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Abstract— Conventional GaN vertical devices, though
promising for high-power applications, need expensive
GaN substrates. Recently, low-cost GaN-on-Si vertical diodes
have been demonstrated for the first time. This paper presents a
systematic study to understand and control the OFF-state leakage
current in the GaN-on-Si vertical diodes. Various leakage sources
were investigated and separated, including leakage through the
bulk drift region, passivation layer, etch sidewall, and transition
layers. To suppress the leakage along the etch sidewall, an
advanced edge termination technology has been developed by
combining plasma treatment, tetramethylammonium hydroxide
wet etching, and ion implantation. With this advanced edge
termination technology, an OFF-state leakage current similar
to Si, SiC, and GaN lateral devices has been achieved in the
GaN-on-Si vertical diodes with over 300 V breakdown voltage
and 2.9-MV/cm peak electric field. The origin of the remaining
OFF-state leakage current can be explained by a combination of
electron tunneling at the p-GaN/drift-layer interface and carrier
hopping between dislocation traps. The low leakage current
achieved in these devices demonstrates the great potential of
the GaN-on-Si vertical device as a new low-cost candidate for
high-performance power electronics.

Index Terms— Edge termination, GaN-on-Si vertical device,
leakage control, leakage origin, power electronics.

I. INTRODUCTION

GaN-BASED transistors and diodes are excellent
candidates for high-voltage and high-power electronics,

due to the superior material properties of GaN compared
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Fig. 1. Schematic of the GaN-on-Si vertical (a) Schottky and (b) p-n diodes.
Four possible leakage paths in the GaN-on-Si vertical diodes are shown in (b).

with Si and GaAs. Currently, both vertical and lateral
devices are being considered for GaN power devices [1].
Lateral structures, such as AlGaN/GaN high-electron-mobility
transistors, though having been studied extensively, still face
reliability and integration challenges [1]. GaN vertical devices
have attracted increased attention recently, due to several
potential advantages over GaN lateral devices: 1) higher
breakdown voltage (BV) capability without enlarging chip
size [2]; 2) superior reliability due to the peak electric
field (Epeak) being far away from the surface; and 3) superior
thermal performance [2]. Recent demonstrations of high-
performance vertical GaN diodes [3] and transistors [4], [5]
on GaN susbstrates have made vertical structures very
promising for the GaN power devices.

Despite the excellent performance demonstrated by the
GaN vertical devices, the high cost (>1000× higher than
Si substrates) and the small diameter of GaN substrates
have become one of the main challenges for the commer-
cialization of the GaN vertical power devices. Thus, lower
cost substrates, in particular Si substrates, for GaN vertical
devices would be greatly preferred to make their market
insertion easier. However, the demonstration of the GaN-on-Si
vertical devices is extremely challenging mainly due to
two reasons: 1) the high dislocation density in GaN-on-Si and
2) the relatively thin GaN drift regions that can be grown on
Si substrates.

By overcoming some of these challenges, our group
successfully demonstrated GaN-on-Si vertical Schottky and
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Fig. 2. (a) Trench structures with different etching depths. I1 measures the leakage of trench structure down to n+-GaN. I2 and I3 measure the leakage
of trench structures down to the transition layers. (b) Plot of the I1, I2, and I3 measured from the trench structures. I2 and I3 are much smaller than I1,
indicating leakage through transition layers and Si substrates is negligible to the diode’s total current.

p-n power diodes for the first time [6]. With a total GaN drift
layer of only 1.5-μm think, a soft BV of 300 V was achieved
for GaN-on-Si p-n diodes with an Epeak of 2.9 MV/cm in
GaN and a reverse leakage current (∼10−2 A/cm2 at −200 V)
comparable with the lateral GaN devices. However, in order
to compete with vertical GaN-on-GaN devices as well as
commercial Si and SiC devices, the leakage current in the
GaN-on-Si vertical devices needs to be further reduced,
which also requires a thorough understanding on the origin
of leakage.

In this paper, we conducted a systematic study on the
origin of reverse leakage in the GaN-on-Si vertical diodes.
We first identified the drift region and the etch sidewall as the
major leakage paths in these structures. Then, by developing
an advanced edge termination technology which combines
plasma treatment, tetramethylammonium hydroxide (TMAH)
wet etching, and ion implantation, we greatly reduced the
OFF-state leakage current along the etch sidewalls and
achieved a low leakage current in the GaN-on-Si vertical
diodes, similar to the one in the state-of-the-art Si and
SiC devices. The origin of this remaining OFF-state leakage
current was further studied by TCAD simulations.

II. DEVICE STRUCTURE AND LEAKAGE ANALYSIS

The schematic of the GaN-on-Si vertical Schottky and
p-n diodes used in this paper is shown in Fig. 1(a) and (b). The
p-n structure consists of 0.5-μm p-GaN (Mg: 1 × 1019 cm−3,
NA ∼ 1.5×1017 cm−3) and 1-μm n−-GaN (Si: 5×1016 cm−3,
ND ∼ 2 × 1016 cm−3), 0.3-μm n+-GaN (Si: 2 × 1018 cm−3)
cathode contact region, 0.2-μm semi-insulating GaN, and
2.4-μm GaN/AlN transition layers, all grown on Si (111)
substrates by metal–organic chemical vapor deposition [6].
The 1.6 μm of the top GaN layer was etched to form
the cathode electrode. A Ti/Al ohmic contact ring and a
Ni/Au circular ohmic were formed as the cathode and anode
electrodes, respectively. A SiNx passivation layer (∼200-nm
thick) and a Ti/Au bilayer was further used for the field plate
structure for both electrodes. The fabrication process has been
reported in detail in [6].

The OFF-state leakage of the GaN-on-Si vertical p-n diode
structures was analyzed in detail, as shown in Fig. 1(b).
Four possible leakage paths exist in the GaN-on-Si

Fig. 3. Leakage current before and after passivation by PECVD SiO2,
PECVD SiNx , and sputtering SiNx . Inset: structure used to measure leakage
current.

vertical structures: 1) through the transition layers and
Si substrate; 2) through the drift layer; 3) along the etch
sidewall; and 4) through the passivation layer.

The contribution of leakage path #1 (through the transition
layers and Si substrate) could be determined by measuring
the leakage of trench structures with different etching depths,
as shown in Fig. 2(a). When the trench is etched down to
the transition layers, the leakage current reduces by more
than three orders of magnitude compared with the leakage
of the trench down to n+-GaN layer, indicating the leakage
path #1 is negligible in the diode’s total leakage. The small
leakage path #1 demonstrates the good vertical insulation of
GaN-on-Si wafers.

The leakage path #4 (through the passivation layer) was
made negligible through the use of a new GaN passivation
technology based on a sputtering deposition system [6]. This
technology, in contrast to traditional passivation schemes that
use plasma-enhanced chemical vapor deposition (PECVD) [7],
does not increase the leakage current with respect to the one
in unpassivated samples, as shown in Fig. 3.

III. SIDEWALL TREATMENT AND EDGE TERMINATION

The leakage path #3 (along etch sidewall) is typically due
to etch-induced damage or defects (e.g., N vacancies) created
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Fig. 4. SEM image of the deep GaN etch sidewall for GaN-on-Si structures
using (a) SiO2 and (b) Ni hard mask.

Fig. 5. Leakage current through the sidewall of ICP-RIE etched samples
using the SiO2 and the Ni hard masks with and without Ar pretreatment. The
Cl2/BCl3 etching with a metal hard mask and without Ar pretreatment leads
to the lowest leakage current.

by the inductively coupled plasma (ICP) dry etching of GaN.
Sugimoto et al. [8] reported, for example, that the surface of
a p-GaN sidewall can be changed to a depleted or an n−-GaN
layer by ICP etching, which would induce a large leakage
under high reverse bias.

Two technologies have been developed to reduce the
leakage path #3: 1) GaN deep-etching technology and
2) advanced edge termination technology. The new GaN
deep-etching technology was developed in an ICP reactive
ion etching (ICP-RIE) system using a Cl2/BCl3/Ar gas
combination and a metal hard mask. Compared with the oxide
hard mask typically used in these etchings, the use of a metal
hard mask enables a much smoother etch sidewall (Fig. 4),
due to the lack of oxide edge erosion under high plasma
energies. The smoother sidewall reduced the sidewall leakage
current by four orders of magnitude, as shown in Fig. 5.

An advanced edge termination technology for the
GaN-on-Si vertical device has been developed by combining
plasma treatment, TMAH wet etching, and ion implantation.
Various plasma treatments were studied to heal the damage of
the ICP etching. As shown in Fig. 6, CF4 and N2 plasma treat-
ment could effectively passivate the etch-induced N vacancies
and reduce the sidewall leakage. It is also worth noting that the
CF4 plasma was also applied in the GaN-based lateral devices
to passivate interface defects [9], [10]. In contrast, H2 plasma,
which has been reported as able to create N vacancies [11],
induces a large sidewall leakage increase, indicating a strong
correlation between sidewall leakage and N vacancies in the
GaN-on-Si vertical devices.

Fig. 6. Leakage current of the structure with different sidewall plasma
treatments (CF4, N2, NH3, and H2) after GaN dry etching. Inset: structure
for leakage current measurements.

Fig. 7. SEM images of GaN deep etch sidewalls without and with
TMAH treatment for 60 min (in vertical p-n diodes).

Fig. 8. Leakage current using the TMAH wet etching after the GaN dry
etching. Inset: structure used for leakage current measurements.

The TMAH wet etching (25% concentration) at 85 °C was
found effective in removing the damage from the etch sidewall,
especially near the p/n-GaN interface, as demonstrated in the
sidewall topology images shown in Fig. 7. A TMAH treatment
for 60 min reduces the sidewall leakage by more than 50×,
as shown in Fig. 8. In addition, the forward characteristics
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Fig. 9. Diode forward characteristics by the TMAH wet etching for different
times, from 15 to 60 min.

Fig. 10. (a) Cross section and (b) top view of the GaN-on-Si vertical
p-n diodes with ion implantation regions as edge termination.

Fig. 11. Reverse characteristics of the GaN-on-Si vertical p-n diodes without
and with ion implantation, as a function of different ion dose and energy.

of the GaN-on-Si vertical diodes were also enhanced by
the TMAH treatment, as shown in Fig. 9. This improve-
ment in forward characteristics may attribute to two factors:
1) a higher mobility and better material quality in the regions
near etching sidewall, due to reduction of sidewall defects
and 2) a mitigated current crowding due to the more vertical
sidewall.

An ion implantation ring was introduced to isolate the
main vertical current path from the etch sidewall, as shown
in Fig. 10. Argon (Ar) was used for implantation [12].
As shown in Fig. 11, the ion implantation reduces the leakage
at high reverse bias, due to a significant mitigation of leakage
along the etch sidewall. However, the implantation slightly
increases the device leakage at low bias due to a parasitic

Fig. 12. Total leakage current density of vertical p-n diodes with different
anode radius R (R = 50, 100, 150, and 300 μm), as a function of 1/R at a
reverse voltage of 50, 100, 150, and 200 V.

leakage through the implanted region. Different implantation
Ar dose and energies were also studied (Fig. 11). The ion
dose mainly determines the insulating properties of the implant
region and the device leakage current at low reverse bias,
whereas the ion energy determines the depth of the implant
region, with 150 keV for a depth of ∼0. 3 μm and 300 keV
for ∼0.6 μm. High ion energy is needed to extend the
implantation region beyond the p/n-GaN junction, in order to
prevent the leakage from flowing toward the depleted p-GaN
sidewall at a high bias.

IV. ORIGIN OF BULK LEAKAGE COMPONENT

To further decouple the leakage path #2 (bulk component)
and #3 (sidewall surface component) for devices with the
advanced edge termination, the total leakage density of the
vertical diodes with a radius of 50, 100, 150, and 300 μm
was measured and plotted in Fig. 12. The total reverse leakage
current density Jtotal can be expressed as follows [13]:

Jtotal = J2 + J3 × P/A = J2 + 2J3 × 1/R (1)

where J2 (A/cm2) and J3 (A/cm) are the bulk leakage current
density (leakage path #2) and the perimeter leakage current
density (leakage path #3), respectively. P and A are the
perimeter and area of the vertical diodes, with R defined as the
anode radius. As shown in Fig. 12, the total leakage current
exhibits almost no linear dependence on 1/R, indicating that
the sidewall leakage has been effectively suppressed by the
edge terminations and the bulk component (leakage path #2)
is the main contributor to the total device leakage current.

The OFF-state leakage mechanism of the bulk current
component (leakage path #2) was further studied using
TCAD simulation [14]. It is well known that dislocations in
GaN Schottky diodes are the major paths of reverse leakage
current [15], [16]. The conduction mechanism along the
dislocations is probably due to hopping of carriers from trap
to the nearest neighbor trap [17]. Therefore, it is postulated
that the bulk component is a result of electron hopping
along the dislocations. In the simulation, under reverse bias,
electrons tunnel (either elastically or inelastically) from the
p-GaN/drift-layer interface to the dislocation traps and then
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TABLE I

LEAKAGE AND COST BENCHMARKING FOR THE GaN VERTICAL DEVICE ON DIFFERENT SUBSTRATES, GaN LATERAL DEVICE, Si AND SiC DEVICE

Fig. 13. Experimental and simulated leakage current of the GaN-on-
Si vertical p-n diodes with advanced edge termination, and experimental
leakage of vertical diodes without edge termination. The simulation is in
good agreement with experiment. The edge termination is able to achieve a
reduction of leakage by about two orders of magnitude and the elimination
of the voltage hump at ∼300 V.

hop from trap to trap along the dislocation. Carrier hopping
between dislocation traps is modeled using drift mobility in a
Gaussian disorder model [18]. With this setup, the simulation
matches the slope and magnitude of the experiment fairly
well (Fig. 13). Impact ionization was also turned ON to
match the steep increase of current at ∼300 V. The details of
simulation will be elaborated in a follow-up paper.

V. DEVICE PERFORMANCE AND BENCHMARKING

The reverse I–V characteristics of optimized GaN-on-Si
vertical p-n diodes with and without the advanced edge
termination are shown in Fig. 13. As shown, the advanced edge
termination is able to reduce the leakage by about two orders
of magnitude while maintaining a soft BV of over 300 V and
a peak electric field >2.9 MV/cm. In addition, the reverse
characteristics of vertical diodes with the advanced edge
termination does not exhibit a voltage hump at ∼300 V, which
corresponds to the traps-filled-limited voltage of the acceptor
traps according to our detailed analysis in [6]. This indicates
that the large acceptor traps observed in the vertical diodes
without the advanced edge termination [6] are located at the
etch sidewall, and are probably due to N vacancies and point
defects produced in the etching process. With the elimination
of the sidewall traps, good measurement reproducibility and
BV uniformity have also been observed in the GaN-on-Si
vertical p-n diodes throughout the whole wafer.

Fig. 14. Forward current characteristics of the GaN-on-Si vertical diodes
with a diameter of 600 μm. Measurement in pulse-mode with different duty
cycles shows no degradation in diode current. Inset: forward characteristics
of diodes with a radius of 100 μm reveal an ON-resistance of 6 m� · cm2 for
Schottky and 10 m� · cm2 for p-n diodes.

The forward transient behavior and current capability of
diode are also enhanced. The forward I–V characteristics of
the GaN-on-Si vertical diodes with a diameter of 600 μm
have demonstrated a current level >2 A and a current
density >500 A/cm2, with no degradation as a function of
duty cycle (from 0.001% to 1%) in pulse measurements,
as shown in Fig. 14. An ON-resistance of 6 and 10 m� · cm2

was obtained for GaN-on-Si vertical Schottky and p-n diodes,
respectively. The relatively high ON-resistance of our
GaN-on-Si vertical diodes is due to the relatively high
contact resistance of ohmic on p-GaN, low mobility of
p-GaN (∼14 cm2/V · s), and the current crowding near the
corner of etching sidewall. An improvement of the p-GaN
material quality is expected to further reduce the ON-resistance
of our GaN-on-Si vertical diodes.

The BV capability of our GaN-on-Si vertical diodes has
been benchmarked in detail in [6]. With a total drift layer of
only 1.5-μm thick, our GaN-on-Si vertical diodes achieved
a soft BV of 300 V, which is close to the theoretical limit
for the GaN p-n diodes. This indicates the great potential of
the GaN vertical devices to achieve a higher BV with thicker
GaN epilayers.

The leakage characteristics are benchmarked in Table I.
As shown, with over 1000× lower substrate cost than the
GaN-on-GaN device, our GaN-on-Si vertical devices achieved
an OFF-state leakage current lower than the GaN lateral
devices and similar to the one in the state-of-the-art Si and
SiC devices. The low-leakage and high-BV performances of
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our GaN-on-Si vertical diodes have demonstrated the great
potential of the GaN-on-Si vertical device as a new low-cost
candidate for high-performance power electronics.

VI. CONCLUSION

In this paper, we conducted a systematic study on the origin
of reverse leakage in the GaN-on-Si vertical diodes. Various
leakage sources were separated and clarified, including bulk
drift region, passivation layer, etch sidewall, and transition
layers. By developing an advanced edge termination
technology which combines plasma treatment, TMAH wet
etching and ion implantation, we greatly reduced the leakage
along etch sidewalls and achieved a BV >300 V, an
Epeak of 2.9 MV/cm, and an OFF-state leakage current in the
GaN-on-Si vertical diodes similar to the one in Si and
SiC devices. The bulk component of the leakage can be
explained by a combination of electron tunneling at the p-GaN/
drift-layer interface and carrier hopping between dislocation
traps. The high-BV and low-leakage capabilities have demon-
strated the suitability of the GaN-on-Si vertical device for
high-performance power electronics.
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Abstract— Conventional GaN vertical devices, though
promising for high-power applications, need expensive
GaN substrates. Recently, low-cost GaN-on-Si vertical diodes
have been demonstrated for the first time. This paper presents a
systematic study to understand and control the OFF-state leakage
current in the GaN-on-Si vertical diodes. Various leakage sources
were investigated and separated, including leakage through the
bulk drift region, passivation layer, etch sidewall, and transition
layers. To suppress the leakage along the etch sidewall, an
advanced edge termination technology has been developed by
combining plasma treatment, tetramethylammonium hydroxide
wet etching, and ion implantation. With this advanced edge
termination technology, an OFF-state leakage current similar
to Si, SiC, and GaN lateral devices has been achieved in the
GaN-on-Si vertical diodes with over 300 V breakdown voltage
and 2.9-MV/cm peak electric field. The origin of the remaining
OFF-state leakage current can be explained by a combination of
electron tunneling at the p-GaN/drift-layer interface and carrier
hopping between dislocation traps. The low leakage current
achieved in these devices demonstrates the great potential of
the GaN-on-Si vertical device as a new low-cost candidate for
high-performance power electronics.

Index Terms— Edge termination, GaN-on-Si vertical device,
leakage control, leakage origin, power electronics.

I. INTRODUCTION

GaN-BASED transistors and diodes are excellent
candidates for high-voltage and high-power electronics,

due to the superior material properties of GaN compared
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Fig. 1. Schematic of the GaN-on-Si vertical (a) Schottky and (b) p-n diodes.
Four possible leakage paths in the GaN-on-Si vertical diodes are shown in (b).

with Si and GaAs. Currently, both vertical and lateral
devices are being considered for GaN power devices [1].
Lateral structures, such as AlGaN/GaN high-electron-mobility
transistors, though having been studied extensively, still face
reliability and integration challenges [1]. GaN vertical devices
have attracted increased attention recently, due to several
potential advantages over GaN lateral devices: 1) higher
breakdown voltage (BV) capability without enlarging chip
size [2]; 2) superior reliability due to the peak electric
field (Epeak) being far away from the surface; and 3) superior
thermal performance [2]. Recent demonstrations of high-
performance vertical GaN diodes [3] and transistors [4], [5]
on GaN susbstrates have made vertical structures very
promising for the GaN power devices.

Despite the excellent performance demonstrated by the
GaN vertical devices, the high cost (>1000× higher than
Si substrates) and the small diameter of GaN substrates
have become one of the main challenges for the commer-
cialization of the GaN vertical power devices. Thus, lower
cost substrates, in particular Si substrates, for GaN vertical
devices would be greatly preferred to make their market
insertion easier. However, the demonstration of the GaN-on-Si
vertical devices is extremely challenging mainly due to
two reasons: 1) the high dislocation density in GaN-on-Si and
2) the relatively thin GaN drift regions that can be grown on
Si substrates.

By overcoming some of these challenges, our group
successfully demonstrated GaN-on-Si vertical Schottky and

0018-9383 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. (a) Trench structures with different etching depths. I1 measures the leakage of trench structure down to n+-GaN. I2 and I3 measure the leakage
of trench structures down to the transition layers. (b) Plot of the I1, I2, and I3 measured from the trench structures. I2 and I3 are much smaller than I1,
indicating leakage through transition layers and Si substrates is negligible to the diode’s total current.

p-n power diodes for the first time [6]. With a total GaN drift
layer of only 1.5-μm think, a soft BV of 300 V was achieved
for GaN-on-Si p-n diodes with an Epeak of 2.9 MV/cm in
GaN and a reverse leakage current (∼10−2 A/cm2 at −200 V)
comparable with the lateral GaN devices. However, in order
to compete with vertical GaN-on-GaN devices as well as
commercial Si and SiC devices, the leakage current in the
GaN-on-Si vertical devices needs to be further reduced,
which also requires a thorough understanding on the origin
of leakage.

In this paper, we conducted a systematic study on the
origin of reverse leakage in the GaN-on-Si vertical diodes.
We first identified the drift region and the etch sidewall as the
major leakage paths in these structures. Then, by developing
an advanced edge termination technology which combines
plasma treatment, tetramethylammonium hydroxide (TMAH)
wet etching, and ion implantation, we greatly reduced the
OFF-state leakage current along the etch sidewalls and
achieved a low leakage current in the GaN-on-Si vertical
diodes, similar to the one in the state-of-the-art Si and
SiC devices. The origin of this remaining OFF-state leakage
current was further studied by TCAD simulations.

II. DEVICE STRUCTURE AND LEAKAGE ANALYSIS

The schematic of the GaN-on-Si vertical Schottky and
p-n diodes used in this paper is shown in Fig. 1(a) and (b). The
p-n structure consists of 0.5-μm p-GaN (Mg: 1 × 1019 cm−3,
NA ∼ 1.5×1017 cm−3) and 1-μm n−-GaN (Si: 5×1016 cm−3,
ND ∼ 2 × 1016 cm−3), 0.3-μm n+-GaN (Si: 2 × 1018 cm−3)
cathode contact region, 0.2-μm semi-insulating GaN, and
2.4-μm GaN/AlN transition layers, all grown on Si (111)
substrates by metal–organic chemical vapor deposition [6].
The 1.6 μm of the top GaN layer was etched to form
the cathode electrode. A Ti/Al ohmic contact ring and a
Ni/Au circular ohmic were formed as the cathode and anode
electrodes, respectively. A SiNx passivation layer (∼200-nm
thick) and a Ti/Au bilayer was further used for the field plate
structure for both electrodes. The fabrication process has been
reported in detail in [6].

The OFF-state leakage of the GaN-on-Si vertical p-n diode
structures was analyzed in detail, as shown in Fig. 1(b).
Four possible leakage paths exist in the GaN-on-Si

Fig. 3. Leakage current before and after passivation by PECVD SiO2,
PECVD SiNx , and sputtering SiNx . Inset: structure used to measure leakage
current.

vertical structures: 1) through the transition layers and
Si substrate; 2) through the drift layer; 3) along the etch
sidewall; and 4) through the passivation layer.

The contribution of leakage path #1 (through the transition
layers and Si substrate) could be determined by measuring
the leakage of trench structures with different etching depths,
as shown in Fig. 2(a). When the trench is etched down to
the transition layers, the leakage current reduces by more
than three orders of magnitude compared with the leakage
of the trench down to n+-GaN layer, indicating the leakage
path #1 is negligible in the diode’s total leakage. The small
leakage path #1 demonstrates the good vertical insulation of
GaN-on-Si wafers.

The leakage path #4 (through the passivation layer) was
made negligible through the use of a new GaN passivation
technology based on a sputtering deposition system [6]. This
technology, in contrast to traditional passivation schemes that
use plasma-enhanced chemical vapor deposition (PECVD) [7],
does not increase the leakage current with respect to the one
in unpassivated samples, as shown in Fig. 3.

III. SIDEWALL TREATMENT AND EDGE TERMINATION

The leakage path #3 (along etch sidewall) is typically due
to etch-induced damage or defects (e.g., N vacancies) created
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Fig. 4. SEM image of the deep GaN etch sidewall for GaN-on-Si structures
using (a) SiO2 and (b) Ni hard mask.

Fig. 5. Leakage current through the sidewall of ICP-RIE etched samples
using the SiO2 and the Ni hard masks with and without Ar pretreatment. The
Cl2/BCl3 etching with a metal hard mask and without Ar pretreatment leads
to the lowest leakage current.

by the inductively coupled plasma (ICP) dry etching of GaN.
Sugimoto et al. [8] reported, for example, that the surface of
a p-GaN sidewall can be changed to a depleted or an n−-GaN
layer by ICP etching, which would induce a large leakage
under high reverse bias.

Two technologies have been developed to reduce the
leakage path #3: 1) GaN deep-etching technology and
2) advanced edge termination technology. The new GaN
deep-etching technology was developed in an ICP reactive
ion etching (ICP-RIE) system using a Cl2/BCl3/Ar gas
combination and a metal hard mask. Compared with the oxide
hard mask typically used in these etchings, the use of a metal
hard mask enables a much smoother etch sidewall (Fig. 4),
due to the lack of oxide edge erosion under high plasma
energies. The smoother sidewall reduced the sidewall leakage
current by four orders of magnitude, as shown in Fig. 5.

An advanced edge termination technology for the
GaN-on-Si vertical device has been developed by combining
plasma treatment, TMAH wet etching, and ion implantation.
Various plasma treatments were studied to heal the damage of
the ICP etching. As shown in Fig. 6, CF4 and N2 plasma treat-
ment could effectively passivate the etch-induced N vacancies
and reduce the sidewall leakage. It is also worth noting that the
CF4 plasma was also applied in the GaN-based lateral devices
to passivate interface defects [9], [10]. In contrast, H2 plasma,
which has been reported as able to create N vacancies [11],
induces a large sidewall leakage increase, indicating a strong
correlation between sidewall leakage and N vacancies in the
GaN-on-Si vertical devices.

Fig. 6. Leakage current of the structure with different sidewall plasma
treatments (CF4, N2, NH3, and H2) after GaN dry etching. Inset: structure
for leakage current measurements.

Fig. 7. SEM images of GaN deep etch sidewalls without and with
TMAH treatment for 60 min (in vertical p-n diodes).

Fig. 8. Leakage current using the TMAH wet etching after the GaN dry
etching. Inset: structure used for leakage current measurements.

The TMAH wet etching (25% concentration) at 85 °C was
found effective in removing the damage from the etch sidewall,
especially near the p/n-GaN interface, as demonstrated in the
sidewall topology images shown in Fig. 7. A TMAH treatment
for 60 min reduces the sidewall leakage by more than 50×,
as shown in Fig. 8. In addition, the forward characteristics
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Fig. 9. Diode forward characteristics by the TMAH wet etching for different
times, from 15 to 60 min.

Fig. 10. (a) Cross section and (b) top view of the GaN-on-Si vertical
p-n diodes with ion implantation regions as edge termination.

Fig. 11. Reverse characteristics of the GaN-on-Si vertical p-n diodes without
and with ion implantation, as a function of different ion dose and energy.

of the GaN-on-Si vertical diodes were also enhanced by
the TMAH treatment, as shown in Fig. 9. This improve-
ment in forward characteristics may attribute to two factors:
1) a higher mobility and better material quality in the regions
near etching sidewall, due to reduction of sidewall defects
and 2) a mitigated current crowding due to the more vertical
sidewall.

An ion implantation ring was introduced to isolate the
main vertical current path from the etch sidewall, as shown
in Fig. 10. Argon (Ar) was used for implantation [12].
As shown in Fig. 11, the ion implantation reduces the leakage
at high reverse bias, due to a significant mitigation of leakage
along the etch sidewall. However, the implantation slightly
increases the device leakage at low bias due to a parasitic

Fig. 12. Total leakage current density of vertical p-n diodes with different
anode radius R (R = 50, 100, 150, and 300 μm), as a function of 1/R at a
reverse voltage of 50, 100, 150, and 200 V.

leakage through the implanted region. Different implantation
Ar dose and energies were also studied (Fig. 11). The ion
dose mainly determines the insulating properties of the implant
region and the device leakage current at low reverse bias,
whereas the ion energy determines the depth of the implant
region, with 150 keV for a depth of ∼0. 3 μm and 300 keV
for ∼0.6 μm. High ion energy is needed to extend the
implantation region beyond the p/n-GaN junction, in order to
prevent the leakage from flowing toward the depleted p-GaN
sidewall at a high bias.

IV. ORIGIN OF BULK LEAKAGE COMPONENT

To further decouple the leakage path #2 (bulk component)
and #3 (sidewall surface component) for devices with the
advanced edge termination, the total leakage density of the
vertical diodes with a radius of 50, 100, 150, and 300 μm
was measured and plotted in Fig. 12. The total reverse leakage
current density Jtotal can be expressed as follows [13]:

Jtotal = J2 + J3 × P/A = J2 + 2J3 × 1/R (1)

where J2 (A/cm2) and J3 (A/cm) are the bulk leakage current
density (leakage path #2) and the perimeter leakage current
density (leakage path #3), respectively. P and A are the
perimeter and area of the vertical diodes, with R defined as the
anode radius. As shown in Fig. 12, the total leakage current
exhibits almost no linear dependence on 1/R, indicating that
the sidewall leakage has been effectively suppressed by the
edge terminations and the bulk component (leakage path #2)
is the main contributor to the total device leakage current.

The OFF-state leakage mechanism of the bulk current
component (leakage path #2) was further studied using
TCAD simulation [14]. It is well known that dislocations in
GaN Schottky diodes are the major paths of reverse leakage
current [15], [16]. The conduction mechanism along the
dislocations is probably due to hopping of carriers from trap
to the nearest neighbor trap [17]. Therefore, it is postulated
that the bulk component is a result of electron hopping
along the dislocations. In the simulation, under reverse bias,
electrons tunnel (either elastically or inelastically) from the
p-GaN/drift-layer interface to the dislocation traps and then
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TABLE I

LEAKAGE AND COST BENCHMARKING FOR THE GaN VERTICAL DEVICE ON DIFFERENT SUBSTRATES, GaN LATERAL DEVICE, Si AND SiC DEVICE

Fig. 13. Experimental and simulated leakage current of the GaN-on-
Si vertical p-n diodes with advanced edge termination, and experimental
leakage of vertical diodes without edge termination. The simulation is in
good agreement with experiment. The edge termination is able to achieve a
reduction of leakage by about two orders of magnitude and the elimination
of the voltage hump at ∼300 V.

hop from trap to trap along the dislocation. Carrier hopping
between dislocation traps is modeled using drift mobility in a
Gaussian disorder model [18]. With this setup, the simulation
matches the slope and magnitude of the experiment fairly
well (Fig. 13). Impact ionization was also turned ON to
match the steep increase of current at ∼300 V. The details of
simulation will be elaborated in a follow-up paper.

V. DEVICE PERFORMANCE AND BENCHMARKING

The reverse I–V characteristics of optimized GaN-on-Si
vertical p-n diodes with and without the advanced edge
termination are shown in Fig. 13. As shown, the advanced edge
termination is able to reduce the leakage by about two orders
of magnitude while maintaining a soft BV of over 300 V and
a peak electric field >2.9 MV/cm. In addition, the reverse
characteristics of vertical diodes with the advanced edge
termination does not exhibit a voltage hump at ∼300 V, which
corresponds to the traps-filled-limited voltage of the acceptor
traps according to our detailed analysis in [6]. This indicates
that the large acceptor traps observed in the vertical diodes
without the advanced edge termination [6] are located at the
etch sidewall, and are probably due to N vacancies and point
defects produced in the etching process. With the elimination
of the sidewall traps, good measurement reproducibility and
BV uniformity have also been observed in the GaN-on-Si
vertical p-n diodes throughout the whole wafer.

Fig. 14. Forward current characteristics of the GaN-on-Si vertical diodes
with a diameter of 600 μm. Measurement in pulse-mode with different duty
cycles shows no degradation in diode current. Inset: forward characteristics
of diodes with a radius of 100 μm reveal an ON-resistance of 6 m� · cm2 for
Schottky and 10 m� · cm2 for p-n diodes.

The forward transient behavior and current capability of
diode are also enhanced. The forward I–V characteristics of
the GaN-on-Si vertical diodes with a diameter of 600 μm
have demonstrated a current level >2 A and a current
density >500 A/cm2, with no degradation as a function of
duty cycle (from 0.001% to 1%) in pulse measurements,
as shown in Fig. 14. An ON-resistance of 6 and 10 m� · cm2

was obtained for GaN-on-Si vertical Schottky and p-n diodes,
respectively. The relatively high ON-resistance of our
GaN-on-Si vertical diodes is due to the relatively high
contact resistance of ohmic on p-GaN, low mobility of
p-GaN (∼14 cm2/V · s), and the current crowding near the
corner of etching sidewall. An improvement of the p-GaN
material quality is expected to further reduce the ON-resistance
of our GaN-on-Si vertical diodes.

The BV capability of our GaN-on-Si vertical diodes has
been benchmarked in detail in [6]. With a total drift layer of
only 1.5-μm thick, our GaN-on-Si vertical diodes achieved
a soft BV of 300 V, which is close to the theoretical limit
for the GaN p-n diodes. This indicates the great potential of
the GaN vertical devices to achieve a higher BV with thicker
GaN epilayers.

The leakage characteristics are benchmarked in Table I.
As shown, with over 1000× lower substrate cost than the
GaN-on-GaN device, our GaN-on-Si vertical devices achieved
an OFF-state leakage current lower than the GaN lateral
devices and similar to the one in the state-of-the-art Si and
SiC devices. The low-leakage and high-BV performances of
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our GaN-on-Si vertical diodes have demonstrated the great
potential of the GaN-on-Si vertical device as a new low-cost
candidate for high-performance power electronics.

VI. CONCLUSION

In this paper, we conducted a systematic study on the origin
of reverse leakage in the GaN-on-Si vertical diodes. Various
leakage sources were separated and clarified, including bulk
drift region, passivation layer, etch sidewall, and transition
layers. By developing an advanced edge termination
technology which combines plasma treatment, TMAH wet
etching and ion implantation, we greatly reduced the leakage
along etch sidewalls and achieved a BV >300 V, an
Epeak of 2.9 MV/cm, and an OFF-state leakage current in the
GaN-on-Si vertical diodes similar to the one in Si and
SiC devices. The bulk component of the leakage can be
explained by a combination of electron tunneling at the p-GaN/
drift-layer interface and carrier hopping between dislocation
traps. The high-BV and low-leakage capabilities have demon-
strated the suitability of the GaN-on-Si vertical device for
high-performance power electronics.
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