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ABSTRACT

The obliquities of planet-hosting stars are clues about the formation of planetary systems. Previous observations
led to the hypothesis that for close-in giant planets, spin–orbit alignment is enforced by tidal interactions. Here, we
examine two problems with this hypothesis. First, Mazeh and coworkers recently used a new technique—based on
the amplitude of starspot-induced photometric variability—to conclude that spin–orbit alignment is common even
for relatively long-period planets, which would not be expected if tides were responsible. We re-examine the data
and find a statistically significant correlation between photometric variability and planetary orbital period that is
qualitatively consistent with tidal interactions. However it is still difficult to explain quantitatively, as it would
require tides to be effective for periods as long as tens of days. Second, Rogers and Lin argued against a particular
theory for tidal re-alignment by showing that initially retrograde systems would fail to be re-aligned, in
contradiction with the observed prevalence of prograde systems. We investigate a simple model that overcomes
this problem by taking into account the dissipation of inertial waves and the equilibrium tide, as well as magnetic
braking. We identify a region of parameter space where re-alignment can be achieved, but it only works for close-
in giant planets, and requires some fine tuning. Thus, while we find both problems to be more nuanced than they
first appeared, the tidal model still has serious shortcomings.
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1. INTRODUCTION

One surprising aspect of the geometry of exoplanetary
systems is that the rotation of the host star can be drastically
misaligned with the planetary orbits (see, e.g., Hébrard et al.
2008; Narita et al. 2009; Winn et al. 2009; Triaud et al. 2010;
Hirano et al. 2011; Albrecht et al. 2012; Huber et al. 2013; Li
et al. 2014b, or the review by Winn & Fabrycky 2015). Many
theories have been advanced to explain the misalignments. In
some theories, the planet’s orbit is tilted through few-body
gravitational dynamics. This includes planet–planet scattering,
as well as long-term secular dynamical effects between planets
or involving a stellar companion (see, e.g., Fabrycky &
Tremaine 2007; Chatterjee et al. 2008; Nagasawa et al. 2008;
Naoz et al. 2011, 2012; Wu & Lithwick 2011; Li et al. 2014a;
Valsecchi & Rasio 2014). In other theories the misalignment
arises not between planets, but rather between the host star and
the protoplanetary disk, or a tightly coupled system of coplanar
planetary orbits. For example the star can be tilted relative to
the protoplanetary disk through magnetic (Lai et al. 2011) or
fluid-dynamical effects (Rogers et al. 2012, 2013). Alterna-
tively, the disk can be tilted because of the inhomogeneity of
the collapse of the original molecular cloud (Bate et al. 2010;
Fielding et al. 2015), or the gravitational torque from a passing
star (Tremaine 1989; Thies et al. 2011; Batygin 2012).

One seemingly important clue is that for host stars of hot
Jupiters—the most thoroughly investigated type of system—

misalignments are seen more frequently among relatively hot
stars (Teff6100 K) than cooler stars (Schlaufman 2010;
Winn et al. 2010; Albrecht et al. 2012). Another possible clue,
though with less secure support, is that the host stars of the
most massive hot Jupiters (3MJup) tend to have lower
obliquities (Hébrard et al. 2011; Dawson 2014). One possible
explanation for these trends invokes the coplanarizing action of
star–planet tides (Winn et al. 2010), which is thought to be
more rapid for cooler stars than for hotter stars, owing to

differences in their internal structures. The stronger magnetic
braking of the cool stars may also play an important role
(Dawson 2014). Thus, one hypothesis for the spin–orbit
misalignments that is consistent with all the preceding results
is that they are a frequent by-product of dynamical effects, but
the misalignments are eventually erased if tidal dissipation and
magnetic braking are sufficiently strong. Recently this hypoth-
esis has been criticized, on both observational and theoretical
grounds.
On the observational side, Mazeh et al. (2015) found that the

differing obliquity distributions of hot and cool stars seems to
exist even for relatively long-period planets, whose orbits are
too distant for tidal interactions to be relevant. To arrive at this
result, they applied a novel technique to the Kepler sample of
transiting planets. Their technique was based on the observed
level of photometric variability of the host star due to starspots
carried around by stellar rotation. All other things being equal,
when the star’s rotation axis is viewed at high inclination, the
photometric variability should be larger than when it is viewed
at low inclination. Since the orbit of a transiting planet is
always viewed at high inclination, a population of transit-
hosting stars with low obliquities should show systematically
greater photometric variability than a population of randomly
oriented stars. Indeed, Mazeh et al. (2015) found this effect for
relatively cool stars (Teff  6000 K), whereas the hotter stars
were more consistent with random orientations. And, most
pertinent to this paper, Mazeh et al. (2015) found that the
enhanced variability of cool stars did not seem to depend on the
orbital period of the planet, all the way out to the ≈50-day limit
of the sample. In contrast, under the tidal re-alignment
hypothesis, one would expect the obliquity distribution to
depend on period, with lower obliquities for the closest-in
planets. For a Sun-like star in particular, a period of 50days
corresponds to an orbital distance of about 0.25 AU, which is
thought to be too large for tidal interactions to be relevant.
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On the theoretical side, from the moment the tidal hypothesis
was made, it was recognized that it may be difficult to realign
the system without also destroying the planet through orbital
decay. The very simplest tidal theories (involving only the
dissipation of the equilibrium tide) predict similar timescales
for the spin-up of the star, the alignment of the star and orbit,
and the shrinkage of the orbital distance. Winn et al. (2010)
suggested that the problem could be overcome if only the star’s
outer convective layer participates in the re-alignment, but it
seems unlikely that the interior could remain uncoupled for a
sufficiently long time. Lai (2012) rescued the hypothesis, by
identifying a component in the tidal torque of a misaligned
system which can reduce the obliquity without causing orbital
decay. However, Rogers & Lin (2013) have criticized this
theory, by showing that this same component of the tidal
potential should lead with substantial probability to final states
in which the spin and orbit are retrograde or perpendicular.
This does not agree with the observed preponderance of
prograde configurations. Xue et al. (2014) pointed out that
when the effects of both the equilibrium tide and inertial waves
are taken into account, re-alignment can be achieved before
orbital decay. Here we study the parameter space of this type of
scenario, including the equilibrium tide, inertial waves and
magnetic braking.

In this paper we examine these two problems in more detail.
InSection 2, we re-examine the technique and the dataset
presented by Mazeh et al. (2015) and search for any statistical
evidence for a period-dependence of the obliquity distribution.
InSection 3, we investigate simple tidal models including the
effects of the equilibrium tide, magnetic braking, and the tidal
torque component identified by Lai (2012), to see if it is
possible for the final states to be predominantly prograde
systems. InSection 4 we summarize our conclusions and their
implications for theories of planetary formation and evolution.

2. TESTS FOR A PERIOD-DEPENDENCE OF
PHOTOMETRIC VARIABILITY

The basis for the pioneering work of Mazeh et al. (2015) was
the collection and update of rotation periods and associated
amplitudes of photometric variability that was presented by
McQuillan et al. (2013, 2014), based on Kepler data. The
sample includes 34030 main-sequence stars, and 993 stars that
are identified as likely hosts of transiting planets; the latter are
referred to as Kepler Objects of Interest or KOIs. The
photometric variability amplitude was quantified by the statistic
Rvar, defined as the amplitude of the photometric modulation in
parts per million. They compared the distributions of Rvar

between different samples of stars. For the relatively cool stars
(Teff< 6000 K), they found that Rvar tends to be higher for the
KOIs than the non-KOIs. In contrast, for the hotter stars, they
found that Rvar tends to be lower for the KOIs than the non-
KOIs. They also divided the KOIs into two groups, short-
period (1–5 days) and long-period (5–50 days), and did not
identify any systematic difference in Rvar between these groups.
In this section we re-examine the same dataset, looking
specifically for any period dependence of Rvar among the
sample of cool KOIs.

We obtain the data for Rvar, Prot, and Teff from Mazeh et al.
(2015). For the KOIs, we also obtain the corresponding transit-
related data (stellar radius, orbital periods, transit signal-to-

noise ratio, and root mean squared average of the combined
differential photometric precision) from the NASA Exoplanet
Archive3 (Akeson et al. 2013, NEA). In particular, the stellar
radii in the NEA were taken from the compilation of Huber
et al. (2014). We exclude targets which are identified as false
positives in the NEA. We also exclude six KOIs for which no
stellar radius is given in the NEA, and a single KOI (1174) for
which the NEA lists a mysteriously long orbital period of
1.3×105 days. We are left with 909 KOIs. Of these, 814 have
Teff<6000 K and are the focus of this paper; henceforth, for
brevity, we refer to this sample as the KOIs. (The sample of
hotter KOIs is too small for a meaningful search for period-
dependent effects.) As a control sample, we use the Rvar data
for 34030 main-sequence stars with Teff<6000 K given by
McQuillan et al. (2014); we will refer to this sample as the
“non-KOIs.”

2.1. Statistical Tests and Results

2.1.1. Correlation Coefficients

To study the overall dependence of the photometric
variability on the planet’s orbital period, we perform a linear
regression of the variability amplitude of the KOIs and orbital
period:

= + +R a a Plog log 1var 0 1 orb ( )

where Rvar is the variability amplitude in parts per million, and
Porb is the orbital period of the planet in days. For multi-
transiting systems, we use the orbital period of the innermost
planet. (Comparison of the multi-transiting systems and the
single-transiting systems is discussed in Section 2.1.6.) The
result is a1=−0.08±0.02, with a p-value of 6×10−5. The
small p-value indicates that there is a statistically significant
linear relation between the variability amplitude and the orbital
period. Figure 1 shows the data and the best-fitting line.
To better visualize this correlation, Figure 1 also shows the

results of dividing the sample into 10 bins, with each bin

Figure 1. Observed decrease in photometric variability amplitude as a function
of planetary orbital period, for the 814 cool KOIs (Teff < 6000 K). The black
dashed line represents the linear fit. The black circles show the median Rvar

within ten period bins. The blue line is the running median, using a smoothing
width of 50 data points. The uncertainties in the median of the ten equally sized
bins are around 0.026 (as shown in this figure) and those of the running median
are around 0.033.

3 http://exoplanetarchive.ipac.caltech.edu/, queried by 2015 May 21
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having roughly the same number of KOIs, and plotting the
median Rvar of the stars within each bin. The uncertainty in
each bin’s median is roughly 0.026, estimated as the mean
absolute deviation divided by the square root of the number of
points in the bin. Figure 1 also shows the running median,
obtained by applying a median filter with a width of 50 data
points. The uncertainty in the running median is ≈0.033. It
appears that the photometric variability decreases significantly
with orbital period, particularly for periods longer than about
30days. Assuming that Rvar is a proxy for stellar obliquity, as
argued by Mazeh et al. (2015), this implies that longer-period
planetary orbits tend to be more misaligned with the
stellar spin.

The amplitude of photometric variability Rvar is known to
depend on the star’s rotation period Prot. It is important to know
whether the correlation between Rvar and Porb could be a side
effect of some kind of relationship between Prot and Porb. For
this reason we perform another linear regression:

= + +P b b Plog . 2rot 0 1 orb ( )

The p-value of b1 is 0.44, giving no evidence for a statistically
significant linear relation between the stellar rotation period and
the planetary orbital period. Thus, the dependence of the
photometric variability on planetary orbital period does not
seem to be a consequence of an underlying relationship
between the stellar rotation period and the photometric
variability.

We also computed the Pearson product-moment correlation
coefficient between the photometric variability and the orbital
period. The result is ρ=−0.14 with the same p-value
(6× 10−5) as the linear regression model. This also suggests
that there is a statistically significant correlation, although the
inherent scatter in the photometric variability prevents ρ from
approaching the idealized value of −1. Between the stellar
rotational period and the orbital period, the Pearson correlation
coefficient is 0.027, and its p-value is 0.44.

The applicability of the linear regression model and the
Pearson correlation coefficient depends on the assumption of a
linear relation. To avoid this assumption, we calculate
Kendall’s τ coefficient and the Spearman rank correlation.
The Kendall’s τ coefficient between photometric variability
and the orbital period is −0.074, with p=0.0017, and the
Spearman rank correlation is −0.11, with p=0.0018. Thus,
these tests also suggest that there is a statistically significant
correlation between the photometric variability of the star and
the orbital period of the planet. On the other hand, the
coefficients between the rotational period of the star and the
orbital period show no statistically significant dependence
between the stellar rotational period and the planetary orbital
period. Table 1 summarizes these results.

2.1.2. Binning Results

To further explore the correlation between variability and
orbital period, we bin the data according to orbital period. Then
we compare the photometric variability for the KOIs in each
period bin with that of the non-KOIs.
We divide the sample into four bins, with ≈200 stars in each

bin. The ranges of orbital periods in each bin are <3.58 days;
3.58–8.19 days, 8.19–19.62 days, and >19.62 days. The
median Rvar values of the stars in each bin are
3.8997±0.0192, 3.9281±0.0169, 3.8760±0.0161,
3.8299±0.0181. The top panel of Figure 2 shows the
cumulative distribution of Rvar for the stars in each bin. We
perform KS tests to compare the Rvar distributions of the KOIs
in each bin, and the non-KOIs. In order of increasing orbital
period, the p-values are 0.0042, 3.7×10−5, 0.0367, and
0.8928. Thus, the p-value increases for periods longer than ∼8
days, and for periods 20 days there is no evidence for any
difference in the Rvar distribution between the KOIs and non-
KOIs. Again, assuming that enhanced Rvar is a sign of low
obliquity, the evidence for low obliquity is only manifest for
periods shorter than a few tens of days.
Next we perform KS tests to compare the Rvar distribution of

the KOIs in the shortest-period bin (<3.58 days), and the KOIs
in the three longer-period bins. The p-values are 0.7598,
0.5219, and 0.2029 for progressively longer-period bins. The p-
values are seen to decrease with increasing separation in orbital

Table 1
Correlation Between Photometric Variability, Stellar Rotation Period,

and the Orbital Period

log Rvar and log Porb Prot and log Porb

Pearson’s ρ −0.14 0.027
p-value 6.03×10−5 0.44
Kendall’s τ −0.074 0.0084
p-value 0.0017 0.72
Spearman’s ρ −0.11 0.013
p-value 0.0017 0.71

Figure 2. Cumulative distribution of the photometric variability for KOIs with
different planetary orbital periods and for non-KOIs. We divide the KOIs into
four roughly equally sized bins in the upper panel and six bins in the lower
panel. It shows that the cumulative distribution of the last bin is similar to that
of the non-KOIs, indicating that the spin–orbit misalignment for the last bin is
nearly random.
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period, although none of them are low enough for the
differences to be considered statistically significant.

To check on the sensitivity of these results to the details of
binning, we perform the same tests with 6 period bins, each
with about 135 stars. The ranges of orbital periods in the bins
are <2.46, 2.46–4.77, 4.77–8.11, 8.11–14.41, 14.41–34.43,
and >34.43 days. The median Rvar values of the KOIs in each
bin are (in order of increasing period) 3.928±0.023,
3.900±0.022, 3.927±0.019, 3.850±0.020, 3.912±
0.021, 3.783±0.020. The bottom panel of Figure 2 shows
the cumulative distributions of Rvar. The KS tests comparing
the KOIs and non-KOIs give p-values of 0.0025, 0.0160,
0.0035, 0.1166, 0.0163, and 0.9139. The KS test comparing
the shortest-period KOIs with the KOIs in the 5 longer-period
bins give p=0.7218, 0.4969, 0.3310, 0.3893 and 0.0261.
Table 2 summarizes these results. Apparently, KOIs with
periods longer than ≈30 days show similar variability to
the non-KOIs, and lower variability than the shortest-
period KOIs.

We also try an alternative binning method in which the
period boundaries are determined by fitting a lognormal
function to the distribution of orbital periods (Figure 3), rather
than by simply sorting the KOIs in order of increasing orbital
period. Table 3 gives the results, which are consistent with the
preceding results. Specifically, the KOIs with periods
30days exhibit similar variability to the non-KOIs and
greater variability than the shortest-period KOIs.

In addition, we calculate the Wilcoxon rank sum (WRS) p-
values, which differs from the KS test by specifically
investigating whether one sample tends to have larger values
than the other, rather than whether the cumulative distributions
are different in any way. The results (also given in Tables 2 and
3) are consistent with the KS tests.

Mazeh et al. (2015) did not perform the preceding tests.
Instead, they divided the KOIs into two bins (1− 5 days and
5− 50 days), and calculated the relevant KS p-values. We
replicate these tests. In comparing the KOIs with the non-KOIs,
we find p=0.0012 for the short-period bin and and
1.3×10−4 for the long period bin. In comparing the short-
period and long-period KOIs, we find p=0.22. Thus, we
confirm that the two-bin results of Mazeh et al. (2015) do not
identify any significant period dependence. We have uncovered
such a dependence by using more narrowly divided samples in

period, and by performing correlation tests on the entire
sample.

2.1.3. Linear Relation versus Step Function

In principle, the particular form of the period-dependence of
the photometric variability (whether linear, nonlinear, or some
other functional form) might be a revealing clue about the
mechanism for spin–orbit alignment and misalignment. For
instance, tidal dissipation rates are expected to be very strong
functions of the star–planet distance, and might therefore
produce a sharp drop-off in photometric variability as a
function of period. Here, we examine whether the period-
dependence of the photometric variability is better fitted by a
linear relation, or by a step function (representing an abrupt
decrease of photometric variability at a certain orbital period).
To test the applicability of the step function, we perform a

linear regression of the photometric variability data with the
function

b b= + +<R I Plog 3Pvar 0 1 orbcorb, ( ) ( )

Table 2
Binning Results

bin1 bin2 bin3 bin4

Period range (days) <3.58 3.58–8.19 8.19–19.62 >19.62
KS p-value w. non-KOIs 0.0042 3.7×10−5 0.037 0.89
KS p-value w. bin1 L 0.76 0.52 0.20
WRS p-value w/non-KOIs 0.00022 3.8×10−5 0.011 0.40
WRS p-value w. bin1 L 0.83 0.33 0.036
Median 3.90±0.02 3.93±0.02 3.87±0.02 3.83±0.02

bin1 bin2 bin3 bin4 bin5 bin6

Period range (days) <2.46 2.46–4.77 4.77–8.11 8.11–14.41 14.41–34.44 >34.44
KS p-value w/non-KOIs 0.0025 0.016 0.0035 0.12 0.016 0.91
KS p-value w. bin1 L 0.72 0.50 0.33 0.39 0.026
WRS p-value w/non-KOIs 0.00057 0.0019 0.0022 0.0510 0.0179 0.74
WRS p-value w. bin1 L 0.63 0.59 0.21 0.32 0.0056
Median 3.93±0.02 3.90±0.02 3.93±0.03 3.85±0.02 3.91±0.02 3.78±0.02

Figure 3. Observed period distribution of the KOIs, along with a lognormal fit.
The fit was used to determine the period boundaries of the bins for which the
results are given in Table 3.
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where the indicator function <I PP orbcorb, ( ) is defined as

=
<

<
⎧⎨⎩I P

P P1, if
0, otherwise.

4P
c

orb
orb orb,

corb, ( ) ( )

The p-value for β1 is plotted in the upper panel of Figure 4, as a
function of the critical period Porb,c. The p-value is less than
0.05 everywhere outside of the relatively narrow range

=P 2corb, –5days.
To compare the linear model (with respect to log Porb) with

the step-function model, we perform a multiple linear
regression,

b b b= ¢ + ¢ + ¢ +<R I P Plog log . 5Pvar 0 1 orb 2 orbcorb, ( ) ( )

The p-values for b¢1 and b¢2 are shown in Figure 4, as a function
of the critical period. Whenever the p-value of b¢2 is less than
about 0.05, the test suggests there is a statistically significant
linear relation between log Rvar and log Porb even after taking
into account any step-function dependence. On the other hand,
when the p-value of b¢1 is below 0.05, the test suggests that
there is a statistically significant step-function dependence of
log Rvar on Porb, after taking into account any linear
dependence. The results show that in general (except for Porb,

c  100 days), < <b b¢ ¢p p0.05
2 1

. This implies that the linear
model is preferred over the step-function model, except when

P 100corb, days.
As mentioned above, tidal effects are expected to be very

strong functions of orbital distance, and to be negligible beyond
about 10days. Quantitatively, then, it may prove difficult for
tidal effects to explain the preference for a linear period-
dependence over a step-function dependence, or the seemingly
abrupt decrease of photometric variability for periods 100
days. The data seem to be pointing toward a mechanism that
varies more continuously with period, out to ≈100 days. It is
also possible that there are several mechanisms affecting spin–
orbit alignment, with the net effect producing the dependence
on orbital period.

2.1.4. Selection Effects

Next we consider the possibility that the correlation between
Rvar and Porb is purely a consequence of selection effects. The

Table 3
Binning Results Using Fitted Distribution as Shown in Figure 3

bin1 bin2 bin3 bin4

Period range (days) <3.54 3.54–9.31 9.31–24.46 >24.46
KS p-value w. non-KOIs 0.0044 2.4×10−5 0.032 0.8
KS p-value w. bin1 L 0.82 0.43 0.16
WRS p-value w/non-KOIs 0.00021 9.4×10−6 0.015 0.73
WRS p-value w. bin1 L 0.85 0.31 0.017
Median 3.90±0.02 3.92±0.02 3.88±0.02 3.80±0.02

bin1 bin2 bin3 bin4 bin5 bin6

Period range (days) <2.31 2.31–5.04 5.04–9.30 9.30–17.16 17.16–36.76 >36.76
KS p-value w. non-KOIs 0.0014 0.0099 0.0066 0.22 0.030 0.93
KS p-value w. bin1 L 0.73 0.69 0.083 0.40 0.0096
WRS p-value w/non-KOIs 0.0002 0.0014 0.0035 0.12 0.014 0.74
WRS p-value w. bin1 L 0.41 0.33 0.062 0.39 0.0032
Median 3.95±0.02 3.90±0.02 3.89±0.02 3.85±0.02 3.92±0.03 3.77±0.02

Figure 4. Top. The p-value for β1, as a function of the critical period P corb, ,
based on the step-function model of photometric variability (Equation (4)).
Bottom. The p-values for b¢1 and b¢2, as a function of the critical period Porb,

c, based on the multiple linear regression of the photometric variability
including both a linear dependence and a step-function dependence on
orbital period (Equation (5)). Except for P 100corb, days, the p-value for
b¢2 is smaller than 0.05 and the p-values for b¢1 is larger than 0.05,
indicating that the linear model is statistically preferred over the step-
function model.
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difficulty of detecting transiting planets increases with orbital
period, as transits become less frequent. Photometric variability
is also a source of noise that potentially interferes with transit
detection. Therefore, it is possible that the long-period KOIs
have systematically lower photometric variability than shorter-
period KOIs because transits are easier to detect around low-
variability stars. To investigate this possibility we employ a test
similar to the one Mazeh et al. (2015) performed to check on
whether selection effects are responsible for the reduced Rvar of
hot KOIs relative to non-KOIs.

We denote by  the sample of KOIs with Porb>30 days,
and we denote by the sample of KOIs with P<30 days. We
have seen that  and  have differing distributions of
photometric variability, and we wish to know if selection
effects are wholly responsible. To this end we create simulated
samples i of long-period KOIs for which the photometric
variability distribution differs from that of  entirely due to
selection effects, through the procedure described below. We
then compare the median Rvar of the simulated KOIs with the
median Rvar of the actual long-period KOIs. These will be
indistinguishable, if selection effects are wholly responsible for
the differences in Rvar between  and .

To construct the simulated sample i, we associate with
each planet drawn from  a randomly selected star from that
has favorable enough properties for the planet to have been
detected by Kepler. In this way, the stars within i have a
distribution of Rvar that is purely affected by selection effects,
and not by any geometrical effects. To decide whether a
particular star–planet combination is detectable, we calculate
the signal-to-noise ratio, by looking up the signal-to-noise ratio
for the actual system from  , and scaling it according to

s
µS N

1

R
, 6

CDPP
3 2¯

( )

using the values of σCDPP and R of the randomly selected star
from . Here, σCDPP is the rms of the combined differential
photometric precision on a 3-hr timescale, and R is the stellar
radius. For each star, we use the median of the quarterly σCDPP
values. We deem the system to be detectable for S/N>10.
(We also experimented with somewhat lower and higher
thresholds to ensure that none of the subsequent results depend
sensitively on this choice.)

We construct 104 different random realizations of i.
Figure 5 shows the resulting distribution of the median values
of Rvar. Only 51 out of the 104 simulated samples have a
median Rvar that is lower than the median Rvar of the real long-
period KOIs. Thus, it is unlikely (∼0.5%) that the low
variability associated with the long-period KOIs is purely a
consequence of selection effects.

2.1.5. Geometrical Interpretation

Having ruled out selection effects as the entire explanation
for the lower variability of longer-period KOIs, we now
examine the expected amplitude of the geometrical effect in
slightly more detail than Mazeh et al. (2015). Those authors
supposed that the amplitude of photometric variability of a
sample of stars scales as the mean value of isin , where i is
the inclination of the stellar spin axis with respect to the line of
sight. This scaling seems reasonable for an individual star, and
is supported by simulations of spotted stars of varying
inclinations by Jackson & Jeffries (2013). Under this

assumption, the mean4 Rvar of a population of randomly
oriented stars should be lower by a factor of p 4 (the mean
value of isin for random points on a sphere) than a population
of stars with  = i 90 . This corresponds to a difference in

Rlog var of about 0.1 dex, in agreement with the observed
difference between the short-period and long-period KOIs.
Although these limiting cases of  = i 90 and random

obliquities are easy to evaluate, it was not initially clear to us
how the spread in obliquities of a population of stars is related
to the mean value of isin . This is relevant to the question of
whether the long-period KOIs must be very nearly random in
orientation or whether a small but nonzero spread in obliquities
is sufficient to account for the variability statistics.
We assume as above that the photometric variability Rvar is

proportional to isin . We write i* as a function of θ and ψ,
where θ is the obliquity, and f is the longitude of the stellar
spin axis with respect to the planetary orbital plane:

 q f=icos sin cos . 7( )

We assume that f is uniformly distributed:

f
p

=ff
1

2
. 8( ) ( )

Following Fabrycky & Winn (2009) and Morton & Winn
(2014) we assume the obliquity θ obeys a Fisher distribution
(also known as a p= 3 von Mises–Fisher distribution):

q k
k

k
q=q

k qf e
2 sinh

sin , 9cos( ∣ ) ( )

where the concentration parameter κ controls the spread in
obliquity. For large κ, fθ approaches Rayleigh distribution with
width s k -1 2, and when k  0, the distribution is
isotropic.

Figure 5. Demonstration that selection effects are not wholly responsible for
the lower Rvar of long-period KOIs. The yellow dashed line shows the median
Rvar of short-period KOIs (<30 days). The green line shows the median Rvar of
long-period KOIs (>30 days). The histogram is the distribution of the median
Rvar of simulated samples of long-period KOIs in which selection effects
are entirely responsible for any systematic differences in variability. The
spread in this distribution is not large enough for selection effects to be a
plausible explanation of the entire difference between the short and long-
period KOIs.

4 In this section, we examine the mean, rather than the median, for
computational simplicity, and because the distinction is not significant in the
subsequent discussion.
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Then, we calculate the expectation value of isin as a
function of κ, as well as the expected difference in Rlog var
compared to the case of k  ¥ (zero obliquity). Specifically,

*

ò ò q f q k f f q= -

k
p p

q f

i

f f d d

sin

1 sin cos 10
0 0

2
2 2 ( ∣ ) ( ) ( )

*d = á ñk kR ilog log sin . 11var ( )

Figure 6 shows the results for δ log Rvar as a function of κ (on
the upper axis) and the standard deviation of θ (on the lower
axis). As expected, when the obliquity distribution is isotropic
(κ= 0) we obtain d » -Rlog 0.13var .

Based on the results of our 4-bin analysis (Figure 2 and
Tables 2 and 3), the observed difference d Rlog var between the
shortest-period KOIs (<3.58 days) and longest-period KOIs
(>19.62 days) is 0.0698±0.0373. Therefore, if the shortest-
period KOIs are assumed to have zero obliquity, and the
longest-period KOIs obey a Fisher distribution, then the
observations suggest that κ  10 or σθ  15° for the
longest-period KOIs. In our 6-bin analysis, we found
d = Rlog 0.1458 0.0429var between the shortest-period
KOIs (<2.46 days) and the longest-period bin (>34.43 days).
This suggests that for periods longer than ≈30days, the
obliquity distribution is nearly random. Given that the expected
deviations δ log Rvar are so small compared with the inherent
scatter in the photometric variability, it is difficult to go beyond
these relatively crude results. The translation between δ log Rvar

and κ (or σθ) may be useful when expanded samples of
transiting planets are available.

2.1.6. Multi-transiting versus Single-transiting Systems

The preceding investigations did not make any distinction
between KOIs with only one detected transiting planet
(“singles”), and KOIs with multiple transiting planets (“mul-
tis”). However, there may be inherent differences between
these two samples. For instance, based on estimates of
projected rotation rate, rotation period, and stellar radius,
(Morton & Winn 2014) found tentative evidence that multis
have lower obliquities than singles. Here we search for such
differences with the photometric technique of Mazeh et al.

(2015). Our sample includes 606 singles and 208 multis (with
524 planets).
We first seek evidence within the sample of multis for any

period dependence of the stellar variability. Among the multis,
the orbital periods of the innermost planets extend to 86 days.
Applying the linear regression model of Equation (1) we find
p=0.56, indicating no statistically significant relation between
Rvar and the period of the innermost planet. In contrast, the
linear model applied to the singles gives p=5×10−5,
indicating a significant dependence of Rvar upon Porb.
Then, we compare the variability of three subsamples:

single-transiting KOIs with Porb<30 days (“short-period
singles”), single-transiting KOIs with Porb>30 days (“long-
period singles”), and KOIs with multiple detected transiting
planets (“multis”). When comparing the Rvar distributions of
the short-period singles and the multis, the KS test gives
p=0.82 and the WRS test gives p=0.51, indicating no
discernible statistical difference. On the other hand, when
comparing the long-period singles and the multis, the KS test
gives p=0.018 and the WRS test gives p=0.0079, pointing
to a significant difference. Table 4 summarizes these results,
which do not depend critically on the choice of cutoff period;
the table also shows the results when the sample is divided at a
period of 20 days and 40 days instead of 30 days.
Next we compare the singles and the multis with the non-

KOIs. The photometric variability distribution of the short-
period singles is significantly different from that of the non-
KOIs (KS p= 1.6× 10−7, WRS p= 7.7× 10−9). The multis
also have a different Rvar distribution from the non-KOIs (KS
p= 0.0091, WRS p= 0.0019). But these tests do not reveal
any difference between the long-period singles and the non-
KOIs. Table 4 summarizes these results.
These findings are illustrated in Figure 7, which shows Rvar

as a function of the orbital period for the multis and the singles
separately. For short orbital periods, the variablility of singles
and multis are indistinguishable. For longer orbital periods
(30 days) the multis seem to show enhanced variability
relative to the singles. Interpreting these findings in terms of
geometry, it seems that the multis and short-period singles both
have host stars that tend to have low obliquities. Once the
orbital period exceeds a few tens of days, the singles begin to
have a broader obliquity distribution, while the multis retain
lower obliquities.
The dependence of the misalignment on the orbital period

for the singles, and the alignment of the multis independently
of period, may have implications for the proposed theories in
which spin–orbit misalignment is a consequence of mechan-
isms that tilt a star away from the protoplanetary disk. We have
in mind the tilting of the stellar spin axis due to the internal

Figure 6. Expected relationship between photometric variability and the spread
in obliquities of a population of stars. Plotted is δ log Rvar vs. the concentration
parameter κ of the Fisher distribution (top axis, Equation (9)) as well as the
standard deviation σθ of the obliquity (lower axis).

Table 4
Single-transiting vs. Multi-transiting Planetary Systems

WRS p-value KS p-value

Innermost multi versus Single (<20 days) 0.54 0.84
Innermost multi versus Single (<30 days) 0.51 0.82
Innermost multi versus Single (>30 days) 0.0079 0.018
Innermost multi versus Single (>40 days) 0.011 0.026
Multi periods versus Single periods 0.41 0.078
Innermost multi versus non-KOIs 0.0019 0.0091
Single (<30 days) versus non-KOIs 7.7×10−9 1.6×10−7

Single (>30 days) versus non-KOIs 0.36 0.53
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oscillation modes of the star or magnetic field–disk interactions
(Lai et al. 2011; Rogers et al. 2012; Spalding & Batygin 2014),
or the tilt of the protoplanetary disk due to a distant companion
or the turbulent stellar formation environment and interactions
between stars (Bate et al. 2010; Thies et al. 2011; Batygin
2012; Fielding et al. 2015). Naively we would not expect such
mechanisms to depend on the ultimate configuration of the
planets in the system, in contradiction with our findings in this
section. However there are probably ways to avoid this
contradiction. For example, a tilted disk may become warped
such that its inner region is realigned with the star, and thereby
lead to planetary systems that are not coplanar and unlikely to
be observed as multi-transiting systems. (We note, though, that
Lai et al. 2011 and Foucart & Lai 2011 have investigated the
possibility of inner disk warps, and found that they are difficult
to maintain due to viscous stresses and bending waves.) On the
other hand, the mechanisms which tilt the star through star–
planet dynamics seem very likely to depend sensitively on the
planetary orbital configuration and are probably more applic-
able to the singles; these properties appear more in accordance
with our findings.

3. TIDAL RE-ALIGNMENT

In the previous section we examined an observational
challenge to the notion that star–planet tidal interactions are
responsible for enforcing spin–orbit alignment. The observa-
tion of enhanced photometric variability for relatively cool host
stars of short-period transiting planets, and the absence of this
enhanced variability in systems with longer orbital periods, are
perhaps qualitatively compatible with tidal effects. Quantita-
tively, though, it is difficult to understand how the effects could
be important for relatively small planets with orbital periods as
long as ∼10days.

In addition, as described in Section 1, the tidal hypothesis
presents theoretical difficulties: the same tidal interactions that
coplanarize the system should also result in angular momentum
being transferred from the orbit to the stellar spin, causing the

orbit to shrink and the planet to be destroyed (Winn
et al. 2010). Recent work on tidal theory suggests that
excitation and dissipation of inertial waves play an important
role in stellar spin and orbital evolution (e.g., Ogilvie 2005;
Favier et al. 2014). Lai (2012) recognized that inertial waves
offer a possible means for a planet to realign its host star
without being ingested. He identified a component in tidal
potential (attributed to inertial waves) with a frequency equal to
the stellar spin frequency in the rotating frame of the star.
Because it is static in the inertial frame, this component acts to
reduce the obliquity without causing orbital decay.
Rogers & Lin (2013) called this solution into question, by

pointing out that this particular component of the tidal potential
does not lead exclusively to prograde configurations.5 Con-
sidering both this component and the equilibrium tide, and
requiring the orbital decay timescale to be longer than the
obliquity alignment timescale, Rogers & Lin (2013) found that
initially prograde systems evolve to an obliquity of 0°, while
initially retrograde systems evolve to either 90° or 180°. Thus,
starting with a uniform distribution of the obliquity, tidal
evolution produces retrograde and perpendicular systems half
of the time. This is in strong contrast to the observations, in
which prograde configurations are by far the most common
(Albrecht et al. 2012).
Here we show that tidal evolution can lead to spin–orbit re-

alignment before rapid orbital decay, even when starting from
an initially retrograde configuration taking into account
magnetic braking. Our calculations differ from those of Rogers
& Lin (2013) mainly by considering the evolution of the
system over longer timescales. We find that even though the
obliquity may stall at 90°, the obliquity continues to decreases
slowly due to the equilibrium tide. Eventually, the equilibrium
tide dominates and quickly brings the system into alignment.
Depending on the ratio of the rates of tidal dissipation due to
inertial waves and the equilibrium tide, it is possible for spin–
orbit alignment to be achieved more rapidly than orbital decay.
For the case in which the obliquity stalls near 180°, the
equilibrium tide reduces the stellar spin rate and decreases the
spin angular momentum of the star. Eventually the stellar spin
angular momentum becomes much smaller than that of the
planetary orbit, reducing the timescale for the equilibrium tide
to align the star with the orbit. Xue et al. (2014) also found that
the combined effects of the equilibrium tide and inertial waves
can lead to tidal re-alignment prior to orbital decay, even from
an initially retrograde state. Our study differs by including the
effects of magnetic braking. We have also delineated the
parameter space within which the re-alignment can be achieved
before orbital decay.
We begin with an illustrative example of the obliquity

evolution of an initially retrograde system. In addition to tidal
effects we also take into account the loss of stellar angular
momentum due to magnetic braking. We integrate the
equations for the evolution of the orbital distance (a), stellar
spin angular frequency (Ωs) and obliquity (Θ) that were

Figure 7. Photometric variability Rvar vs. planetary orbital period, for the host
stars of multple detected transiting planets (blue crosses) and the host stars with
only one detected transiting planet (red circles). The black line represents the
running median of the multi-transiting sample and the gray line represents the
running median of the single-transiting sample. For both lines, the width of the
running median filter is 50 data points and the uncertainty in the median is
about 0.033.

5 Ogilvie (2013, 2014) has also pointed out that there may be no dissipation
associated with this tidal component because it is a spin-over mode with a
uniform rotation, while also acknowledging that there may be non-trivial
dynamics involving the core or the precession of the spin axis of the star that
may lead to dissipation. We do not attempt to address this important issue in
this paper.

8

The Astrophysical Journal, 818:5 (11pp), 2016 February 10 Li & Winn



presented by Lai (2012, Equations (57)–(59)), summarized as
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The expressions for Ws e,10,
˙ and Q e10,

˙ are the same as
Equations (16) and (19), except that Q10 and k2,10 are replaced
byQe and k2,e. The subscript “e” stands for equilibrium tide. The
subscript “10” denotes the tidal component identified by Lai
(2012); this nomenclature is based on the fact that this component
has m=1 and m′=0 in the general expression for the the tidal
forcing frequency, v = ¢W - Wm m s (where Ω is the orbital
angular velocity). L stands for the angular momentum of the
planetary orbit, and S stands for that of the stellar spin.Ms denotes
the mass of the star, Mp denotes the mass of the planet, and Rs

denotes the radius of the star. For this example we set = M Ms ,
= R Rs ,Mp=MJup, and α=1.5×10−14 year, which gives a

braking timescale of 2×1011 year for the Sun as discussed by
Barker & Ogilvie (2009).

The studies of energy dissipation in convection zone by
Ogilvie & Lin (2007) show that inertial waves can increase the
tidal dissipation rate by up to four orders of magnitude. For the
m=2 component a value as small as ¢ = =Q Q k3 2 102

6( ) ( )
can be achieved, for stars rotating more rapidly than the Sun.
The tidal dissipation rate has a complicated dependence on the
tidal frequency, and varies with the spin rate as W-

s
2 for

wW s d, where wd is the dynamical frequency of the star
Ogilvie & Lin (2007). For our illustrative example, we adopt a
constant Qe=5×107 and k2=0.028 ( ¢ = ´Q 2.7 10e

9), and
we set ¢ = W W -Q 10 s s k10

6
, days

2( ) , where Ws k, days is the angular
velocity of the stellar spin corresponding to a period of k days.
The decrease of ¢Q10 relative to ¢Qe will lead to a shorter re-
alignment timescale at ∼90 degree comparing with the orbital
decay timescale, allowing a higher likelihood for the aligned
configuration to be observed. We explore a large range of
possible values of ¢Q10 and investigate the outcomes.

Figure 8 shows the evolution of the orbital distance, stellar
obliquity, and stellar spin period due to tidal interactions and
magnetic braking. We set the initial orbital distance to be

0.015 AU, the initial obliquity to be 170° and the initial spin
period to be 1.4 days. Because Ωs<Ω/2, inertial wave
dissipation is forbidden and orbital decay is prolonged. The
solid blue line represents the case when ¢ = W W -Q 10 s s10

6
,10

2( ) ,
and the dashed orange line represents the case when
¢ = W W -Q 10 s s10

6
,20

2( ) . For these two cases, the obliquity
quickly reaches 90° and stalls for 3–5 Gyr before eventually
damping to zero. The orbital distance stays near the initial
value before rapidly decaying after 9 Gyr. Thus, in this case,
there is an interval of a few billion years when it is possible to
observe spin–orbit alignment before orbital decay. For smaller
values of ¢Q10, this interval is prolonged, and the stellar spin can
be re-aligned with the planetary orbit at greater orbital
distances.
Both magnetic braking and the (1, 0) tidal component act to

increase the spin period. Initially, when the period is short,
magnetic braking is the dominant effect. After the obliquity
stalls at 90° and begins its more gradual descent to zero, the
despinning effect of the (1, 0) component also becomes
important. Eventually, as a and Ωs shrink, the spin-up due to
the equilibrium tide becomes dominant and the spin period
decreases. Thus, the interval between spin–orbit alignment and
orbital decay is characterized (at least at first) by a relatively
long rotation period. Interestingly, this is qualitatively
consistent with the observation of McQuillan et al. (2013) that
rapidly rotating stars seem to be missing short-period planets,
relative to their occurrence around slowly rotating stars (see
also Teitler & Königl 2014).
The dotted purple line in Figure 8 shows the case of
¢ = W W -Q 10 s s10

6
,5

2( ) . In this case the obliquity is driven to
180° rather than 90°, because of the smaller value of S/L. At
180°, the (1, 0) tidal component does not change the spin rate
or the obliquity. The stellar spin frequency is reduced by
magnetic braking and the equilibrium tide, the angular
momentum of the stellar spin becomes much smaller than that
of the planetary orbit, and the timescale to synchronize and
align the stellar spin becomes short. As shown in Figure 8, the
stellar spin can be torqued from the retrograde state to the
prograde state before rapid orbital decay. An interesting feature

Figure 8. Realignment of the stellar obliquity, the decay of the orbit and the
change of the stellar spin period as a function of time. It shows that the stellar
spin axis can be aligned with the planetary orbit and can survive for a long
period of time before rapid orbital decay under equilibrium tidal effects,
magnetic braking, and the effects produced by the tidal component identified
by Lai (2012).
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of this scenario is that the star’s rotation is slowed to a standstill
(as indicated in Figure 8 by the sharp rise in rotation period),
before being spun up in the other direction. Thus, while
previous searches for planet–star interactions have been based
on the expectation that tidally influenced host stars will rotate
more rapidly (see, e.g., Pont 2009), it is also possible that they
will exhibit unusually slow rotation. While a broad range of
rotation periods is observed for stars of a given age and mass
(Angus et al. 2015), we are not aware of any evidence for
slower rotation among any particular category of exoplanet
host stars.

We explore a wider range of parameter space by evolving
the obliquity using Equations ((12)–(14)) for different values of
the initial stellar spin period and ¢ ¢Q Q e10,10 days . We adopt fixed
values =a 0.015 AU0 and ¢ = ´Q 2.7 10e

9. Thus in all cases
the orbit decays rapidly after ≈ 9 Gyr. We set
¢ = ¢ W W -Q Q s s10 10,10 days ,10

2( ) , and we explore initial values of
Ωs/Ω ranging from 0.05 to 0.5. When Ωs>Ω/2, other inertial
waves can be excited, leading to more rapid orbital decay. The
other parameters are the same as those for the illustrative cases
described above. To quantify the timescales of alignment and
orbital decay, we record the ratio of the alignment timescale
and the orbital decay timescale. We also calculate the spin
period of the star during the interval between spin–orbit
alignment and orbital decay.

The results are shown in Figure 9. The color of each circle
encodes the ratio of the timescales. The size of each circle
encodes the stellar spin period during the interval between
obliquity damping and orbital decay. When ¢Q10 is large, the
tidal component does not dominate and the obliquity is damped
on a similar timescale as orbital decay. The spin period in this
case is not increased significantly. When ¢Q10 is relatively small,
the star tends to be driven to 180° obliquity and slowed down
due to the equilibrium tide, before switching to the prograde
state (similar to the case of the dotted purple line in Figure 8).
In this case, the alignment timescale can reach ≈85% that of
the orbital decay timescale. When ¢Q10 is small and the initial
stellar rotation is fast, the obliquity stalls at 90° before spin–
orbit alignment, and the alignment timescale can reach 10%–

30% that of the orbital decay timescale. The stellar spin periods
are increased significantly in the last two cases.

In summary, we have shown that the combination of the
(1, 0) tidal component, the equilibrium tide, and magnetic
braking can align the stellar spin before orbital decay, even

from an initially retrograde configuration. The stellar obliquity
can be aligned long before orbital decay (  -t t 0.1 0.3aalign )
when ¢ ¢ -Q Q 10e10,10 days

3 and W W0.3s . The stellar
obliquity can also be aligned prior to orbital decay when
¢ ¢Q Q e10,10 days is as large as 10−2, but only for a relatively

shorter interval ( t t 0.9aalign ). Systems that have been aligned
in this manner would tend to have longer-than-usual stellar
rotation periods.
In this scenario, the stellar obliquity spends more time near

90° and 180° compared with intermediate values of the
obliquity. Thus, if this scenario is correct for explaining the
spin–orbit alignment of the closest-in giant planets, then for
systems with somewhat larger star–planet separations (where
the tidal timescales are longer), there should be a preference for
obliquities near 90° or 180°. In this sense we agree with the
conclusions of Rogers & Lin (2013) and Lai (2012) that the
dominance of the (1, 0) tidal component would produce
substantial fractions of retrograde and perpendicular systems,
but perhaps only for systems with relatively distant orbits.

4. CONCLUSIONS AND DISCUSSIONS

Mazeh et al. (2015) pointed out that for a population of host
stars of transiting planets, the observed amplitude of photo-
metric variability should be related to the degree of spin–orbit
alignment. They detected enhanced variability among the
relatively cool host stars of Kepler transiting planets, indicating
spin–orbit alignment. We have extended this study with
statistical tests suggesting that this tendency weakens as the
planet’s orbital period grows longer. Our statistical tests also
indicate that the relatively low photometric variability of stars
with long-period planets is not purely due to selection effects.
In particular, using the geometric interpretation, we find that
the evidence for alignment becomes weaker for systems with
an innermost planet period 10days, and is consistent with
nearly random alignment for longer orbital periods (30 days).
In addition, we found no evidence for any differences in the

photometric variability of the multi-transiting systems and the
short-period single-transiting systems. In contrast, the long-
period single-transiting systems show reduced variability
characteristic of a broad obliquity distribution. The dependence
of the star’s obliquity upon the current orbital configuration of
the planetary system is seemingly at odds with theories in
which obliquities are purely the outcome of star-disk processes
in the ancient past (Bate et al. 2010; Thies et al. 2011; Batygin
2012; Fielding et al. 2015), or the tidal effect of a planet that no
longer exists (Matsakos & Königl 2015).
The overall dependence of the spin–orbit misalignment on

the orbital period is at least qualitatively consistent with the
scenario proposed by Winn et al. (2010), where the stellar
obliquity is initially random, and is re-aligned due to tidal
effects.We have also confirmed that with the tidal component
identified by Lai (2012), it is possible for a close-in giant planet
to re-align the stellar obliquity long before rapid orbital decay
from a retrograde state without assuming that only the outer
layer of the star is re-aligned. Such alignment process also leads
to a significant increase in the stellar rotational period, which
can help identify the systems aligned due to the tidal
component. If this scenario is widely applicable then stars
with relatively wide-orbiting planets (and long tidal timescales)
should often be found with obliquities of 90° and 180°.
However, a major quantitative problem with tidal theories is

that the correlation between photometric variability and orbital

Figure 9. Ratio of spin–orbit alignment timescale and orbital decay timescale
(color coded), as a function of the initial value of Ωs/Ω and ¢ ¢Q Q e10,10 days .
Low ratios (blue) lead to a longer time interval during which spin–orbit
alignment can be observed before orbital decay. The size of each circle is
proportional to the stellar rotation period at the midpoint of this interval. The
obliquity can be aligned before rapid orbital decay when ¢ ¢-Q Q10 e10,10 days

2 .
The stellar rotational period increases significantly during this phase.
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period seems to extend to longer orbital periods (≈30 days)
than can easily be accounted for by tidal effects. Based on
current estimates of the relevant tidal timescales, it seems
difficult to re-align the star and planet when the innermost
planet has a period longer than about 5 days. Other
mechanisms may be required to align stars with periods 5–30
days, or to preferentially produce larger misalignments for
wider-orbiting planets. We briefly review some of the proposed
mechanisms. Scattering by neighboring stars does preferen-
tially produce larger misalignment at larger planet–star
distances (e.g., Li & Adams 2015), however, the scattering
effect is weak for the inner planets within ∼5 AU. Warping of
the disk at close distance can be difficult, and the nodal
precession of the disk with large warps may destroy the disk.
Another possibility is scattering within a system of close-in
planets; however, it has proven difficult to excite the inclination
to large enough values (5◦) (Petrovich et al. 2014). The
magnetic realignment mechanism (Spalding & Batygin 2015)
depends on the inner truncation radius of the protoplanetary
disk, which may be related to the orbital distance of the
innermost planet; this would lead in principle to a dependence
of spin–orbit misalignment on orbital distance. In the “early
stellar ingestion” theory of (Matsakos & Königl 2015), the
agent of alignment is a giant planet that no longer exists, and it
is difficult to know whether this scenario would lead to any
relationship between spin–orbit misalignment and the orbital
distances of surviving planets. Undoubtedly, the story of stellar
obliquities is still missing some important chapters.
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