small (see the inset of figure C1 in appendix C) to have significant effects,
then theterms (o,) = p;; — p,, and (oy) = 2R [p,,] are both determined by (7).

In figure 4(a), we also compare the efficiency 1 calculated by the PTRE method with those predicted by the
Redfield equation and the Fermi’s golden rule approaches. As we mentioned before, in the weak and strong
coupling limits, the PTRE method agrees with the Redfield equation and the Fermi’s golden rule, respectively,
and it connects these two limits with a non-trivial minimum which is related to the coherence in the local basis.

4.3. Further discussions

4.3.1. Kinetic models

In the strong coupling regime, we can map this energy transfer process into a simple excitation kinetic model as
shown in figure 5(a). Each step of energy transfer is described by an effective flux (7 ;ff, Jand 7¢1). The
relaxation of the two excited states is characterized by the rate ~y,, which is defined in equation (C2) of

appendix C. As shown in figure 5(b), the effective transfer flux .7 between the two excited states is

approximately proportional to the relaxation rate 7,. When J ¢ (or ,) is smaller than the trapping flux 7 (or
7,) the excitation in excited states will be quickly captured by the trapping field without enough time to first get

7
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Figure 5. (a) The kinetic model of a single excitation transfer cycle. In the strong coupling regime, the energy transfer processes

between different local states can be described by the effective fluxes. (b) The relaxation rate +, versus system—bath coupling strength
a. The red line indicates the trapping rate -y,. The parameters here are the same with figure 3.
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Figure 6. (a) The two excited states form a black box for the input and output excitation due to the internal coupling. (b) The average
residence time (¢) is proportional to the total population of the excited states. The parameters here are also the same as those in
figure 3.

equilibrated with the phonon bath. Consequently, the populations of the two excited states are inverted and the
real part of the coherence becomes negative. This phenomenological mechanism explains why the efficiency n is
higher than 7, in the strong coupling limit.

When the system—bath coupling strength becomes weaker, the local basis frame is no longer a good option
for the kinetic picture. The two excited states couple with each other and can be together considered as an excited
state manifold, as shown in figure 6(a). The single excitation carrying certain amount of energy passes through
the excited states | 1) and |2), and its average residence time (¢) in the excited states is negatively correlated with
the transfer efficiency (in analogy to the light-harvesting efficiency in [36, 37]): i.e., the longer the excitation stays
in the excited states, the more energy will be lost to the phonon bath, and the lower energy transfer efficiency will
be. Duringa cycle that the single excitation starts from |0) and finally returns to |0), the average residence time
(t)is proportional to the excited states population p;; + p,, at the steady states, as shown in figure 6(b). Though
not quantitively exact, this kinetic model qualitatively explains the local minimal of the efficiency 7 via the
average residence time (t) ~ p,; + p,,.

4.3.2. Temperature dependence

Besides the system—phonon bath coupling strength, the temperature of the phonon bath also affects the energy
transfer process, as shown in the two-dimensional contours of energy transfer efficiency (figure 7(a)) and
trapping energy flux (figure 7(b)). The efficiency behaves the same at the high phonon bath temperature as in the
strong coupling. In the high temperature limit, even when the coupling strength is weak, the efficiency is still
close to 1,. As seen from equation (13), in either limit « — oo or 8, — 0, the renormalization factor xk — 0;
therefore, except for the weak coupling and low temperature case, the efficiency 7 does not change obviously.
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Figure 7. The dependence of (a) the energy transfer efficiency and (b) the trapping energy flux on the coupling strength and
temperature of the phonon bath. The temperatures and dissipation coefficients of the pumping and trapping bath are the same as in
the figure 4.

The trapping energy flux has a different temperature dependences for weak and strong system—bath
couplings. The flux — J; grows (goes down) with descending 3, when « is large (small). Moreover, — J; does not
sensitively depend on (3, with small «v in contrast with the efficiency. When the coupling v is around 1, the flux
— J; changes no more than 20% in amplitude comparing with its maximum. The optimization of the efficiency
and the trapping flux can be achieved in two different regimes: (1) The coupling strength is weak and the
temperature of the phonon bath is high. (2) The coupling strength is medium (« ~ 2.5) and the bath
temperatureislow (5, > 1). The first regime corresponds to the high temperature classical limit, and the
second regime corresponds to low-temperature quantum regime, where bath-induced coherence enhances the
energy transfer process.

5. Conclusion

In this paper we use the PTRE to analyse the effects of the phonon bath on the energy transfer process in a generic
three-level model. As a quantitative method, the PTRE can reliably describe the dependence of the steady state
coherence on the system—bath coupling strength ranging from the weak to strong coupling regime. Our analysis
shows that the steady state coherence between the two excited states is crucial to the energy transfer efficiency.
When the effective temperature of the excited states is negative (populations are inverted), the coherence carries
a positive real part and enhances the efficiency beyond the strong coupling limit 77,. On the contrary, if the
effective temperature is positive (populations are not inverted), the coherence carries a negative real part and is
detrimental to the efficiency. The energy flux and efficiency compete with each other and cannot reach
maximum simultaneously; however, the study of their behaviors with respect to the coupling strength and
temperature provides the key information about how to make an optimal compromise between the two
quantities. We will consider how to use quantum control to optimize the energy transfer process in the future
study.
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Appendix A. Secular-Markovian Redfield equation in the polaron frame

The two excited states coupled with the phonon bath is described by the Hamiltonian in equations (1) and (4),
which is broadly studied as the spin-boson model. Via the polaron transformation given in equation (9), the
system—bath coupling is effectively weakened to the order of the thermal-fluctuation, hence the second-order
perturbation theory can be applied. With the secular-Markov approximation, the PTRE for spin-boson model
in the interaction picture is given by

dpil (¥ o0 ~ ~ /1 /
—— = i/; dSTr {[V (1), [Vt — 5), p' (1) ® pl11}, (A1)
which can be further written in the Schrodinger picture as equation (15)
do( . - _
— = il pL] — Y [Timmipl(t) + Tl

i,j=z,%
— Dympl ()7 — Thmpl (D).

Here, the Pauli operators 7; defined by the eigenstates of H are given in equations (16) and (17), and

|+) = cosg [1) + sing 12), (A2)
0 0
)y =sinZ 1) — cos 2 [2), A3
[—) sm2|> cos2|> (A3)
where tan 0 = kJ/¢. The dissipation rates F}f are related to the bath correlation functions
AZ oo
+ _ =k ) )
rj = = j; dt (£,(£0)&;(0)), (A4)
with
&, (1) = sinf[cosB(t) — K], (A5)
£,(t) = —eT B[ cosfO[cos B(t) — k] F isinB(1)], (A6)

where A,, = /€2 + (x])? and B(t) = eifh!Be~ifb!,

To transform equation (15) back into the local frame, we express the elements of the RDM pg (t)and p (1) by
the average of the Pauli operators (7, 4 (¢)) = Trs[pg )Ty, +land (o, 4 (1)) = Tr[p, (1) 0, 1]. As 0, commutes
with the polaron-transformation, the diagonal term (o, (t)) is easily to obtained from pi (1),

<O'z (t)> = Tr4p [ptot o] = Tfs[Ps LA
= Troyp[pre, () 02] = Tri[pl (1) 0], (A7)
where p,, (t) is the total density matrix for the TLS and its bath, p, (t) = Tr,[p,,, (t)]and
pl., (t) = e 1%B/2p  (t)el%B'/2js the polaron-transformed total density matrix. However, the polaron
transformation operator and oy (0,) do not commute, thus the off-diagonal terms cannot be obtained exactly.
This problem can be solved by using the Born approximation piot (t) = pi ) ® p;, which has already been

used in deriving the PTRE. The polaron transformation reduces the system—bath coupling, thus makes the
factorization of the density matrix in the polaron frame reasonable. Therefore, we have

(Oxy (1)) = Trepplpl, (e =B 20, ,e1%B/2] = KTrg[pl (1) 0y ). (A8)

Together with equations (A2) and (A3), it is straightforwardly to obtain

(o, (1)) = cosO {7, (t)) + sinf (7, (1)), (A9)
(0. (1)) = ksinf (7, (t)) — KcosO (7 (1)), (A10)
<Uy(t)> = —I<;<Ty(t)> (A11)

following which the expression for the Liouville operator £, of the TLS is derived.

Appendix B. Weak and strong coupling limits of PTRE

In this appendix, we would like to show that the PTRE in the weak (strong) coupling limit is exactly consistence
with the Redfield equation (rate equation based on the Fermi’s golden rule). In the weak coupling limit, we have
K = 1,thus the polaron basis | +-(A,)) approaches the eigenbasis of the TLS | £(Ay)), where Ay = /€2 + J2.
In this eigen frame, the PTRE equation (15) with secular approximation is reduced to the Redfield equation
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L lpdes =~ + n@0]lpks + TnAolp)-—. (B1)
Lp). ,[iA £T 4 2n<Ao>>][pS]+_, (2)

where I’ = %] (Ag) sin? 0.

In the strong coupling limit, the coherence is quickly destroyed by dissipation, thus we only need to consider
the equations for the populations. Additionally, as x ~ 0 with large c, the eigenbasis of Hj are reduced to the
local basis | 1) and |2). As a result, equation (15) becomes a kinetic equation governing the populations
P, = [p,]ii» which can be written as

d

—P = —1,P + 1Py, (B3)
dt
where
_ 1o, fer (2Q(r) _
Oy = o#Y ﬁ drR[e (e D, (B4)
_ 1o —ier (Q() _
Dy = Y j; drR [ (20 — 1], (B5)
with
Q(r) = foo dw](wz) [ cos (wT) coth (Byw/2) — isin(wT)]. (B6)
0 w

The above transition rates [}, and I}; are the same as those obtained from the Fermi’s golden rule. In a word, the
PTRE smoothly connects the weak and strong coupling limits, and provides a useful tool to study the
intermediate coupling region where there is usually no reliable approximation methods.

Furthermore, following from equation (B3) the three-level system in the strong coupling limit can be
understood from the perspective of population kinetics. The population transitions rate from state |i) to | j) is
denoted by I;, then the net population flux from |7) to | j) is I};P, — L;;P;. In the steady state, the net population
fluxes between each two local states must be equal with each other due to population conservation, which means
there is a circulation Fin the three-level system:

F= 1—‘12P1 - FZIPZ = 1—‘2OP2 - 1—‘02P0 = 1—‘OIPO - 1—\IOPI- (B7)

Then the energy flux from | ) to | j} is just the population flux F times the corresponding energy gap,
Ji—j = F (¢ — ¢;), which directlyleads to the efficiency 1), = €,/ ;. With straightforward calculation, we
obtain the steady state population P, = D;/D from the kinetic equation (B7), where

Dy = Tnly + Toolo + Dol (B3)
Dy = Iplio + Toilia + Iialoo, (B9)
Dy = Tipla0 + Doolia + Dalio, (B10)

D = D, + D, + Dy. (B11)

In the case of low temperature trapping bath, the transition rate I, can be neglected comparing with I}. Then
we have Dy = I (I9 + I31) and D, = Iy [i,, then the population inversion P; > P, requires

T390 + I3 — I, > 0.Inthe strong coupling limit, the transition rates between the two excited states are almost
thesame I3, ~ I5;, thus P, — P, = I},;I50/D > 0isestablished, which is consistent with the results obtained
from the PTRE.

Appendix C. Steady state of the TLS in polaron frame

For convenience, we rewrite equation (15) in the form of the Bloch equation
d

" () = —M (7 (1)) + C. (C1)

Here (7 (1))T = [(7, (1)), (7 (1)), (7, (t))]. The transition matrix M and the constant term ¢l = (C, Cy, C)
are

Ve Vax 0
M = | Vxz Vx Ay + Yy |, (C2)
’Vyz - Ah‘, + ’Vyx ’yy
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Figure C1. The steady state of TLS as a function of the system—bath coupling strength «.. The steady states of the PTRE follow the
canonical distribution in the polaron transformed basis, which rotates with the coupling strength . In the weak coupling limit, the
system steady state is the canonical distribution in the eigen basis (black dash line); while in the strong coupling limit, the steady state is
the canonical distribution in the localized basis (red dotted—dashed line). The inset shows the coherent term of the steady state, which
is small in the polaron transformed basis. We choose the parameters in units of J: €,/] = 5, €,/] = 4.5, w./] = 5and 8,] = 1.

¢' = (C, Cy C)), (C3)

the expressions of the matrix elements are given in appendix D.
The time evolution of (7 (¢) ) is straightforwardly given by

(F()) = e M[(7(0)) — M'C] + M"'C, (C4)

with the steady state (7 (00)) = M~'C. In the following we will neglect time argument 0o when referring to the
steady state for convenience. The population difference (7,) varies with the coupling strength as shown in figure
C1.Inthe weak coupling limit, the TLS steady state distribution is canonical in the eigenbasis, i.e.,

lim (7,) — —tanh(%ﬂvAo), (C5)
a—0

which is just the thermodynamic equilibrium state. When the system—bath coupling gradually increases, the
system distribution deviates from p*" and follows the Boltzmann distribution

(r,) = —tanh(%ﬁvAN), (C6)

with respect to the energy gap A, between the eigenvalues of |+) and | —) in the polaron frame. Furthermore,
when goes into the strong coupling limit, we have

. 1
lim (7,) = —tanh(—ﬁ\,é), (C7)
a—00 2
which is the Boltzmann distribution with respect to the local site energies ¢, and ¢,. The deviation from the
canonical state pi™" due to the strong system—bath coupling has been studied via the cumulant expansion

method in the polaron-transformed thermodynamic distribution [20, 21] and from the view point of energy
shell deformation [18, 19, 22].

Appendix D. Elements of the matrixes M and M

The quantities defined in equations (C2) and (C3) are determined by the superposition of the correlation
functions equation (A4) following from equations (15) and (C1). By defining the functions

f (@) = cosh[Q(t)] + cosh[Q(—1)] — 2, (D1)
g(t) =sinh[Q(#)] + sinh[Q(—1)], (D2)

itis straightforwardly to obtain

Y = l/@2]21‘00 dt cos (At f (t)cos? 0 + g ()], (D3)
2 0

e = lnz]zfoo dt[f (1) sin20 + cos (A.Dg (D], (D4)
2 0
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vy = %szzfom dif (1)[ cos? 0 cos (A1) + sin® 6], (D5)
Yo = imzjz sin 29foo dtf (1), (D6)
0

= iﬁzjz sin 20 f " dif (1) cos (Ant), (D7)

0
oy = %;@2]2 fo  dig (1) sin (Ay1), (D8)
Ypx = —%/&12 coszefC>O dtf (t) sin (A, 1), (DY)

0
e — iﬁzjz sin 20 fo " def (1) sin (A1), (D10)

_ b [ .
C,= 2/<;] j:oo dt sin (A1)
X [cos?8 cosh[Q ()] + sinh[Q(H)]], (D11)

C, = —i#ﬂ sin 20 f ™ dt sin (A, t) cosh [Q(D)], (D12)

C,=— inzlz sin29fso dt[1 — cos(A,1)]
0
X [cosh[Q(?)] — cosh[Q(—1)]]. (D13)

The Liouville operator L, for the three-level system is obtained from equation (C1) with the expressions
given above. Here the relation p, + p,; + p,, = 1for the three-level system should be used to substitute
o] + [p ]2 = 1forthe TLS. Taking the contributions of the Lindblad terms £, and £; defined in

equation (8) into consideration, the elements of the matrix M in equation (18) are

_ . 1 .
My =, cos?6 + v, sin® 6 + E(’sz + Yzx)sin 20

+ S0l + D+ 3+ D], (D14)

M, = —C,cos0 — C,sinf + %[”yp(Snp + 1) — %GBn + 1], (D15)
M = nfl['yxz sin? @ — Ay, cos?f + %(”yz — yx)sinzﬁ], (D16)
My = —k" YA, + Yy)sinb, (D17)

. %[yp(np 1) =y + D], (D18)

My = 19 Grtp + 1) + G+ D], (D19)

My; = My, = 0, (D20)

M = Iil:’yzx sin? @ — Ay, cos? + %(fyz — *yx)sinZH], (D21)

M;; = k(Cycosf — C,sinb), (D22)

M;33 = 7y, cos? 0 + 7, sin? 6 — %(’yxz + “Yze)sin 20

1

+ E[Wp(”p + 1D+ e+ DI (D23)
M34 = (Ah + ny)cos 9) (D24)
My = K[(Ax — )sind — 7, cos 0], (D25)
My, = kCy, (D26)
Mys = —(Ayyyx)cos O — v, sin b, (D27)

_ 1
My =y + E[“Yp(”p + 1+ e+ DI (D28)
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