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ABSTRACT

We recently described an instability due to the nonlinear coupling of p-modes to g-modes and, as an application,
we studied the stability of the tide in coalescing binary neutron stars. Although we found that the tide is p–g
unstable early in the inspiral and rapidly drives modes to large energies, our analysis only accounted for three-
mode interactions. Venumadhav et al. showed that four-mode interactions must also be accounted for as they enter
into the analysis at the same order. They found a near-exact cancellation between three- and four-mode interactions
and concluded that while the tide in binary neutron stars can be p–g unstable, the growth rates are not fast enough
to impact the gravitational wave signal. Their analysis assumes that the linear tide is incompressible, which is true
of the static linear tide (the m= 0 harmonic) but not the non-static linear tide (m 2=  ). Here we account for the
compressibility of the linear tide and find that three- and four-mode interactions no longer cancel. As a result, we
find that the instability can rapidly drive modes to significant energies well before the binary merges. We also show
that linear damping interferes with the cancellation and may further enhance the growth rates. The early onset of
the instability (at gravitational wave frequencies 50 Hz» ) and the large number of rapidly growing modes suggest
that the instability could impact the gravitational wave signal. Assessing its impact will require an understanding of
how the instability saturates and is left to future work.
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1. INTRODUCTION

Coalescing binaries consisting of two neutron stars or a
neutron star and a black hole are among the most promising
sources for the new generation of advanced ground-based
gravitational wave detectors, including Advanced LIGO
(Harry 2010) in the US, Advanced Virgo (Accadia
et al. 2012) in Italy, and KAGRA (Somiya 2012) in Japan.
Tidal interactions in such binaries imprint a signature on the
gravitational waveform that if detected would help constrain
the highly uncertain neutron star equation of state. Quantifying
this exciting prospect has been the subject of extensive
investigation over the past three decades.

The strength of the signature depends on both the amplitude
of the tidal deformation and its phase lag with respect to the
line joining each body’s center of mass. Because the neutron
star does not respond instantaneously to the changing tidal
potential, the gravitational wave-induced orbital decay causes a
phase lag even in the absence of viscous dissipation (see e.g.,
Lai 1994). Indeed, numerous studies have shown that if the
viscous dissipation is determined entirely by linear processes,
its effect on the gravitational waveform is small and the phase
lag due to orbital decay dominates. These include investiga-
tions of linear dissipation due to fluid viscosity (Bildsten &
Cutler 1992; Kochanek 1992; Lai 1994) and due to the linear
excitation of resonant, short wavelength internal gravity waves
(Reisenegger & Goldreich 1994; Lai 1994) and inertial waves
(Ho & Lai 1999; Lai & Wu 2006; Flanagan & Racine 2007).
More recent studies therefore assume that the phase lag due to
viscous dissipation can be neglected during the inspiral
(Flanagan & Hinderer 2008; Read et al. 2009, 2013; Hinderer
et al. 2010; Damour et al. 2012; Lackey et al. 2012; Lackey &
Wade 2015).

As the binary inspirals and the tidal deformation grows in
amplitude, it becomes susceptible to nonlinear instabilities.

These will initially manifest as weakly nonlinear wave
interactions in which the long length scale tidal perturbation
excites short wavelength fluid waves within the star. These
waves remove energy and angular momentum from the tide
and thus act as an additional source of dissipation not
accounted for in linear analyses. Previous studies argued that
such nonlinear effects should only become important during the
very late stages of the inspiral (gravitational wave frequencies
f 400 Hzgw  ) because the amplitude of the tidal deformation
is too small at larger orbital separations. However, the
importance of nonlinear wave-tide interactions depends not
only on the amplitude of the tide but also on the strength of the
tide’s nonlinear coupling to the internal oscillation modes of
the star. We must therefore evaluate the nonlinear coupling
strengths in order to know when during the inspiral the tidal
deformation first becomes unstable and to determine how such
an instability affects the gravitational wave signal.
In a previous paper (Weinberg et al. 2012,

hereafter WAQB), we developed a formalism to study weakly
nonlinear wave-tide interactions in close binary systems.
WAQB focused on the well-known parametric instability in
which a parent wave (e.g., the tide) resonantly excites a pair of
short wavelength daughter waves of approximately half the
parent’s frequency (for astrophysical applications see also, e.g.,
Kumar & Goodman 1996; Wu & Goldreich 2001; Arras
et al. 2003; Weinberg & Quataert 2008; Barker & Ogilvie 2010;
Essick & Weinberg 2016). In a follow-up paper, Weinberg
et al. (2013; hereafter WAB) described a different type of
instability in which a parent wave nonresonantly excites an
acoustic wave and a gravity wave (i.e., a p-mode and a g-
mode). A parent wave that is a g-mode or a tidal perturbation is
not resonant with a p–g daughter pair because its frequency is
much lower than the p-mode’s natural frequency. Nonetheless,
WAB found that high-order p–g daughters with similar
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wavelength couple so strongly that even a highly nonresonant,
small amplitude parent can excite them.

The primary application of p–g mode coupling that WAB
considered was tides in coalescing binary neutron stars. They
found that the tide is p–g unstable early in the inspiral and
rapidly drives modes to large energies. However, they only
considered three-wave interactions. Venumadhav et al. (2014,
hereafter VZH) showed that four-wave interactions enter the
analysis at the same order as the three-wave interactions and
found, in particular, that g gtide, tide, mode, mode{ ‐ ‐ } interac-
tions cancel significantly with p gtide, mode, mode{ ‐ ‐ } inter-
actions. They concluded that although the non-static tide can be
p–g unstable, the growth rates are too small to significantly
influence the inspiral of binary neutron stars.

The analysis in VZH assumed that the linear tide does not
compress mass elements in the star, i.e., it is incompressible,
and thus 01· ( ) c = , where 1( )c is the displacement field of
the linear tide. They relied on this assumption in order to carry
out a volume-preserving coordinate transformation that relates
the energy of a tidally deformed star to that of a radially
perturbed spherical star. Using this method, they related the
four-mode coupling to the three-mode couplings and found that
they almost perfectly cancel.

While the static linear tide (the m= 0 harmonic) is
incompressible, the non-static linear tide (m 2=  ) is com-
pressible. Its compressibility 1· ( ) c increases with the ratio
of the tidal frequency mw = W to the buoyancy frequency N
(where Ω is the orbital frequency). For an inspiraling neutron
star Nw , and the non-static tide is highly compressible
throughout most of the bandpass of gravitational wave
detectors such as LIGO, Virgo, and KAGRA.

In this paper, we reanalyze the stability of tidally deformed
neutron stars to p–g mode coupling. We include three- and
four-wave interactions and account for the compressibility of
the non-static tide (and the other finite frequency corrections to
the static tide). We find that these corrections undo the
cancellation between three- and four-wave interactions and lead
to growth rates that are faster than the incompressible limit by a
factor of 10w w~  , where 0w is the dynamical frequency of
the star. As a result, there is a large set of unstable modes that
can potentially reach significant energies before the neutron star
binary merges.

We also study how linear damping affects the stability of the
tide to p–g coupling. Although damping typically reduces the
growth rates of instabilities, the cancellation between three- and
four-wave interactions requires a balance between the phases of
the p- and g-mode oscillations. We find that the large p-mode
damping rates counter the stabilizing effects of the cancellation
and significantly increase the growth rate relative to the
inviscid, incompressible limit studied in VZH.

The plan of the paper is as follows. In Section 2 we derive
the nonlinear equations of motion and carry out a stability
analysis in the inviscid, incompressible limit that recovers the
unstable (but slowly growing) non-static tide solution found
in VZH. In Section 3 we derive the functional form of the
modified three- and four-wave couplings due to the finite
frequency corrections (such as compressibility). In Section 4
we carry out a series of checks in order to test the accuracy of
our analytic and numerical calculations. In Section 5 we
present the main results of our study, the stability analysis of
tidal p–g coupling with finite frequency corrections in
coalescing binary neutron stars. In Section 6 we evaluate

how linear damping influences the stability of the tide and the
p–g growth rate. Finally, in Section 7 we summarize and
describe the need for a nonlinear saturation study.

2. EQUATIONS OF MOTION

Let x t,( )x be the Lagrangian displacement of the stellar
fluid at position x and time t relative to the unperturbed
spherical background and let the operators fi represent the
restoring forces at order i. The equation of motion for x t,( )x ,
including linear forces ( f1), three- and four-wave nonlinear
interactions ( f2 and f3, respectively), and tidal forcing ( atider ) is

f f f a¨ , , , , 11 2 3 tide[ ] [ ] [ ] ( )x x x x x x xr r= + + +

where ρ is the background density,

a U U, 2tide ( · ) ( ) x  = - -

and the ℓ 2= tidal potential due to a secondary of mass M¢ in a
circular orbit at separation a is

xU t r W Y e, , . 3
m

m m
im t

0
2 2

2

2

2 2( ) ( ) ( ) åw q f= -
=-

- W

Here M M R a 3( )( ) = ¢ , M, R, and GM R0
3 1 2( )w = are the

mass, radius, and dynamical frequency of the primary, Ω is the
orbital frequency, Yℓm is the spherical harmonic function, and
W 520 p= - , W 3 102 2 p= , W 02 1 = . Since we restrict
the analysis to ℓ 2= , all third and higher derivatives of U in
atide vanish. We express the perturbation x to the spherical
background as the sum of the linear tide 1( ) c µ , the second-
order nonlinear tide 2 2( ) c µ , and a perturbation to the tidal
flow h:

. 41 2 ( )( ) ( )x c c h= + +

Keeping terms up to order 2 and linear in h (because we are
interested in studying the linear stability of the tidal flow to
infinitesimal perturbations h), we have

f f f

f f f
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U U U
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c c c h c h
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Since the equation of motion of the linear tide is

f U¨ , 61
1

1[ ] ( )( ) ( )c c r r= -

and that of the second-order nonlinear tide is

f f U¨ , , 72
1

2
2

1 1 1[ ] [ ] ( · ) ( )( ) ( ) ( ) ( ) ( )c c c c c  r r= + -

the equation of motion for the perturbation h is

f f f

f U

¨ 2 , 2 ,

3 , , . 8
1 2

1
2

2

3
1 1

[ ] [ ] [ ]
[ ] ( · ) ( )

( ) ( )

( ) ( )

h h c h c h
c c h h  

r
r

= + +

+ -

Expanding in the basis of the star’s linear modes

x xt t, , 9
a

a a( ) ( ) ( ) ( )åh xh=

x xt t, , 10
a

a a
1 1( ) ( ) ( ) ( )( ) ( )åc xc=

x xt t, , 11
a

a a
2 2( ) ( ) ( ) ( )( ) ( )åc xc=

2
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using the fact that the displacements are real, normalizing the
modes according to

d x E , 12a a b ab
2 3

0· ( )*ò x xw r d=

and noting that f a a a1
2[ ]x xrw= - , we obtain the amplitude

equation for mode a

U¨ 2

2

3 , 13

a a a a
b

ab
c

abc c

c
abc c

cd
abcd c d b

2 2 1

2

1 1 ( )

( )

( )

( ) ( )

⎛
⎝⎜

⎞
⎠⎟

* * *

* *

* * * *

å å

å

å

h w h w k c

k c

k c c h

+ = +

+

+

where

U
E

d x U
1

, 14ab a b
0

3 · ( · ) ( )ò x x  r= -

f
E

d x
1

, , 15abc a b c
0

3
2· [ ] ( )ò x x xk =

f
E

d x
1

, , . 16abcd a b c d
0

3
3· [ ] ( )ò x x x xk =

The coefficients are symmetric in all their indices and satisfy
the usual selection rules (see, e.g., WAQB) including angular
momentum conservation in the azimuthal direction

m m m 0, 17a b ( )+ + =

m m m 0, 18a b c ( )+ + =

m m m m 0, 19a b c d ( )+ + + =

for Uab, abck , and abcdk , respectively. We can therefore write the
amplitude equation as

K K e

K K e

¨

20

a a a a a a
b

ab ab b
i m m t

a
b

ab ab b
i m m t

2 2
3 4

2
3 4

a b

a b

˙ ( )

( )

( )

( )

¯ ¯
( )

* * *å

å

h g h w h w h

w h

+ + = +

= +

- + W

- - W

where the overbar denotes a mode’s complex conjugate, the
second equality follows because the displacements are real, we
added a term a a˙g h to model linear damping, and we defined the
time independent three-mode and four-mode coefficients

K U

U

2

2 , 21

ab ab
c

abc c

ab ab

3
1

1 ( )

( )

( )

åk c

k

= +

= + c

K 2 3

2 3 . 22

ab
c

abc c
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abcd c d

ab ab

4
2 1 1

2 1 1 ( )

( ) ( ) ( )

( ) ( ) ( )

å åk c k c c

k k

= +

= +c c c

For analytic purposes, it proves convenient to change variables
to

q e , 23a
a

a

im ta ( )
h
w

= W

in which case the amplitude equation becomes

q im q m im q

K K q

¨ 2

. 24
a a a a a a a a a

a
b

ab ab b b

2 2

3 4

[ ] ˙ [ ( ) ]
( ) ( )¯ ¯å

g w g
w w

+ - W + - W - W

= +

This change of variables effectively transforms the amplitude
equation from the inertial frame (Equation (20)) to a frame that
is co-rotating with the binary, and thereby introduces Coriolis
and centrifugal terms on the left-hand side of Equation (24).

2.1. Characteristic Equation of Tidal p–g Coupling

In order to determine the stability of the tidal flow to an
infinitesimal perturbation h, assume that the amplitude of the
latter varies as e ist. By Equation (24), we then have the
characteristic equation

s m i s m im q

K K q

2

,

25

a a a a a a a

a
b

ab ab b b

2 2 2

3 4

[ ( ) ( ) ]
( )

( )

¯ ¯å
g w g

w w
- + W + + - W - W

= +

or in matrix notation

I L L L

M M q

s i s i2

0, 26

2 2 2

0 1

[ ( )
] ( )( ) ( )
g g- + W + - W - W

+ + =

where

L M m, , , , , 27a a a ab
0 2( ) ( ) ( )( )g g w d=

M K K . 28a b ab ab
1

3 4( ) ( )( )
¯ ¯w w= - +

This is similar to Equation (E6) in VZH but with two key
differences. First, they do not include a linear damping term.
Second, the nonlinear matrix term in VZH, which they write as
R R0 0( ) ( )† d , assumes that the coupling coefficients are the
same as those of the static (m= 0) tide, modulo a rotation R 0( )
by 2p around the y-axis. It therefore does not account for
finite frequency corrections to K ab3 and K ab4 (due to, e.g., the
compressibility of the linear tide).
Equation (26) is a quadratic eigenvalue problem. To reduce

it to a standard eigenvalue problem, define

A I
I

C B
I

s s 0
0 0

, 29( ) ( )⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= - +

B L L M Mi , 302 2 0 1 ( )( ) ( )g= -W - W + +

C L i2 . 31( )g= W +

Equation (26) can then be expressed as a standard eigenvalue
problem A zs 0( ) = , i.e.,

C B
I

z zs
0

, 32( )⎡
⎣⎢

⎤
⎦⎥ =

where z q qs ,[ ]= . In our calculations below, we solve this
equation numerically using the arpack++ library.
For analytic study, it will be convenient to rewrite the

characteristic Equation (25) for the specific case of p–g
coupling. Letting p subscripts denote p-modes and g subscripts
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denote g-modes, we have the coupled equations

s m i s m q

K q 33

p p p p p

p
g

p g g g

2 2

3

j j j j j

j

i

j i i i

[ ( ) ( ) ]

( )¯å
g w

w w

- - W + - W +

=

s m i s m q

K q K q . 34

g g g g g

g
p

p g p p
g

g g g g

2 2

3 4

j j j j j

j

i

i j i i

i

j i i i

[ ( ) ( ) ]

( )¯ ¯

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥å å

g w

w w w

- - W + - W +

= +

The coefficients K p p3 j i
and K g g3 j i

have magnitude ~ and the

coefficient K p p4 j i
has magnitude 2~ (WAQB, WAB, VZH).

Furthermore, as VZH showed (see their Section 2.4), K p g4 j i

does not enter the stability analysis at order 2 . Since these
coefficients do not alter the stability at order 2 , we do not
include them in the analysis. Substituting Equation (33) into
Equation (34) gives

s m i s m q

K

K K

s m i s m
q . 35

g g g g g

g
g

g g

p

p g p g p

p p p p
g g

2 2
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j

i
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i

i j i i i
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( )

¯

¯ ¯

⎡
⎣
⎢⎢

⎤
⎦
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å

å

g w

w

w

g w
w

- - W + - W +

=

-
- W - - W -

This characteristic equation determines the stability and growth
rate of p–g coupling to order 2 .

2.2. Stability Analysis in the Absence of Finite Frequency
Corrections and Linear Damping

The coupling coefficients K gg4 and K Kpg pg3 3 ¯å that enter
Equation (35) can each individually be of order unity or larger
for high-order modes. However, if we ignore finite frequency
corrections, then as VZH showed

K K K , 36g g
p

p g p g4 3 3
2

j i

i

i j i i
( ) ( )¯ å+ =

i.e., there is significant cancellation and the residual is merely
of order 12  . Thus, if we ignore finite frequency corrections
and linear damping, Equation (35) gives

s m q

K K s m

s m
q , 37

g g g

g
g p

p g p g p

p p
g g

2 2

3 3
2

2 2

j j j

j

i i

i j i i i

i i

i i

[( ) ]

( )

( )
( )

¯ ¯
åå

w

w
w

w

- W -

=
- W

- W -

where we assumed that the cancellation of Equation (36) is
exact since 2( ) terms cannot in any case alter the stability.
As in VZH, we can estimate the stability of this potentially
large system of modes by considering a two mode system
consisting of a single p–g pair with frequencies g pw wW  .
Since K pg p g3 w w (WAB, VZH), if we define r s mp= - W
and m mp g( )a = - W, the characteristic equation of the system

becomes

r r r 0. 38g p p
2 2 2 2 2 2 2[( ) ][ ] ( )a w w w+ - - - 

There are two stable high frequency solutions near r pw
and two low frequency solutions near

r . 39g
2 2 2 ( )a w a-  -

If g ∣ ∣w a then the low frequency solutions are unstable and
the p–g pair grows at a rate

m m . 40p g∣ ∣ ( )G » - W

By angular momentum conservation (i.e., the coupling
coefficient selection rules Equations (17)–(19)), only p–g pairs
that satisfy m m mp g∣ ∣- = couple to harmonic m of the ℓ 2=
linear tide. Therefore, for the static tide (m= 0) there is no
unstable solution and for the non-static tide (m 2=  ) the
growth rate of the instability is 2G » W if 2g w W. This
agrees with the results found in VZH (see their Appendix E).
For a coalescing neutron star binary, a growth rate of 2W is
too small to drive p–g pairs to large amplitudes before the
merger (the modes only have enough time to grow by a factor
of ∼105 in energy; see Section 5.4).
In Appendix A we present an argument based on the energy

principle that shows that the static tide must be absolutely
stable, consistent with VZH’s result and extending it to all
orders in ò. In the remainder of the paper, we therefore focus on
the stability of the non-static tide.

3. FINITE FREQUENCY CORRECTIONS

In their analysis, VZH assume that the shape of the non-
static linear tide 1( )c that enters the calculation of the three- and
four-mode coupling coefficients is exactly given by the static
(i.e., equilibrium) tide solution

0, 411· ( )( ) c =

U

g
, 42r

1 ( )( )c = -

where g is the local gravitational acceleration (as in VZH, for
simplicity we make the Cowling approximation throughout our
analysis.) However, this solution is obtained only in the limit

N2 2w  (see, e.g., Terquem et al. 1998 and Ogilvie 2014;
here mw = W is the tidal frequency and N is the Brunt–Väisälä
buoyancy frequency). Otherwise, the linear tide is compressible
( 01· ( ) c ¹ ). In the opposite limit, N2 2w  , the linear
equations of motion are (see Section 3.1)

p
U 432 1 ( )( )

⎛
⎝⎜

⎞
⎠⎟c w

d
r

- = - +

and 1( )c is compressible but irrotational ( 0;1( ) c´ = here
pd is the Eulerian pressure perturbation).
In a neutron star N r R0.1 0w» and for a coalescing binary

neutron star within LIGO’s bandpass N2 2w . Finite fre-
quency corrections to 1( )c can therefore be significant
throughout the inspiral and, importantly, not only when the
orbit sweeps through resonances with individual modes of the

4

The Astrophysical Journal, 819:109 (28pp), 2016 March 10 Weinberg



star (i.e., not only when the Lai 1994 “dynamical tide” is
excited1).

We illustrate this in Figures 1 and 2. Here and throughout the
paper we use the same neutron star model as in WAB; it has a
mass M M1.4=  and radius R 11.7 km and assumes the
Skyrme Lyon (SLy4) equation of state (Chabanat et al. 1998)
and a non-buoyant crust. In Figure 1 we show the horizontal
displacement of the linear tide at the stellar surface Rh

1 ( )( )c as a
function of orbital separation a/R. We compute 1( )c by solving
the linear inhomogeneous Equation (6) using the method
described in WAQB. The peaks in Rh

1 ( )( )c occur where the
linear driving is resonant with an ℓ 2= mode of the star. In
Figure 2 we show the radial profiles of 1· ( ) c and r

1( )c for the
non-static and static tide at two separations not near linear
resonances (a R 12.5= and 21, which for our neutron star
model correspond to gravitational wave frequencies f 100gw 
and 45 Hz; see black squares in Figure 1). Despite not being
near resonances, 1· ( ) c and r

1( )c differ significantly from the
static tide solution due to finite frequency corrections.

The remainder of this section is organized as follows. We
first derive (Section 3.1) an analytic estimate of the finite
frequency corrections to 1· ( ) c and 1( )c in order to better
understand the numerical values of Figure 2. Then, over several

subsections (Sections 3.2–3.6), we describe our procedure for
calculating the three- and four-mode coupling coefficients.
Recall that VZH use a volume-preserving coordinate transfor-
mation in order to map the tidally deformed star back into a
spherically symmetric configuration and from there calculate
the coupling coefficients. However, because the linear tide is
compressible and thus not volume preserving, this procedure
cannot be used to calculate the finite frequency corrections. Our
strategy instead is to adopt the more general approach taken
by WAQB, who calculate the coupling coefficients to order ò,
and to now extend the calculation to order 2 . Specifically, in
Section 3.2 we consider the finite frequency correction to K pg3
by making use of the exact expressions for Uab and abck derived
in WAQB. In Section 3.3 we derive a sum rule for K Kpg pg3 3 ¯å
that allows us to calculate it accurately without doing an
explicit numerical sum over p-modes. In Section 3.4 we
describe the four-mode coupling coefficient abcdk that we use to
calculate K gg4 . In Section 3.5 we show analytically that the
finite frequency corrections to the terms that enter at

g0
4([ ] ) w w and g0

3([ ] ) w w do not undo the cancellation of
the zero frequency (i.e., incompressible) limit. In Section 3.6
we derive expressions for the terms that enter g0

2([ ] ) w w .
When we numerically evaluate these terms in Section 5, we
find that they do undo the cancellation.

3.1. Estimate of the Finite Frequency Corrections to 1( )c

In order to obtain an analytic estimate of the finite frequency
corrections to the non-static linear tide 1( )c and its compres-
sibility 1· ( ) c , consider the equation of motion for the linear
tide (in the Cowling approximation)

g
d

dt
p U, 44

2

2
( )c  r d dr r= - + -

where pd and dr are the Eulerian pressure and density
perturbations (here and for the remainder of this section we
drop the “1” superscript; note that in this section p refers to
pressure and not the p-mode). Since U e im t( )~ - F , assume a
solution of the form

x xt t e, , , 45im t( ) ( ) ( )( )c a= - F

where Ḟ = W. Then

d

dt
im m im e¨ 2 . 46im

2

2
2 2[ ˙ ( ˙ ) ] ( )c a a a= - W - W + W - F

Focusing on coalescing binary neutron stars, define the orbital
decay time due to gravitational wave emission

t
a

a M

f
8.9

1.2 100 Hz
s 47a

5 3
gw

8 3

∣ ˙ ∣
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟


= =

- -



(Peters & Mathews 1963), where fgw p= W is the gravita-

tional wave frequency and MM M M3 1 5[( ) ( )] = ¢ + ¢ is the
chirp mass ( M1.2   for M M M1.4= ¢ = ). When the
driving is not near a resonance with a normal mode of the star,
the amplitude of the non-static tide varies on a timescale ta and
(Lai 1994)

t t, ¨ . 48a a
2˙ ( )a a a a~ ~

The duration of a resonance is a R a R0.5 10 1 4( )d ~ -

(Lai 1994 Equation (3.24), after correcting the typo in the

Figure 1. Horizontal displacement of the linear tide at the stellar surface
Rh

1 ( )( )c (divided by W R;22 see Equation (3)) as a function of orbital separation
a/R. The displacement is found by solving the linear inhomogeneous
Equation (6) for m 2;=  the peaks occur when the driving is resonant with
individual ℓ 2= modes of the star. In Figure 2 we plot 1· ( ) c and r

1( )c at
a R 12.5= and 21, indicated here by the two black squares located between
resonances.

1 In Lai (1994), the dynamical tide is defined to be the set of resonantly
excited modes. In the case of coalescing binary neutron stars, these modes have
little energy and cannot significantly influence the inspiral waveform even if
they are p–g unstable (WAB). However, it is also common to define the
dynamical tide as the difference in shape between the non-static and static
linear tides, d e

1 1 1( ) ( ) ( )c c cº - (this is how it is defined by, e.g., Zahn 1970;
Goodman & Dickson 1998; Terquem et al. 1998; WAQB). If the finite
frequency corrections are large, then 1( )c and e

1( )c are not similar and the
energy in d

1( )c can be significant (even between resonances).
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exponent for a) and the above scalings should apply when
outside these narrow resonances (see Figure 1). Since
ta 1W- , during non-resonant driving

d

dt
49

2

2
2 ( )c cw-

and we can make the usual separation of variables

x t r r r Y e, , , , 50r h ℓm
i t( ) [ ( ) ( ) ] ( ) ( )c c c q f= w

^
-

where mw = W and we treat the amplitudes rc and hc as
constant in time.

We can estimate the second order (i.e., 2w ) finite frequency
corrections to 1( )c with an analysis similar to Arras & Socrates
(2010). By Equation (44),

p U

r
51h

2 ( )w c
d r

=
+

d p

dr
g

dU

dr

1
, 52r

2 ( )w c
r

d dr
r

= + +

where we expand perturbed scalar quantities, such as pressure,
as p r p r Y, , ,ℓm( ) ( ) ( )d q f d q f= . The 2w correction to the

0w = equilibrium tide Eulerian pressure perturbation is
therefore

p p r

p r , 53
h

h

eq 2

eq 2 eq ( )

( )

( ) ( )

d d w rc

d w rc

= +

+

where p U.eq( )d r= - Plugging (53) into (52) gives

g

d

dr
r , 54r h

eq
2

eq eq( ) ( )( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥dr dr

w
rc r c+ -

where U g d dr.eq ( )( )dr r= Assuming the perturbations are
adiabatic, the Lagrangian pressure and density perturbations are

related by p p 1 r rD = GD (where Γ1 is the adiabatic index),
implying

p

p

N

g
. 55r

1

2
( )dr

r
d

c=
G

+

In the 02w = limit of the equilibrium tide this gives r
eq( )c =

U g- and by mass conservation · ( ) cdr r= - we have

0, 56eq· ( )( ) c =

i.e.,

r

d

dr
r

1
. 57h r

eq
2

2 eq( ) ( )( ) ( )c c=
L

We can now solve for the second order correction to rc by
plugging (53) into (55) to get

N
f r1 , 58r r

eq
2

( ) ( )( ) ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥c c

w
+

where

f r
rN

g

r d

dr
1 1 59h

r r

h
eq

eq

2

eq

eq

( ) ( )
( )

( ) ( )

( )⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

c

c c

c
= - - -

E
E

rN

g

d g

d r
1

2
1

1 ln

ln
60

2

2

2

2

2
( )

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥= -

+
L

+ - +
L

E ℓ d g d rhere ln ln( )= - /

Figure 2. Divergence of the non-static linear tide 1· ( ) c (divided by W ;22 left panel) and the radial displacement of the non-static linear tide r
1( )c (divided by W R;22

right panel) as a function of radius r at two orbital separations that are not near resonances: the blue solid lines are for a R 12.5= ( f 100 Hzgw  ) and the red solid
lines are for a R 21= ( f 45 Hz;gw  see black squares in Figure 1). The black dashed lines show the linear static (i.e., equilibrium) tide divergence and radial
displacement (divided by W R20 ).
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Similarly, we find

r

g

d

dr
r

g

r

d

dr

r

N
f

1

. 61

h h r h

r

eq
2

2
eq eq

2

2

2
eq

( )

( )

( ) ( ) ( )

( )

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

c c
w

c
r

r c

r
r

c

+
L

-

+



Finally, the second order correction to the divergence is

d

dr

N

g

c
E E

d g

d r

N

g

c

d

d r

ln

2 1
ln

ln

1

2

ln

ln
,

62

r

s

r

s
r

2

2

eq

2
2

2

2

2

2
eq

·

( )( )

( )

( )

( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

 c dr
r

c
r

w c

w r
c

=- -

L
L - + + +



where the last equality is for the specific case of ℓ 2= in the
neutron star core, where g G r4 3p r . Since N r R0.1 0w
and c R1.5s 0w in the core,

d

d r

rN

g

gr

c

gr

c

ln

ln
63

s s

2

2 2
( )r

= - -

and we find

N

gr

c r

W
N

r

R

W
r

R

1

2

0.3

30 . 64

s

r
2

2

2 eq

22

2 4

22
0

2 2

·

( )

( )
⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠





 c w c

w

w
w

-





We thus see that N 2· ( ) c wµ and that for 0.1 0w w
( f 100 Hzgw  ), the finite frequency correction to the
divergence is 0.1·  c ~ in the core, consistent with the
numerical results shown in Figure 2.

3.2. Finite Frequency Corrections to K pg3

As VZH showed and as we found in Section 2, the stability
of p–g coupling depends on the degree of cancellation among
the terms in

K K K . 65gg
p

pg pg4 3 3 ( )¯å+

In this section we calculate K pg3 accounting for the finite
frequency ω of the linear tide c (here we again drop the “1”
superscript). WAQB give the full expression for K pg3 ,
including finite frequency corrections. The coupling is
strongest for high order p–g pairs whose wavelengths match
(i.e., whose wavenumbers satisfy k kp g ), which implies

p g0 0w w w w~ . The largest individual terms in K pg3 are of

magnitude g0
2( ) w w~ , which we write as g

2( ) w- . Here we
are interested in accounting for all terms bigger than or equal to

1 ;( ) since the dynamics depend on K Kp pg pg3 3 ¯å , such terms

contribute at least at g
2 2( )  w- and for small enough gw can

lead to instability if they are not cancelled by K gg4 . From
Equations (A55)–(A62) and (A71) in WAQB,

p

p

p g

g

p

K W
T ℓ

MR
dr r g

E
dr r F p g G p g

F F p g F p g

Tc g

Tc r

g

T g r
dg

dr
g

F F F p g

F F T p g

2

1

3 2

1
ln

ln

4 4

4

3 2

3 2 6 .

66

pg
m

m ℓ
ℓ

r

p p r h r h p p h h h

p p r h h p p h r r

g s h

s
S

h a r r

r r

p h r r h

p g p h r h r g

3 2
1

0

2 2

2 2

2 2

2
1

1

2

2

2

( ) ·

{ ( )

( )

· ·

· · ·

( ) · ·

·

[( ) ]
[( ) ] } ( )

( )

⎜ ⎟

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤
⎦⎥

⎛
⎝

⎞
⎠





ò

ò

å 

 c

  c

  c



r

r w c c w c

w c w c

r

c c

c

w c c

w c c w

=-
+

+ - -

+ + +

+ L

+ G + +
¶ G
¶

+ L - -

+ +

+ + +

+ + - +

c

c c

+

Here g is the g-mode eigenvector (not gravity), T, Fa, and Ga

are three-mode angular integrals, and for consistency with the
convention used in previous sections we write the frequency of
the tide as ω (rather than wc). For high-order p- and g-modes
(Unno et al. 1989; WAB)

p p
A

k r
c k r

r
, cos ,

sin
, , 67r h

p

p
p

s p

p
p p

1 2( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟w w

w wµ - -

g g
A k r

N

k r
,

sin
,

cos
1, , 68r h

g

g

g g g

g
g

1( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟w

w
w

L
µ -

where A E rp g p g, 0 ,
2a r= , c c drp s s

1 1òa = - - , and pa =

N r Nd rln( ) ò . The g( ) w corrections consist of terms like,
e.g.,

T

E
dr g r

dg

dr
r

d

d r
p g4

ln

ln
. 69r r r

0
· ( )⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ò  cr

r
c+ +

A straightforward but lengthy calculation (that makes extensive
use of integration by parts and the linear equations of motion)
reveals that for high-order p–g coupling, Equation (66) reduces
to

pK
E

d x
1

70

pg p g g

g

3
0

3 2 2
0
2· [( ) ]

( ) ( )

ò y zr w w w

w

= - -

+

c c

where

g , 71g ( · ) ( )y  cºc

r
g d

d p

dg

dr

ln

ln

ln

ln
. 72g

S

r

0
2 1

1 1 · ˆ ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥z  c

w r
º G

G
-

¶ G
¶c

For the static tide, 0w = and 0· c = (i.e., 0gz =c ), and
our expression for K pg3 matches the expression given in VZH
(see their Equations (54), (62), and (69)). The last two terms in
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the integrand of Equation (70) arise due to finite frequency
corrections to K pg3 and come in at order 1( ) .

3.3. A Sum Rule for K Kpg pg3 3 ¯å

We need to evaluate the finite frequency corrections to
K Kp pg pg3 3 ¯å , where the sum is over all p-modes. In this section

we derive a sum rule for K Kp pg pg3 3 ¯å that reduces the sum to a
spatial integral that involves only the displacements of the tide
and the g-modes (i.e., the p-modes do not explicitly enter the
calculation). This allows us to evaluate K Kp pg pg3 3 ¯å much more
accurately than if we had to numerically sum over p-modes.
For simplicity, in this section index a labels the linear tide
(whose frequency we continue to write as ω) and indices c and
d label the g-modes.

To derive the sum rule, we adopt the procedure Reisenegger
(1994) used to find a sum rule for the linear tide overlap
integral. First, we expand the vectors acy and acz (Equa-
tions (71) and (72)) as a sum over modes

M , 73ac
b

abc b ( )åy x=

N , 74ac
b

abc b ( )åz x=

where Mabc and Nabc are the coefficients of the expansion
which, from the orthogonality of the modes (Equation (12)), are
given by

M
E

d x , 75abc
b

b ac

2

0

3 · ( )*ò x y
w

r=

N
E

d x . 76abc
b

b ac

2

0

3 · ( )*ò x z
w

r=

Comparing with Equation (70), we have

K
M N

77bc
b abc abc

b
c3

2 2
0
2

2

( ) ( ) ( )¯ 
w w w

w
w=

- -
+

for a p-mode bx . Let f1 [ ]h be the standard linear oscillation
operator acting on some arbitrary vector h. For a linear
eigenmode ax , f a a1

2[ ]x xrw= - . Therefore

f fd x M M d x

E M M , 78

ac ad
be

abc aed b e

b
abc abd

3
1

3
1

0

· [ ] · [ ]

( )

* * *

*

ò òå

å

y y x x=

=-

and we find the sum rule

fM M
E

d x
1

. 79
b

abc abd ac ad
0

3
1· [ ] ( )* *òå y y= -

Using the same procedure, we find the sum rules

M M

E
d x

1
80

b

abc abd

b
ac ad2

0

3 · ( )
*

*òå y y
w

r=

M N

E
d x

1
. 81

b

abc abd

b
ac ad2

0

3 · ( )
*

*òå y z
w

r=

Note that these are sums over all modes (p-modes, g-modes,
and the fundamental (f-) modes). However, based on the
stability analysis of Section 2 (see Equation (35)), we are

interested in the restricted sum

K K K , 82cd
b p

bc bd4 3 3 ( )¯
{ }

¯ ¯å+
Î

where the sum is only over p-modes and

K K K K

M N

M N

M M M M

M N M N

1

1

2

83

b p
bc bd

b p
bc bd

b p b
abc

b
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b
abd

b
abd

b p
abc abd

b
abc abd

b
abc abd abd abc c

3 3 3 3

2

2
0
2

2

2

2
0
2

2

2
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0
2

2
2 1( ) ( ) ( )
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⎡
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

*

* *
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å å

å

å

w
w

w
w

w
w

w
w

w
w

w
w

w

=

= - -

´ - -

= -

- + +

Î Î

Î

Î

-

(the error is c
2 1( )  w- because K bc c3

2( ) w~ - and we
accounted for all terms bigger than c( ) w in K bc3 ). If b is a
p-mode then Mabc c

2( ) w~ - and if b is a g-mode then
M 1abc ( )~ . The sum over all modes M Mabc abd*å is therefore
dominated by the p-modes, which contribute at ;c

4( ) w- the g-
modes contribute at only 1( ) . I.e.,

M M M M 1 . 84
b p f g

abc abd
b p

abc abd
, ,

2 ( ) ( )
{ } { }

* *  å å= +
Î Î

However, for the sums over all modes M Mabc abd b
2* wå and

M Nabc abd b
2* wå , the p-modes and g-modes both contribute at

c
2( ) w- . Since K pg3 is large only for k kb c , we show in

Section 4.4 that we can nonetheless accurately calculate these
sums using the approximate relation

M M
M M

1
85

b p

abc abd

b b b p f g
abc abd2 2

, ,

( )
{ } { }

*
*å å

w wá ñÎ Î



(and similarly for M Nabc abd b
2* wå ), where

r
Nc

r
, 86b

c s

c

2
2

( ) ( )
⎛
⎝⎜

⎞
⎠⎟w

w
á ñ º

L

which follows from the condition k kb c . We can therefore
express the sum over p-modes as a spatial integral involving
only the tide and the g-modes

f

f f

K K

E
d x

1
1

2

,

87
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b
ac ad

b
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0
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0
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2 1 1
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å
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á ñ

+ +

Î

-
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where we used the fact that a a*= since the tidal displacement
is real. In Appendix B we show that this result can be expressed
in the following form (which will prove useful for comparing
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with K cd4 in Section 3.5)
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where the subscript semicolon denotes covariant derivative and

z r r
d

dr
, , . 89ac ac

ac r,( ) · ( )
⎡
⎣⎢

⎤
⎦⎥ yq f

y
º -

The first term in Equation (88) is c
4( ) w- , the next two terms

are c
3( ) w- , and the remaining terms are each c

2( ) w- . In
Section 4 we compare calculations of K Kbc bd3 3¯å using both
methods—explicitly summing over p-modes versus using the
sum rule (Equation (87))—and show that they are in good
agreement.

3.4. Four-mode Coupling Coefficient abcdk

In order to calculate K cd4 (Equation (22)) we need to
evaluate the four-mode coupling coefficient abcdk . Using a
Hamiltonian formalism, Van Hoolst (1994) derives an expres-
sion for abcdk (see Van Hoolst & Smeyers 1993 for an
alternative derivation). In terms of a displacement x, he shows
that the fourth-order coupling density is (Equation (49) in Van
Hoolst with our normalization and in the Cowling approxima-
tion)
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(subscript S indicates derivatives taken at constant entropy).
The second equality in the equation for d dV4k follows from
the relation (Wu & Goldreich 2001; Schenk et al. 2002)
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where we assume the strong coupling condition for the g-
modes k kc d and thus c dw w» . The four-mode coupling
coefficient, accurate to c

2( ) w- , is therefore
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This form for aacdk will be useful for carrying out the analytic
calculations in Section 3.5 at c

4( ) w- and c
3( ) w- . In

Appendix C we give an alternative form for aacdk that is less
compact but more suitable for carrying out the c

2( ) w-

numerical calculations in Sections 3.6 and 5.

3.5. Finite Frequency Corrections at g
4( ) w- and g

3( ) w-

Having obtained expressions that account for finite
frequency corrections to the coupling coefficients to g

2( ) w- ,
we now evaluate K K Kgg pg pg4 3 3 ¯+ å and determine whether the
cancellation (Equation (36)) still holds. In this section we
consider the finite frequency corrections that enter at g

4( ) w-

and g
3( ) w- and show analytically that they do not undo the

cancellation. In Section 3.6 we consider the finite frequency
corrections that enter at g

2( ) w- . In the numerical calculations of
Section 5 we find that these corrections do undo the cancellation.
If we again let index a label the linear tide 1( )c and indices c

and d label the g-modes, then the c
4( ) w- and c

3( ) w-
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contributions to the coupling coefficient (Equation (22))

K 2 3 96cd cd aacd4 2 ( )( )k k= +c

come entirely from the c
4( ) w- and c

3( ) w- contributions to
aacdk . From the expressions for three-mode coupling

in WAQB, we know that cd2( )kc will at most contribute at

c
2( ) w- . Comparing aacdk (Equation (95)) to our sum rule result

(Equation (88)) we immediately see that the c
4( ) w- terms

a c a dj
i

i
j

s
k

k
s

; ; ; ;( )( ) cancel upon calculating K K3 aacd bc bd3 3 ¯k + å .
We now show that the c

3( ) w- terms cancel too. The
remaining terms in K K Kcd bc bd4 3 3 ¯+ å that contribute at

c
3( ) w- are, by Equations (88) and (95),
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where we used results from Appendix C (specifically,
Equations (153)–(155) and the four-mode angular integrals
defined in Equations (161)–(164)). In Appendix C.1 we show
that the angular integrals satisfy the relation

E S E S . 98ac bd a bd c bc ad a bc d,
22

, , ,
22

, , ( )( ) ( )- = -

The bracketed term in the previous equation is therefore
proportional to c d rh h( )¶ ¶ and the expression is seen to
contribute only at c

2( ) w- after integration by parts.
We have thus shown that the finite frequency corrections that

enter Equation (65) at c
4( ) w- and c

3( ) w- do not undo the
cancellation between three- and four-mode coupling.

3.6. Finite Frequency Corrections at g
2( ) w-

There are a large number of terms that contribute at c
2( ) w-

to K K Kgg pg pg4 3 3 ¯+ å and they must be evaluated numerically.
In Appendix D we describe how we carry out the calculation.
First, we give numerically useful expressions for the terms in

K K3 gg pg pg3 31 1 ¯( ) ( )k + åc c . We then consider two methods for
calculating the nonlinear tide 2( )c , which we need in order to
compute 2 gg2( )kc . The first method involves expanding 2( )c as a
sum over modes and solving for the coefficients of the
expansion. The second method involves directly solving the
inhomogeneous equation of motion of the nonlinear tide
(Equation (7)). We find that the second method is significantly
more accurate. We will present the results of the c

2( ) w-

calculation in Section 5.

4. TESTING THE CALCULATION

In order to test the accuracy of our analytic and numerical
calculations, in this section we perform the following four
checks:

1. In Section 4.1 we evaluate whether our numerical
calculations can recover the expected cancellation to

2( ) in the case of the static tide.
2. In Section 4.2 we compute K K3 gg pg pg3 31 1 ¯( ) ( )k + åc c by

explicitly summing over p-modes and integrating the full
four-mode coupling coefficient. We then compare this
with the analytic method described in Sections 3.5 and
3.6 in which the cancellation at c

4( ) w- and c
3( ) w- is

first carried out by hand and then the remaining c
2( ) w-

contributions computed numerically.
3. In Section 4.3 we check our solution of the nonlinear tide

2( )c by comparing results from our two calculational
methods (solving for the coefficients of the mode
expansion versus directly solving the inhomogeneous
equation).

4. In Section 4.4 we compute the sum over 1 b
2w terms in

Equation (83) by directly summing over p-modes and
compare this result with our approximate analytic
expression for the sum (the 1 b

2wá ñ terms in
Equation (88)).

4.1. Testing the Static Tide Cancellation

If we only include the m=0 component of the linear tide
1( )c in our calculation, then there are no finite frequency

corrections and based on the analysis in VZH and the argument
from energy principles given in Appendix A, we expect near-
exact cancellation (i.e., cancellation to ;2( ) see Equa-
tion (36)). We have already shown analytically that the

g
4( ) w- and g

3( ) w- contributions cancel. We now want to
test whether in the case of the m=0 static tide our numerical
calculation of the g

2( ) w- terms cancel as expected. To provide
a measure for the degree of cancellation, define the residual

K K K

K K2 3 99

gg gg
p

pg pg

gg gg
p

pg pg

4 3 3

3 32 1 1 ( )

¯

¯( ) ( ) ( )

 å

åk k

= +

= + +c c c

and the fractional residual ggs

2
. 100gg

gg

gg2
( )

( )


s

k
=

c

For the case of the static tide, we expect gg
2( ) ~ and

gg g 0
2( )s w w~ since gg g

2
0

22 ( )( ) k w w~c .
To carry out this calculation, we only include the m=0

linear tide and compute the coupling coefficients using
Equations (178)–(185) and the direct 2( )c solution (Equa-
tion (197)). We find the g-modes (and the p-modes in the
calculations below) using the Aarhus adiabatic oscillation
package ADIPLS (Christensen-Dalsgaard 2008). At the max-
imum resolution, our background model and eigenfunctions
have 5 105´ grid points over the star.
In Figure 3 we show ggs for the static tide coupled to high-order

ℓ 4= g-modes with n100 1000  . We find 10gg
6s ~ - over

the entire range in n, implying that the individual terms in gg
cancel to a part in 106~ in our calculation. For these modes,

n0.2g 0w w» and we therefore expect 10 10gg
8 6 s- - .

However, given the resolution set by the 5×105 background
grid points, a value of 10gg

6s ~ - is consistent with near-exact
cancellation (we checked that ggs increases in proportion to
decreasing background resolution). We therefore conclude that
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our calculation successfully recovers the correct result in the
static tide (i.e., incompressible) limit.

4.2. Testing the Calculation of K K3 gg pg pg3 3 ¯k + åcc

In order to accurately calculate

K K3 101gg
p

pg pg3 31 1 ( )¯( ) ( ) åk +c c

we carried out a series of analytic steps, which we described in
detail in Section 3. Briefly summarizing these steps, we showed
in Section 3.3 that the sum over p-modes can be expressed as
an integral that involves only the tide and the g-modes. After
simplifying that integral (Appendix B), we showed in
Section 3.5 that the two cancel to g

4( ) w- and g
3( ) w- even

with finite frequency corrections. We then rewrote the g
2( ) w-

contribution in a more numerically accurate form (Equa-
tions (178)–(185)).

As a check of these analytic steps and their numerical
implementation, we compare our results to a more direct,
though less numerically accurate, calculation of Equation (101).
We carry out the comparison for the full tide, including the
non-static components, in order to test the calculation with the
finite frequency corrections. In Figure 4, the blue solid line
shows the results given by the analytic approach summarized in
the preceding paragraph. The red dashed line shows the results
given by the explicit sum over p-modes and relying entirely on
the numerics to handle cancellations between terms (including
the very large g

4( ) w- and g
3( ) w- contributions). We describe

the latter calculation in the next paragraph. We see that the red
and blue lines nearly overlap over the full range in m. While the
agreement is very good, it is not perfect. Given that the analytic
approach passes the static tide test to ∼10−6 precision

(Section 4.1), the most likely explanation for the small but
10 6> - differences between the blue and red lines is numerical

imprecision on the part of the red line, which must rely entirely
on the numerics to cancel the large g

4( ) w- and g
3( ) w- terms.

This test should therefore give us confidence in our analytic
approach to calculating Equation (101) and its numerical
implementation.
The p-modes that contribute to the sum are those for which

k kp g , which corresponds to Nc rp g s gw wL . For a typical
stellar model, including our neutron star model, the quantity
Nc rs varies somewhat with radius, especially outside the
stellar core. As a result, there are many p-modes that contribute
to the sum. In order to minimize the error that arises from
summing over many modes, rather than use a neutron star
model to carry out the test, we use a polytropic model and set
the adiabatic index r1( )G such that

Nc

r
A, 102s ( )=

where A is a constant. Specifically, when calculating the
polytrope’s buoyancy

N g
d

dr r

d p

dr

ln 1 ln
1032

1( )
( )

⎡
⎣⎢

⎤
⎦⎥

r
= - -

G

Figure 3. Fractional residual ggs as a function of g-mode radial order n for the
case when only the static (m = 0) tide is included. Each point is for an ℓ 4=
daughter pair of the neutron star model with n n1 2= and azimuthal orders that
must satisfy m m 01 2+ = .

Figure 4. Comparison of coupling coefficients calculated using the analytic
approach and the direct numerical approach. We show results for the ℓ 2= ,
n=1000 g-mode pairs of the n 2poly = , A 0.1 0

2w= polytrope at a R 1.23=
(corresponding to the f-mode resonance). The first three points along the x-axis
correspond to the g-mode pairs with m m 41 2+ = , the next four points are
those with m m 21 2+ = , and the final five points are those with m m 01 2+ = .
The blue solid line shows the “analytic” calculation of Equation (101) as given
by the sum of the eight terms discussed in Appendix D.1. The red dashed line
shows the numerical calculation of Equation (101) as given by explicitly
summing over p-modes. The black solid line shows the calculation of 2 g g2

1 2
( )kc

with 2( )c found by directly solving the inhomogeneous Equation (197). The
magenta dash-dotted line shows the calculation of 2 g g2

1 2
( )kc with 2( )c found by

using the mode expansion solution (Equation (190)).
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we set

r
A

g r
1 , 1041

2

( ) ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥gG = +

where n1 1 polyg = + and npoly is the (constant) polytropic
index. The results in Figure 4 are for an ℓ 4= , n=50 g-mode
of an n 2poly = polytrope with A 0.1 0

2w= , the latter being
similar to the value in the core of our neutron star model. In
Figure 5 we show pg1( )kc , which enters the calculation of

K Kpg pg3 3 ¯å , as a function of the radial order np of the p-modes
included in the sum. The magnitude of pg1( )kc peaks sharply for
those p-modes that best satisfy the condition kp=kg. For
modes that are n 10pD  away from the peak, pg1( )kc is 105~
times smaller and therefore the p-modes in the tail make only a
very small contribution to K Kpg pg3 3 ¯å (if we had not set A to be
a constant the distribution would be much broader and many
more p-modes would contribute).

4.3. Testing the Calculation of gg2( )kc

Here we compare our direct solution of the nonlinear tide
2( )c found by solving the inhomogeneous Equation (197) with

the mode expansion solution found by solving Equation (190).
While we expect the former to be more numerically accurate,
such a check is useful, especially given the complicated forcing
terms (Equations (206), (207)). The black and magenta curves
in Figure 4 compare gg2( )kc calculated using the two different
methods for the same polytropic model and modes as
Section 4.2. We see that they are in good agreement. Given
that the high-precision static tide cancellation made use of the
direct solution of 2( )c , the small differences for certain values
of m are more likely due to some imprecision in calculating 2( )c
using the mode expansion.

We find in Section 5 that the finite frequency corrections due
to the non-static tide do not cancel and yield 0.01 0.1ggs ~ -
(when not near a linear resonance). While the checks above

suggest that the analytic approach is in good agreement with
the direct calculation involving sums over modes, the limited
accuracy of the latter precludes us from using it to calculate
such small values of ggs . However, near resonances the
residual ggs becomes especially large and even with the
direct calculation it is easy to distinguish 2 gg2( )kc from

K K3 gg pg pg3 31 1 ¯( ) ( )k + åc c and see that the g
2( ) w- terms do

not cancel as a result of the finite frequency corrections. The
calculation shown in Figure 4 is at the resonance with the f-
mode (a R 1.23= ) of the n 2poly = polytrope. We see that the
residuals calculated using the analytic approach and the direct
approach are in good agreement, with both yielding 100ggs ~
for the m=2 and m=4 harmonics of the nonlinear tide.

4.4. Testing the 1 b
2w Sum Rule Terms

As we describe in Section 3.3, when calculating K Kpg pg3 3 ¯å
using the sum rule (Equation (87)), we approximate the b

2w-

terms as

f

M M
M M

E
d x

1

1
105

b p

abc abd

b b b p f g
abc abd

ac ad

b

2 2
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0

3 1
2

· [ ]
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{ } { }

*
*
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ò

å å

y y

w w

w

á ñ

-
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Î Î





(and similarly for the b
2w- terms involving Nabc), where

Nc rb g s g
2 2( )w wá ñ = L . This approximation enters our calcula-

tion of K Kgg pg pg3 31 1 ¯( ) ( )k + åc c as term IV of Appendix D
(Equation (181)). In order to check the accuracy of the
approximation, we explicitly solve the sum over p-modes using
the same polytropic model and g-mode pairs as Section 4.2. We
show the results in Figure 6 for a R 1.23= (near the ℓ 2=
f-mode resonance) and a R 25= (not near a resonance). We
find good agreement between the analytic calculation given by
term IV (blue curves) and the numerical sum over modes (red
curves). At large orbital separations, term IV makes only a very
small contribution to the total coupling K Kgg pg pg3 31 1 ¯( ) ( )k + åc c
(which is shown as the black curve). At smaller separations, the
contribution is more significant but still subdominant and much
less than 2 gg2( )kc (see the black curve in Figure 4). As a result,
we find that the fractional errors introduced by the approxima-
tions in Equation (105) are always much smaller than the
values of the residual ggs ( 0.01 0.1~ - when not near a
resonance) and therefore conclude that they do not affect the
accuracy of our calculation.

5. RESULTS WITH FINITE FREQUENCY CORRECTIONS

In this section we carry out a stability analysis of p–g
coupling accounting for the finite frequency corrections due to
the non-static tide of a coalescing binary neutron star. In
Section 5.1 we calculate the degree of cancellation between
three- and four-wave coupling as measured by the residual gg
(Equation (99)). In Sections 5.2 and 5.3 we evaluate the
stability and growth rate of p–g mode pairs given the computed
values of gg . We use these results in Section 5.4 to estimate
the number of e-foldings of growth an unstable p–g pair can
undergo before the binary merges (ignoring the nonlinear
saturation of the instability).

Figure 5. Three-mode coupling coefficient pg1( )kc as a function of the p-mode
radial order np for the p-modes that dominate the sum given by the blue line in
Figure 4.
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5.1. Residual gg Due to Finite Frequency Corrections

If we ignore finite frequency corrections then we expect a
residual gg

2( ) ~ . By Equation (100), this corresponds to
a fractional residual gg g 0

2( )s w w~ since gg g
2

0
22 ( )( ) k w w~c .

For illustrative purposes, in this section we show results from
our SLy4 neutron star model for g-mode pairs g g,1 2( ) with
ℓ 2= , n=1000, and m m 0, 2, 41 2∣ ∣ { }+ = (other combina-
tions do not couple to the tide). The results we show are
representative of what we find with other high-order, low ℓ, g-
modes. Since this particular g-mode has a frequency

10g
4

0w w- , if finite frequency corrections to the coupling
coefficients are not significant we would expect 10gg

8s ~ - .
However, based on the results of Section 4.1, we can only
expect our calculation of ggs to be accurate at the 10 6~ - level
(as determined by the resolution of our model and eigenfunc-
tions). Therefore, if the computed 10gg

6s - it suggests finite
frequency corrections are not significant and vice versa.

In Figure 7 we show ggs accounting for finite frequency
corrections due to the non-static tide. The red curve shows ggs
as a function of orbital separation a/R. The blue curve is the
same as that of Figure 1 and illustrates the variation of 1( )c with
a/R and the location of linear resonances. The g-mode pairs in
the three panels are ℓ 2= , n=1000, and m m, 2, 21 2( ) ( )= - ,
2, 0( ) and 2, 2 ;( ) other possible pair combinations such as
1, 1( ) and 1, 1( )- yield similar results.
We find that between resonances, 10 1gg

3  s- for
f10 10 Hzgw

3  .2 This result suggests that the finite

frequency corrections are significant and undo the cancellation
of three- and four-wave coupling found in the static tide (i.e.,
incompressible) limit. The variations in ggs with a/R are due to
variations in 1( )c and 2( )c with a/R and, as the figures show,
correlate with the locations of linear resonances. The
magnitude of ggs tends to decrease with increasing a/R, as
might be expected given that finite frequency corrections,
including the compressibility 1· ( ) c , decrease with decreas-
ing driving frequency. Note, however, that although

R a1
0

2 3· ( ) ( )( ) c w wµ µ (see Equation(64)), the magni-
tude of ggs falls off more slowly than R a 3( ) . As we explain
more fully in Section 5.3, this is because even at larger
separations, the finite frequency corrections remain significant
near the inner turning radius of the tide (where N r( )w » ).
Since the nonlinear coupling is strongest near the inner turning
radius, the residual approaches the static tide limit more slowly
than R a 3( ) .

5.2. Stability Analysis

We return to the stability analysis of Section 2 but now
include the effects of finite frequency corrections. From the
definition of gg (Equation (99))

K K K . 106g g
p

p g p g g g4 3 3j i

i

i j i i j i
( )¯ ¯ ¯ ¯å= - +

The characteristic equation for p–g coupling (Equation (35))
including finite frequency corrections (but ignoring linear

Figure 6. Comparing the two different methods for calculating the1 b
2w coupling terms of K Kpg pg3 3 ¯å given by Equation (83). As in Figure 4, we show results for the

ℓ 2= , n=1000 g-mode pairs of the n 2poly = , A 0.1 0
2w= polytrope. The left panel is for a R 1.23= (corresponding to the f-mode resonance) and the right panel is

for a R 25= (which is not near a linear resonance). The first three points along the x-axis correspond to the g-mode pairs with m m 41 2+ = , the next four points are
those with m m 21 2+ = , and the final five points are those with m m 01 2+ = . The blue solid line shows the analytic method for calculating the 1 b

2w terms (which
makes the approximation described in Section 3.3 and is given by term IV, Equation (181)). The red dashed line shows the numerical method for calculating the1 b

2w
terms (explicitly summing over p-modes). For comparison, the black solid line shows the analytic method for calculating K Kgg pg pg3 31 1 ¯( ) ( )k + åc c given by the eight-
term sum of Equations (178)–(185).

2 Although ggs can be much larger near resonances, because our calculation
does not account for the limited duration of each resonance as the neutron star
inspirals, the narrow set of points that fall within the resonance window
a R a R0.5 10 1 4( )d ~ - should be ignored (see Lai 1994 and Section 3.1).
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damping) is then

s m q

K K s m

s m
q . 107

g g g

g
g

g g
p

p g p g p
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2 2
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2
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j j j
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j i

i

i j i i i
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( )¯
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⎡
⎣
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⎤
⎦
⎥⎥å å

w

w
w

w

- - W +

= -
- W

- W -

As in Section 2.2, we can obtain an accurate estimate of the
stability of this potentially large system of modes by
considering a two mode system consisting of a single p–g pair
(we have verified this by numerically solving the eigenvalue
problem given by Equation (26) for large sets of strongly
coupled modes; see Section 5.4). Since K pg p g3 w w

(WAB, VZH), we then have

r r r

r 0, 108

g p p

g gg p

2 2 2 2 2 2 2

2 2 2

[( ) ][ ]

( ) ( )





a w w w

w w

+ - - -

+ - 

where r s mp= - W and m mp g( )a = - W. There are two
stable high frequency solutions near r pw and two low
frequency solutions near

r 1 109g gg
2 2 2( ) ( )a w a-  - -

(see Equation (39)). In the absence of finite frequency
corrections ( 0gg  ) we recover the unstable solution of the

Figure 7. Fractional residual g g1 2s (red solid line) with finite frequency corrections due to the non-static linear tide, as a function of orbital separation a/R for the
neutron star model. The blue dashed line shows R Rh

1 ( )( )c (as plotted in Figure 1) and indicates the location of linear resonances. The g-mode pair is ℓ 2= , n=1000
and m m, 2, 21 2( ) ( )= - , 2, 0( ), 2, 2( ) clockwise starting from the top left panel.
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incompressible limit in which the growth rate is 2G » W if
2g w W (see VZH and Section 2.2). If, however, the finite

frequency corrections are significant and 1gg  , there is an
unstable solution with a growth rate

. 110g gg ( )wG »

In Figure 8 we show gg∣ ∣ as a function of gw at
f 100 Hzgw  (this is not near a linear resonance). We find
that gg is well-fit by a relation of the form

, 111gg
g

2 2 0
2

∣ ∣ ( )
⎛
⎝⎜

⎞
⎠⎟ l

w
w



where the factor ( )l l w= , which we describe in detail in
Section 5.3, is a function of orbital separation and depends on

1( )c and 2( )c . The g
2w- scaling is a consequence of the fact that

the g
4( ) w- and g

3( ) w- cancel in Equation (99) but the g
2( ) w-

terms do not. The instability criterion 1gg  is then
equivalent to g 0w l w and the growth rate can be expressed
as

. 1120 ( )l wG »

The lack of cancellation due to finite frequency corrections
therefore leads to growth rates that are potentially a factor of

20lw» W larger than the incompressible limit growth rate.
The sign of Rgg depends on the quantum numbers of the

particular g-mode pair and in practice we find that there is no
preference for either sign. In our numerical experiments with
more realistic multi-mode systems, we find that the residual
drives an instability whenever there are mode pairs
with R 1gg∣ ∣  .

5.3. Value of ( )l w

In Figure 9 we show the magnitude of the residual factor
( )l w as a function of a/R. The red lines show λ for mode pairs

with ℓ n2, 1000= = , and m m, 2, 21 2( ) ( )= - , 2, 0( ) and
2, 2( ). The blue curve is Rh

1 ( )( )c , the same curve as in Figure 1,
and illustrates the variation of 1( )c with a/R and the location of
linear resonances. We find 0.1 1l ~ - in the regions outside
the narrow resonance windows (as explained in footnote 2, the
regions near resonances where λ has large peaks should be
ignored).
Although the fractional residual ggs tends to decrease with

increasing a/R (Figure 7), we see in Figure 9 that the total
residual R 2gg gg gg

22( )s k l= µc is relatively constant with a/R
(modulo 2 and the resonance-to-resonance fluctuations). This
is because the inner turning point of the non-static tide, which
occurs at the radius where N r( ) w , moves inward to smaller
r as f2 2 gww p= W = decreases. The amplitude of the high-
order g-modes are larger at smaller r, and therefore gg2( )kc
increases significantly as fgw decreases (WAQB discuss this
effect in the context of three-mode coupling of g-modes to

1( )c ). As a result, although globally Nw decreases, the finite
frequency corrections remain significant in the region that
dominates the coupling (where N r( )w » ) and the residual
only slowly approaches the static tide limit Rgg

2( ) as
f 0gw  . This slow convergence of the non-static linear tide to
the static tide solution in local regions where N2 is small is also
noted in Terquem et al. (1998).
We illustrate this point further in Figures 10 and 11. In

Figure 10 we show, as a function of r, the radial displacement

r
2( )c of the ℓ m, 4, 4( ) ( )= harmonic of the nonlinear tide and

the cumulative integral rgg2 ( )( )k <c for a R 5= and
a R 34= , corresponding to f 380 Hzgw  and 22 Hz (neither
of which is near a linear resonance). We assume an
ℓ m n, , 2, 2, 1000( ) ( )= - self-coupled g-mode and also plot
the horizontal displacement gh. At f 380 Hzgw  , r

2( )c has an
effective wavelength R» and most of the contribution to gg2( )kc

comes from large radii where r
2( )c peaks (the crust at r R0.9

does not contribute because we assume it is not buoyant and
therefore the g-mode displacement rapidly vanishes there). At
f 22 Hzgw  , r

2( )c has a short wavelength ( R ) and most of
the contribution to gg2( )kc comes from the region near the inner
turning point of r

2( )c (located at r R0.2 ), where the density
and displacements of all three modes are large.
In Figure 11 we show 2 gg2( )kc as a function of fgw. For g-

mode pairs that couple to the m=0 and m=4 nonlinear tide
we find fgg gw

5
2( )k µc

- while for pairs that couple to the m=2

nonlinear tide fgg gw
3

2( )k µc
- . The former scale more strongly

because the m=0 and m=4 nonlinear tide is driven by two
instances of the non-static linear tide ,m m2

1
2

1{ }( ) ( )c c= =- and
,m m2

1
2

1{ }( ) ( )c c= = , respectively. The finite frequency corrections to
the linear tide therefore enter the calculation twice. The m=2
nonlinear tide, by contrast, is only driven by a single instance
of the non-static linear tide ,m m2

1
0

1{ }( ) ( )c c= = .
Figure 9 also shows λ for g-mode pairs with n n1 2¹ . As the

wavelength of the oscillatory component of 2( )c decreases with
decreasing fgw, it begins to couple well to daughter pairs with
n n n1 2 2∣ ∣ ( )- c , where n 2( )c is the effective radial order of 2( )c
(i.e., the number of nodes). This is a consequence of linear
momentum conservation and is discussed in WAQB in the

Figure 8. Magnitude of the residual Rgg as a function of g-mode frequency
g 0w w at a R 12= ( f 100 Hz;gw  this is not near a linear resonance, see

Figure 1). We show results for g-mode pairs with ℓ 2, 4, 6= and
m m 01 2+ = . We find Rgg g

2
0

2∣ ∣ ( ) w wµ , as shown by the magenta line
(different values of m m1 2+ show the same scaling).
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context of three-mode coupling to the linear tide. At a R 5 ,
n 02( )c  and the coupling is much stronger for daughter pairs
with n n1 2= (black points). At larger a/R, n 02( ) >c and the
coupling is also strong for pairs with n n1 2¹ (magenta points).
As a result, the effective residual Rg g1 2

(and thus λ) in the
characteristic Equation (107) is, after summing over the n 2( )» c
strongly coupled daughters, larger than the n n1 2= case by a
factor of n 2( )» c . This collective driving of strongly coupled,
multi-mode systems is described in WAQB and results in
growth rates that are n 2( )» c faster than the single daughter
pair estimate.

5.4. Growth Rate and the Number of Energy e foldings‐
In Figure 12 we plot the growth rate Γ as a function of fgw,

found by numerically solving the eigenvalue problem defined
by Equation (26). We show results for g-modes with ℓ 2= and
a range of parameter values n n, ,g( )lD defined such that g-
mode pairs in the range n ng  D couple to each other with a
residual factor λ. Based on Figure 9, 0.1 1l ~ - when the
system is not near a linear resonance. For 0l = we recover the
incompressible limit result that 2G W when 2g w W. For

0l ¹ and n 0D = , we find growth rates 0l wG  when
g 0w l w , consistent with Equation (109). And for the reasons

Figure 9. Magnitude of the residual factor λ (red solid line) as a function of a/R. The blue dashed line shows R Rh
1 ( )( )c (as plotted in Figure 1) and indicates the

location of linear resonances. The g-mode pair is ℓ 2= , n=1000 and m m, 2, 21 2( ) ( )= - , 2, 0( ), 2, 2( ) clockwise starting from the top left panel (the same pairs as
in Figure 7). The points show λ at odd integer multiples of a/R for ℓ 2= pairs with n n 10001 2= = (black points) and n n1 2¹ with n 1000 21,2 =  (magenta
points).
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given in Section 5.3, we find that the effective λ increases by a
factor of n2» D for n 0D ¹ . In comparison to the 0l =
results, the finite frequency corrections yield significantly

larger growth rates and the instability is triggered much earlier
in the inspiral.
The number of mode energy e-foldings is approximately

given by

E E dt f dfln 2 2 , 113i
t

t

f

f
1

i igw,

gw( ) ˙ ( )ò òG = G -

where f igw, is the gravitational wave frequency when the

instability first turns on and f f t2 3a
˙ = (Equation (47)) for

the gravitational inspiral of two point masses.
If we ignore finite frequency corrections ( 0gg  ) and

damping, then 2G » W (Equation (40)) and

E E f fln 11 114i i1.2
5 3

100
1 3

,100
1 3( ) [ ] ( )= --

for M M¢ = and a neutron star with dynamical frequency
10 rads0

4 1w = - (where f f 100 Hz100 gw= and 1.2 =
M1.2 ). In this case, the instability criterion is

2g w W, and the modes first become unstable at a frequency

f 149
10

Hz. 115i
g

gw, 4
0

1 3

( )
⎛
⎝⎜

⎞
⎠⎟

w
w-



If 10g
4

0w w= - (corresponding to g-modes with ℓ 2= ,
n 1000 ) then by f 1000 Hzgw = the number of e-foldings

is E Eln 11i( )  , i.e., the modes grow by a factor of 105~ in
energy.
If we account for finite frequency corrections, 0l wG »

(Equation (112)) and for M M¢ = ,

E E f fln 44
0.5

. 116i i1.2
5 3

,100
2 3

100
2 3( ) [ ] ( )⎜ ⎟⎛

⎝
⎞
⎠

l
-- - -

Figure 10. Cumulative coupling integral rgg2 ( )( )k <c (red lines; divided by
108 2 ) and the radial displacement r

2( )c of the ℓ m, 4, 4( ) ( )= harmonic of the
nonlinear tide (blue lines; divided by R) as a function of radius r/R. The dashed
lines are for a R 5= ( f 380 Hzgw  ) and the solid lines are for a R 34=
( f 22 Hzgw  ), neither of which are near a linear resonance. The g-mode in the
calculation is a self-coupled g-mode with ℓ m n, , 2, 2, 1000( ) ( )= - whose
frequency 10g

4
0w w- . The dotted black line shows its horizontal displace-

ment gh (divided by R106 ).

Figure 11. Magnitude of 2 gg gg gg2( ) k s=c (divided by 2 ) as a function of
fgw for g-mode pairs with ℓ 2= , n=1000 and m m 0, 2, 41 2 { }+ = (red,
blue, and black solid lines, respectively). The black dashed lines show fgw

3- and

fgw
5- scalings.

Figure 12. Nonlinear growth rate Γ (in units of 0w ) of ℓ 2= g-modes (and the
p-modes to which they couple) as a function of fgw for different values of the
parameters n n, ,g( )lD .
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In this case, the instability criterion is approximately
g 0w l w , and the modes first become unstable at a frequency

f 63
10 0.5

Hz. 117i
g

gw, 4
0

1 2 1 2

( )⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

w
w

l
-

-


If 10g
4

0w w= - and 0.5l = , then the modes grow by a factor
of 1020~ in energy by f 1000 Hzgw = . If 10g

4
0w w= - and

1l = (corresponding roughly to the effective lambda for
n 2;D = Figure 9), then the modes grow by a factor of 1060~

in energy by f 1000 Hzgw = .
In Figure 13 we show the growth in mode energy E as a

function of fgw for a range of parameter values n n, ,g( )lD . We
find that depending on the values of n n, ,g( )lD , the modes
grow by factors of ∼1020 to 1050 before the merger.
Moreover, because the growth rates can be large relatively
early in the inspiral, the modes can reach large energies already
by f 100 Hzgw  .

The linear damping rates of g-modes increase with
decreasing gw and g gg w» for 10g

4
0w w» - (Section 6.3).

We find, however, that even allowing for a linear damping rate

g gg w does not significantly limit the growth (see solid and
dashed black lines in Figure 13).

5.4.1. Initial Mode Energy Ei

What is the initial mode energy Ei and how many e-foldings
are needed to reach dynamically significant energies? A g-
mode with ℓ 2= and m=0 is linearly driven by the static
linear tide to an energy

E I E
f

E10
10 100 Hz

, 118i g g
g

,
2

0
24

4
0

4
gw

4

0( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

w
w

» » -
-

where the linear overlap integral I 0.3g g 0
2( )w w (WAB). A

low frequency g-mode ( gw w ) with ℓ m, 2, 2( ) ( )=  is
linearly driven by the non-static linear tide to an energy that is
smaller than this by a factor of g

4( )w w~ , where 2w = W is the
tidal frequency. This yields E E10i g,

35
0» - for the values in the

equation above.
The near cancellation of three- and four-wave couplings

K K Kgg pg pg4 3 3 ¯+ å implies that in order to prevent the runaway
growth of the g-mode due to its self-coupling term K gg4 , the
many p-modes to which the linearly driven g-mode couples
must grow along with it and maintain an energy

E K E E . 119p pg g
p

g
g3

2

2

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

w
w

»

For strongly coupled p–g pairs, k kp g which for our neutron
star model implies

Nc

r
10

10
. 120p

g s

g
g
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4

0

1

0 ( )
⎛
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⎞
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w
w

w
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L
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Therefore for ℓ 2= g-modes

E
f

E10
10 100 Hz

, 121p
g

g
8

4
0

4
gw

4
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⎛
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⎞
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⎞
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w
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i.e., the p-modes must maintain a much larger energy than the
g-mode in order to preserve the three- and four-mode
cancellation throughout the linear driving of the ℓ 2= g-mode.
Thus, by Equation (118)

E
f

E10
100 Hz

. 122p i,
16 gw

8

0 ( )
⎛
⎝⎜

⎞
⎠⎟» -

These estimates suggest that there are p–g unstable modes
with initial energies E E10 10i

30 20
0~ -- - at f 100 Hzgw = .

For such modes, growth factors of E E 10i
20~ are significant

as they correspond to mode energies that are a substantial
fraction of E0, the star’s binding energy. Given that a g-mode
with frequency 10g

4
0w w» - breaks at E E10 10

0~ - (i.e.,
q k g 1;g g r∣ ∣ ~ WAB), even growth factors 1020 may be
significant.
We conclude, therefore, that the finite frequency corrections

may lead to substantial mode growth prior to merger. Since
each g-mode couples to many p-modes, there can be a very
large number of excited modes ( 103 ). Determining what
affect this may have on the inspiral requires an understanding
of the saturation of the instability and is left to future work.

6. RESULTS WITH LINEAR DAMPING

In this section we determine how linear damping influences
the stability of the tide to p–g coupling. In order to separate the
effects of damping from the effects of finite frequency
corrections, we will ignore the latter and assume that the
cancellation given by Equation (36) holds. The characteristic

Figure 13. Mode energy growth relative to an initial mode energy Ei as a
function of fgw for ℓ 2= g-modes (and the p-modes to which they couple). The
curves are for different values of the parameters n n, ,g( )lD . The solid and
dashed and black lines are equivalent except that the latter assumes that the g-
mode has a linear damping rate g gg w= .
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Equation (35) is then

s m i s m q
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where we neglect 2( ) terms since they do not alter the
stability. As in Section 2.2, we can estimate the stability of
this potentially large system of modes by considering a simple
two mode system consisting of a single p–g pair. Since
K pg p g3 w w , if we let r s mp= - W and m mp g( )a = - W,
the characteristic equation becomes (see Equation (38))

r i r r i r

r i r 0. 124

g g p p

p p

2 2 2 2

2 2 2

[( ) ( ) ][ ]

[ ] ( )

a g a w g w

g w

+ - + - - -

- - 

We consider the solution to this equation for various limits
of α and pg . In Section 6.1, we consider the case of the static
tide ( 0a = ) with damping and show that all solutions are
stable. In Section 6.2 we consider the case of the non-static tide
with damping. We show that p-modes that are strongly damped
with pg W are unstable and grow, along with the g-modes to

which they couple, at a rate p
1 2( ) gG ~ W W . In Section 6.3

we estimate the damping rate of high-order p- and g-modes and
argue that pg W if the p-modes are above the acoustic cutoff
frequency of the neutron star. In Section 6.4 we show that for
p–g pairs containing such strongly damped p-modes, the modes
can reach significant amplitudes before the neutron star merges.

6.1. Static Tide with Linear Damping

By angular momentum conservation (i.e., the coupling
coefficient selection rules Equations (17)–(19)) only p–g pairs
that satisfy m m mp g∣ ∣- = couple to harmonic m of the ℓ 2=
linear tide. Therefore for the case of the static tide m 0a= = ,
Equation (124) gives, upon substituting r ib= - ,

1

0. 125

p g p g p g

p p g p g p g

4 3 2 2 2 2

2 2 2 2 2
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[ ( ) ] ( )
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b b g g b w w g g

b w g g g w w w

+ + + + + +

+ + + + =

The Routh–Hurwitz criterion (Gradshteyn et al. 2007) for a
quartic equation with real coefficients a x a x a x4

4
3

3
2

2+ +
a x a 01 0+ + = shows that the solution is stable since a 0i >

for all i, a a a a3 2 4 1> , and a a a a a a a3 2 1 4 1
2

3
2

0< + .

6.2. Non-static Tide with Linear Damping

For the case of the non-static tide m 2=  , the low
frequency solution to Equation (124) is

r
i

i

2

4
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If the last term under the square root dominates, i.e.

, , , and , , 127p g p g p g
2 ∣ ∣ ( ) ag w g g g a g 

then r i1 2p( )a ag-  + and there is an unstable
solution with a growth rate

. 128
p ( )
g

G » W
W

Thus, the solution with damping is larger by a factor of
4p

1 2( )g» W compared to the solution without damping or
finite frequency corrections 2G » W (see Equation (40)).
To understand why large linear damping can result in a

viscous-type instability that enhances the growth rates, note
that the cancellation between three- and four-wave interactions
requires that the phases of the p- and g-mode oscillations be in
strict relation. This relation can only be perfectly satisfied for
the static tide (which is why the static tide is always stable). For
the non-static tide without linear damping (nor finite frequency
corrections), there is a phase offset in the equations of motion
due to the Coriolis term 2w~ . As a result, the growth rates scale
as w~ , as VZH showed (see also Equation (40)). For the non-
static tide with linear damping, the equations of motion have an
additional viscous term gw~ and, in analogy with the effect of
the Coriolis term, we find that for large enough pg it can result

in a growth rate p
1 2( )g w~ (Equation (128)).

6.3. Damping Rates

First consider the p-mode damping rate. By Equation (120),
a g-mode with 10g

4
0w w~ - couples to a p-mode with

10p g
3

0w w~ L . Such a p-mode is well above the acoustic
cutoff frequency of a neutron star ( 10 ;ac

2
0w w~ WAB).

Because it does not reflect at the stellar surface, it escapes in
one group travel time across the star and in a region between r
and r r+ D it has an effective damping rate

t r

2
, 129p

p ( )
( )g

p
»

D

where its group travel time across rD is

t r
dr

c

r

c
. 130p

r

r r

s s
( ) ( )òD

D+D
 

The size of the p–g coupling region determines rD . If the
driving rate is slower than the g-mode’s group travel time
across this region, the driving is global and r RD » (WAB). In
that case t R c 0.7p s 0

1w» » - since c R1.5s 0w for a neutron
star core. We therefore find a p-mode damping rate

10 s . 131p
5 1 ( )g » -

This estimate motivates the value for pg used in the e-folding
calculation below. In Appendix E we show that it may be more
appropriate to treat the g-mode driving as local rather than
global. In that case, the coupling region r RD  and we
estimate that the p-mode damping rate would be 10 s5 1- .
In WAB we found a g-mode damping rate

T3 10 s , 132g g
g

9 2
8

2 0
2

1 ( )
⎛
⎝⎜

⎞
⎠⎟g

w
w

» ´ L- - -

where T8 is the core temperature in units of 10 K8 . The
minimum g-mode frequency such that g gw g is therefore

T0.7 rad s . 133g g
2 3

8
2 3 1 ( )w » L - -
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In practice, we find that the modes are p–g unstable even if
g gw g< , although in this regime the g-modes are more

correctly treated as traveling waves rather than global standing
waves. In any case, this motivates our choice of 10g

4
0w w= -

in the estimates below.
The damping rate calculations above assume that the modes

are oscillating at their natural frequencies. However, p–g pairs
will oscillate far from their natural frequencies when they are
unstable to nonlinear p–g driving by the tide (see Equa-
tion (126)). The p-mode, in particular, is forced to oscillate at a
frequency pw . Although not entirely clear, we might still
expect a p-mode whose natural frequency is above the acoustic
cutoff to have a large damping rate that is given approximately
by Equation (129). This is because once the p-mode leaves the
coupling region in the core, it is no longer unstable and forced
to oscillate at the nonlinear driving frequency. Instead, upon
entering the crust, it will begin to oscillate at its natural
frequency. It therefore does not reflect at the stellar surface, and
thus its effective damping rate is approximately the inverse
sound crossing time. A caveat is that its group velocity within
the coupling region might be less than cs. Therefore, perhaps
only the outgoing acoustic waves excited near the outer coupling
region have damping rates as large as the estimates above.

6.4. Number of e-foldings with Damping

Figure 14 shows the p–g growth rate accounting for rapid
mode damping. In order to obtain these results, we numerically
solve the eigenvalue problem (Equation (26)). We assume that
the p–g pair has frequency , 2 10 , 10p g

3 4
0( ) ( )w w w´ - .

Based on the estimates in Section 6.3, this suggests p-mode
damping rates 10 sp

5 1g » - and g-mode damping rates

g gg w» . We find that the numerical calculation agrees well
with the analytic estimate given by Equation (128). The growth

rates are significantly larger when damping is included and the
instability is triggered much earlier in the inspiral.
By Equation (113), the growth rate of Equation (128) results

in an energy e-folding

E E f fln 198
10 s

134i
p

i1.2
5 3

5 1

1 2

,100
1 6

100
1 6( ) [ ] ( )⎜ ⎟⎛

⎝
⎞
⎠

g
--

-
- -

for M M¢ = and 10 rads0
4 1w = - . The instability criterion is

2g pw gW , and the modes become unstable at a frequency

f 56
10 10 s

Hz. 135i
g p

gw, 4
0

2 5

5 1

1 5

( )⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

w
w

g
- -

-


If the instability begins at f 60 Hzigw, = then the mode energy

grows by a factor of E E 10i
35~ by f 1000 Hzgw = .

We show in Appendix E that the g-mode driving might be in
the local regime, in which case 10 sp

5 1g - . The modes
would then grow by E E 10i

35 .

7. CONCLUSIONS

We analyze the stability of the tide in coalescing binary neutron
stars to p–g mode coupling. Previous studies did not account for
either the relevant four-wave interactions (WAB) or the
compressibility of the linear tide (VZH). In order to account for
both effects, we first solve for the non-static linear tide 1( )c , and
thereby obtain the finite frequency corrections to the static tide
(such as compressibility). We then use this solution to evaluate the
three- and four-mode coupling coefficients. We find that the finite
frequency corrections are significant and undo the near-exact
cancellation between the coefficients found in the incompressible
limit. As a result, the instability begins earlier in the inspiral and the
p–g growth rates are 0w w~ larger than those of the incompres-
sible limit. We find that the unstable p–g modes can potentially
reach significant energies well before the neutron star merges.
In a separate analysis, we investigate the effects of linear

damping on the p–g instability (ignoring finite frequency
corrections in order to disentangle the two effects). For small
linear damping rates, the damping acts to slow the mode
growth. However, if the p-mode damping rate is sufficiently
large, it induces a viscous-type instability and the p–g growth
rate increases with increasing pg . We find that p-modes above
the acoustic cutoff frequency of the neutron star have effective
damping rates p 0g w and increase the instability growth rates

relative to the inviscid limit by a factor of 0
1 2( )w w~ . This

viscous mechanism can therefore also drive modes to
significant energy before the merger.
In this study we focused on the stability and growth rate of p–

g coupling. We did not attempt to solve for the instability’s
saturation and therefore did not determine its influence on the
tidal dissipation rate. Thus, we do not know to what extent the
instability affects the phase evolution of gravitational waves
from coalescing neutron star binaries. Nonetheless, its early
onset ( f 50 Hzgw » ), rapid growth rates, and large number of
excited modes ( 103 ), suggests the instability’s impact could be
significant and motivates the study of its nonlinear saturation.

The author thanks Gordon Ogilvie for pointing out the
argument for the stability of the static tide given in Appendix A
and also thanks Phil Arras and the referee for valuable
comments on this manuscript. This research was supported by
NASA grant NNX14AB40G.

Figure 14. Instability growth rate Γ (in units of 2W) including linear mode
damping as a function of gravitational wave frequency fgw for an ℓ 2=
p–g pair. The mode frequencies are , 2 10 , 10p g

3 4
0( ) ( )w w w´ - . The two

upper lines are for p-mode damping rates of 5 10 sp
5 1g = ´ - and 10 s5 1- .

Both also assume a g-mode damping rate g gg w= . The lower line assumes no

damping of either mode. The dotted black lines show 4pg W .
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APPENDIX A
STABILITY OF A STATIC TIDAL FIELD

Consider a neutron star that is deformed by a static tidal field. We show here that a short wavelength perturbation to this static,
tidally deformed neutron star is stable to all orders in the tidal factor M M R a 3( )( ) = ¢ as long as 1  (we thank G. Ogilvie for
bringing this argument to our attention).

The response of a static, tidally deformed star to a small perturbation x is given by

t
p , 136

2

2
( )x   r d dr f r df

¶
¶

= - - -

where p,d dr, and df are Eulerian perturbations and the gravitational potential f is that of the star plus the (time independent)
external tidal potential. Since the background is taken to be the tidally deformed star (not a spherically symmetric star), the
background quantities p,r , etc. account for the exact static tide response to all orders in the tidal factor ò. If we assume that ρ and p
vanish at the surface of the star and the perturbation varies with time as eistx ~ , the energy equation of the perturbation is

As dV
G

dV
p

p
p dV

1

4
, 137

V V

2 2 2
2

1
∣ ∣ ∣ ∣ ∣ ∣ ( · )( · ) ( )

⎡
⎣⎢

⎤
⎦⎥*ò ò òx  x  xr

p
df

d
= - +

G
+

¥

where V is the volume of the tidally distorted star and A pln 1 ln1( ) r= - G is the Schwarzschild discriminant. Since the
perturbation is assumed to be small, we only account for its energy to lowest (i.e., quadratic) order.

The three contributions to s2 are: the perturbed gravity term (negative and therefore destabilizing), the perturbed pressure term
(positive and therefore stabilizing), and the buoyancy term, whose influence on the stability we now consider. In a spherical star,

Ap N r
2 2( · )( · ) ∣ ∣*x  x  r x= , and the buoyancy term is stabilizing if N 02 > , where AN p2 · rº is the Brunt–Väisälä

buoyancy frequency. Consider now a star deformed by a static tide. Since the hydrostatic equilibria are barotropic, the vectors p
and A are parallel and Ap N g

2 2( · )( · ) ∣ ∣ˆ*x  x  r x= , where now N 2r is that of the tidally deformed star and ĝx is the component of

x along g f= - . If we start with a stably stratified spherical star and apply a static tidal deformation, we still have N 02 > as long
as 1  . This is because the Eulerian perturbation to N2 due to the static tide is N N2 2 d ~ (see, e.g., Burkart et al. 2013). The
buoyancy term in the tidally deformed star is therefore stabilizing if the spherical star is stably stratified, as is the case for neutron
stars.

For short wavelength perturbations, such as those we consider in the main text, the perturbed gravity term df in the energy
equation should be unimportant (i.e., it is appropriate to work in the Cowling approximation). We therefore conclude that a short
wavelength perturbation to a static, tidally deformed neutron star is stable to all orders in ò.

APPENDIX B
USEFUL FORM FOR THE SUM RULE INTEGRAL

We derive here an expression of the sum rule integral (Equation (87)) that makes its similarities with K cd4 more apparent.
Assuming the Cowling approximation, the linear operator acting on some vector x can be written as (Reisenegger 1994)

f
g g g

p N c

g
c

N c

g
138s

s
s1

2 2

2
2

2 2

2

[ ]
( · ) [ · · ] ( · ) ( )

⎛
⎝⎜

⎞
⎠⎟

x
  x   x x  x

r
d
r

= - + = + +

(the two restoring forces are the pressure variation pd and the buoyancy associated with N2). For any two vectors x and h, we want to
evaluate

f g gd x d x c
N c

g
. 139s

s3
1

3 2
2 2

2
· [ ] · [ · · ] ( · ) ( )

⎛
⎝⎜

⎞
⎠⎟ò òx h x   h h  hr= + +

We can use integration by parts to simplify the first term

g S g g

g g

d x c d c d x c

d x c c , 140

s s s

s s

3 2 2 3 2

3 2 2

· [ · · ] · [ · · ] · ( )[ · · ]

{ ( · )( · ) ( · ) · · [ · · ]} ( )

ò ò ò
ò

x   h h x  h h  x  h h

 x  h  x h x   h h

r r r

r r r

+ = + - +

= - + + +

where the surface term vanishes because we are interested in vectors that satisfy the surface boundary condition

rc c 0, 141r R1 2( · ˆ · ) ( )h  h+ ==
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where c1 and c2 are constants (Equation (5) in Reisenegger 1994). We then have

142f g g gd x d x p
N c

g
c, .s

s
3

1
3

1

2 2

2
2 ( )· [ ] ( · )( · ) ( · ) · · ( · ) [ · · ]

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟
⎫
⎬
⎭ò òx h  x  h  x h x  h   h hr r r= - G + - - +

Using the definition of N2, the integrand term within large parentheses simplifies to

c
N

g

d

dr
g

d

dr
g g

d

dr

ln
143s r r

2
2

· · ( )
⎡
⎣⎢

⎤
⎦⎥ h  hr

r r
h r

r
h- - + = +

and we find

fd x d x p g g
d

dr
. 144r r r r

3
1

3
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⎡
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⎤
⎦⎥ò òx h  x  h  h  xr x h

r
x h= -G + + +

Note that this is symmetric in x h« , as expected given that f1 is an Hermitian operator, i.e.,

f fd x d x . 1453
1

3
1· [ ] [ ] · ( )ò òx h x h=

Equation (87) can therefore be written as

f f fK K
E
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where we dropped terms smaller than c
2( ) w- given that b c
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we have, after integration by parts,
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We therefore have our final result (Equation (88))
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where we wrote ac· y in component form
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and used the fact that a 1 1( )( ) ( ) *c c= = .
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APPENDIX C
FOUR-MODE COUPLING COEFFICIENT abcdk

Here we give the form of the four-mode coupling coefficient abcdk that we use for numerical calculation. We derive it using the
same general approach taken by Wu & Goldreich (2001) and WAQB to derive a numerically useful form for the three-mode coupling
coefficient abck . We find that the coefficient can be broken into five pieces

E

I II III IV V

6
, 151abcd

0
( )k = -

+ + + +

and can be written in terms of angular integrals, rx , hx , · x, and
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as follows:
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Here the divergences are with respect to the radial functions. The angular integrals are defined as
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Paired subscripts not separated by a comma are symmetric in those indices. Note that F Tab cd abcd,
1( ) = . The integrals Tabcd, Fab cd,

2( ) , Fab cd,
3( ) ,

and Sa bc d, , are, respectively, analogs of the three-mode integrals Tabc, Fb, Vb, and S defined in Wu & Goldreich (2001); the integrands
of the former equal Ya times the integrands of the latter. We compute these integrals numerically in our calculations.
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C.1. A Relation Between Sa bc d, , and Eab cd,
22( )

The differential expression under the integral in the definition of Sa bc d, , can be written as
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APPENDIX D

EXPRESSIONS FOR THE g
2( ) w- CONTRIBUTIONS TO K K Kgg pg pg4 3 3 ¯+ å

In this appendix we provide expressions for the g
2( ) w- contributions to K K Kgg pg pg4 3 3 ¯+ å . In Appendix D.1 we consider

K K3 gg pg pg3 31 1 ¯( ) ( )k + åc c . We then describe two methods for calculating the nonlinear tide 2( )c , which we need in order to evaluate
2 gg2( )kc : (Appendix D.2) as a sum over modes and (Appendix D.3) by directly integrating the inhomogeneous equation of motion.

Once we have 2( )c we can calculate gg2( )kc similar to how WAQB compute the three-mode coupling coefficient abck . Note,
however, that we cannot use the final expression for abck in WAQB (A55)–(A62) since their analysis assumes that all three modes are
non-radial modes (ℓ 0¹ ) whereas ℓ 0= is one of the harmonics of 2( )c . Instead, we proceed as in VZH and use their
Equations (177)–(180). When calculating 2( )c by direct integration (Appendix D.3) we must account for the inhomogeneous term in
the equation of motion, which yields, in addition to VZH’s Equation (177)–(180), an inhomogeneous coupling term
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where c and d label the g-modes, F 2( )c is the three-mode angular integral and fr, 2( )c is the radial component of the nonlinear tide

driving force (given by Equation (201) below).
D.1. K K3 gg pg pg3 31 1 ¯( ) ( )k + åc c

Starting from Equations (88) and (95), we decompose the terms that enter at g
2( ) w- into eight separate pieces
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In Section 3.5 we show that term I is c
2( ) w- due to cancellations between its individual c

3( ) w- terms. From the definitions of acy
and acz (Equations (71) and (72)) and the four-mode angular integrals defined in Appendix C, we can reduce the c

2( ) w- portion of
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these terms to radial integrals. With the double sum over all harmonics of the linear tide mode a implicit, we find:
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D.2. Calculating cd2( )kc with 2( )c Evaluated as a Sum Over Modes

Expanding the nonlinear tide as a sum over modes
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The amplitudes of the nonlinear tide expansion are therefore given by the steady state solution to Equation (187) (compare with
Equation (59) in WAQB)
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In the more general case that includes the non-static linear tide (ℓ 2= , m 2, 0, 2{ }= - ), we first write
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The harmonics that contribute to 2( )c are ℓ 0, 2, 4a { }= and m 0, 2, 4a { }=   . The coupling coefficients for the different values of
ma are then
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where T is the three-mode angular integral, which we label here by the values of m (the three ℓ values are ℓa for the nonlinear tide and
ℓ 2= for each linear tide). The coefficients Jab

ˆ , ab
Iˆ ( )k , and abc

Hˆ ( )k are as defined in Appendix A of WAQB (the hat symbol indicates that

the angular integral T is factored out).
D.3. Calculating cd2( )kc with 2( )c Determined Directly from the Equation of Motion

Rather than expand 2( )c as a sum over modes as in Section D.2, we find that it is numerically more accurate to instead directly
solve the inhomogeneous equation of motion
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We do this by first solving Equation (6) for the linear tide 1( )c . By angular momentum conservation (in the form of three-mode
coupling between the linear and nonlinear tide), we have that the inhomogeneous driving term and 2( )c both oscillate as ei tw , where

mw = W and m 0, 2, 4{ }=   is a harmonic of the nonlinear tide. The time dependence therefore cancels out and the equations
reduce to a boundary value problem involving a pair of coupled linear ODEs in the radial direction with inhomogeneous driving
terms. We find (see Pfahl et al. 2008)
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where, letting a and b represent harmonics of 1( )c and c represent a harmonic of 2( )c ,
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and the radial and horizontal driving forces are (see also Equations (206) and (207) below)
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Here we use the notation Ub to indicate harmonic b of the tidal potential (and not the linear driving coefficient found in WAQB).
Equations (198), (199) assume that m 0cw = W ¹ . If m 0cw = W = (i.e., the static nonlinear tide) and ℓ 0c ¹ , then the nonlinear tide
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is instead given by the solution to

rf
203h

c
2

( )y
r

=
L

d

dr

N

g
N c

f
. 204r

r
2

2 ( )y
y

r
= - +

The first equation gives r( )y and we can use that result to get cr from the second equation. If ℓ 0c = then Equation (204) still holds
and the equation for dc drr is, by the definition of the divergence,
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Starting from Equation (I37) in Schenk et al. (2002), the radial and horizontal driving forces can be written in terms of the linear
tide displacement a and b as

a b

b b

a b

f a b
d g

dr
T

d

dr

g

r
a b F g T h T h F h V

g
a

r r
b

r
b T

a a

r

b

r
F

r
a

r
a

p

r
T

a

r

p

r
F

r
p h T h F h V

r
p T

a
U

r
T

a U ℓ

r
F

1

2

1

2

2 2

1

2

1

2

ln

ln

1
, 206

r
ab

r r h h c ab ab c ab c

r b
h r

r h h
c r

a
h

h
c

ab ab c ab c

r
b h b b

c

2

2
1 2 3

2 2
1 1

1
1 2 3

1 1
1

2

2 2

[ · · ( )]

( ) [ · ] ·

[ ( )] · ·

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣
⎢⎢

⎧⎨⎩
⎫⎬⎭

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

å  

 

 

r r

r

r

r

= - + + - + +

+
¶
¶

L
- +

- ¶
¶

+ -
L ¶ G

¶
-

¶
¶

G

-
¶
¶

G + + -
¶
¶

G G +
¶ G
¶

-
¶
¶

+
-

b

b b
a

a b

f
d

dr

g

r
a b F a b F g

a a

r

b

r
F

a

r

b b

r
F

a a

r

b

r
G

a a

r

p

r
F

p

r

a

r
F

a

r
G

p

r
h T h F

a b

r
V

p

r
T

a
U r

r
F

a ℓ U

r
F

a U

r
G

1

2

1

2

1

2 ln

. 207

h
ab

r h a h r b
r h r

b
r r h

a
r h h

b

r h
b

r
a

h
a

c ab ab c
h h

c c

r
b

a
h b b

b
h b

b

1 1

2 1 1 2
2 1

2 1 2

2 2

[ ] ( ) · ( ) ( )

( ) [ · ] · ·

· ·

( ) ( )

( ) ( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

å 

  

 

r r

r

r r

= - + +
-

- +
¶
¶

-
+

-

-
- ¶ G

¶
-

G
- +

- L
G

+ + - G +
¶G
¶

L

-
¶

¶
+ -

At the center we impose the regularity conditions c ℓ cr c h= and at the surface we require the fluid to be hydrostatic by imposing
p 0D = . We solve the equations by shooting from these boundaries to a fitting point at r R 2 (see, e.g., Press et al. 1992).

APPENDIX E
DAMPING RATE OF p-MODES IN THE CASE OF LOCAL DRIVING

In Section 6.3 we assume that the g-mode driving is global. However, if the driving is local then the coupling region r RD  . In
the calculation below, we show that in that case the p-mode damping rate is much larger than that in the global case (i.e.,

10 sp
5 1g - ). The g-mode driving is local if

t R 1, 208g ( ) ( )G
where p gG W is the nonlinear growth rate and t R k Rg r g( ) w is the g-mode’s group travel time across the star. For an equal

wavelength p–g pair, k c R1.5r p s p 0w w w  , and the condition for local driving becomes
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0w w w> ~ , wavelength matching implies 10p g g
5 1w w L- and driving is local if f 30 Hzgw  .

To estimate pg in the local driving regime, assume rD is determined by the distance the g-mode travels in a nonlinear growth time,

i.e., equate the g-mode’s group travel time across rD to its inverse growth rate

t r . 210g
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Solving this equation for rD assuming an equal wavelength p–g pair yields a damping rate
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We thus see that 10 sp
5 1g - in the local driving regime.
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