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Abstract

We consider finite horizon Markov decision processes under performance measures that involve both the mean

and the variance of the cumulative reward. We show that either randomized or history-based policies can improve

performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance

constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudopolynomial exact

and approximation algorithms.
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I. INTRODUCTION

The classical theory of Markov decision processes (MDPs) deals with the maximization of the cu-

mulative (possibly discounted) expected reward, to be denoted by W . However, a risk-averse decision

maker may be interested in additional distributional properties of W . In this paper, we focus on the case

where the decision maker is interested in both the mean and the variance of the cumulative reward (e.g.,

trying to optimize the mean subject to a variance constraint or vice versa), and we explore the associated

computational issues.

Risk aversion in MDPs is of course an old subject. In one approach, the focus is on the maximization

of E[U(W )], where U is a concave utility function. Problems of this type can be handled by state

augmentation (e.g., Bertsekas, 1995), namely, by introducing an auxiliary state variable that keeps track
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of the cumulative past reward. In a few special cases, e.g., with an exponential utility function, state

augmentation is unnecessary, and optimal policies can be found by solving a modified Bellman equation

(Chung & Sobel, 1987). (The exponential utility function is often viewed as a surrogate for trading off

mean and variance, on the basis of a single tunable parameter. The difficulty of solving mean-variance

optimization problems — which is the focus of this paper — does provide some support for using a

surrogate criterion, more amenable to exact optimization.) Another interesting case where optimal policies

can be found efficiently involves a “one-switch utility functions” (the sum of a linear and an an exponential)

Liu and Koenig (2005), or piecewise linear utility functions with a single break point (Liu & Koenig,

2006).

In another approach, the objective is to optimize a so-called coherent risk measure (Artzner, Delbaen,

Eber, & Heath, 1999), which turns out to be equivalent to a robust optimization problem: one assumes a

family of probabilistic models and optimizes the worst-case performance over this family. In the multistage

case (Riedel, 2004), problems of this type can be difficult (Le Tallec, 2007), except for some special cases

(Iyengar, 2005; Nilim & El Ghaoui, 2005) that can be reduced to Markov games (Shapley, 1953).

Mean-variance optimization lacks some of the desirable properties of approaches involving coherent

risk measures or risk-sensitive utility functions (e.g., exponential utility functions) and sometimes leads

to counterintuitive policies. Bellman’s principle of optimality does not hold, and as a consequence, a

decision maker who has received unexpectedly large rewards in the first stages, may actively seek to incur

losses in subsequent stages in order to keep the variance small. Counterintuitive and seemingly “irrational”

behavior (i.e., incompatible with expected utility maximization) can even arise in static problems under

a mean-variance formulation: for example, under a variance constraint, one may prefer to forgo a profit

which is guaranteed to be positive but has a positive variance. Nevertheless, mean-variance optimization

is a common approach in financial decision making (e.g., Luenberger, 1997), especially for static (one-

stage) problems. Consider, for example, a fund manager who is interested in the 1-year performance of

the fund whose investment strategies will be judged according to the mean and variance of the return.

Assuming that the manager is allowed to undertake periodic re-balancing actions in the course of the

year, one obtains a Markov decision process with mean-variance criteria, and it is important to know

the least possible variance achievable under a set target for the mean return. While the applicability of

the financial strategies arising from mean-variance optimization in multi-period fund management can
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be debated (due to the “irrational” aspects mentioned above), mean-variance optimization is definitely

a meaningful objective in various engineering contexts. Consider, for example, an engineering process

whereby a certain material is deposited on a surface. Suppose that the primary objective is to maximize

the amount deposited, but that there is also an interest in having all manufactured components be similar

to each other; this secondary objective can be addressed by keeping the variance of the amount deposited

small. In general, the applicability of the formulations studied in this paper will depend on the specifics

of a particular application.

Mean-variance optimization problems resembling ours have been studied in the literature. For example,

(Guo, Ye, & Yin, 2012) consider a mean-variance optimization problem, but subject to a constraint on the

vector of expected rewards starting from each state, which results in a simpler problem, amenable to a

policy iteration approach. Collins (1997) provides an apparently exponential-time algorithm for a variant

of our problem, and Tamar, Di-Castro, and Mannor (2012) propose a policy gradient approach that aims

at a locally optimal solution. Expressions for the variance of the discounted reward for stationary policies

were developed in Sobel (1982). However, these expressions are quadratic in the underlying transition

probabilities, and do not lead to convex optimization problems. Similarly, much of the earlier literature

(see Kawai (1987); Huang and Kallenberg (1994) for a unified approach) on the problem provides various

mathematical programming formulations. In general, these formulations either deal with problems that

differ qualitatively focusing on the variation of reward from its average (Filar, Kallenberg, & Lee, 1989;

White, 1992) from ours or are nonconvex, and therefore do not address the issue of polynomial-time

solvability which is our focus. Indeed, we are not aware on any complexity results on mean-variance

optimization problems. We finally note some interesting variance bounds obtained by Arlotto, Gans, and

Steel (2013).

Motivated by considerations such as the above, this paper deals with the computational complexity

aspects of mean-variance optimization. The problem is not straightforward for various reasons. One is the

absence of a principle of optimality that could lead to simple recursive algorithms. Another reason is that,

as is evident from the formula Var(W ) = E[W 2]− (E[W ])2, the variance is not a linear function of the

probability measure of the underlying process. Nevertheless, E[W 2] and E[W ] are linear functions, and as

such can be addressed simultaneously using methods from multicriteria or constrained Markov decision

processes (Altman, 1999). Indeed, we will use such an approach in order to develop pseudopolynomial
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exact or approximation algorithms. On the other hand, we will also obtain various NP-hardness results,

which show that there is little hope for significant improvement of our algorithms.

The rest of the paper is organized as follows. In Section II, we describe the model and our notation. We

also define various classes of policies and performance objectives of interest. In Section III, we compare

different policy classes and show that performance typically improves strictly as more general policies are

allowed. In Section IV, we establish NP-hardness results for the policy classes we have introduced. Then, in

Sections V and VI, we develop exact and approximate pseudopolynomial time algorithms. Unfortunately,

such algorithms do not seem possible for some of the more restricted classes of policies, due to strong

NP-completeness results established in Section IV. Finally, Section VII contains some brief concluding

remarks.

II. THE MODEL

In this section, we define the model, notation, and performance objectives that we will be studying.

Throughout, we focus on finite horizon problems.1

A. Markov Decision Processes

We consider a Markov decision process (MDP) with finite state, action, and reward spaces. An MDP

is formally defined by a sextuple M = (T,S,A,R, p, g) where:

(a) T , a positive integer, is the time horizon;

(b) S is a finite collection of states, one of which is designated as the initial state;

(c) A is a collection of finite sets of possible actions, one set for each state;

(d) R is a finite subset of Q (the set of rational numbers), and is the set of possible values of the

immediate rewards. We let K = maxr∈R |r|.

(e) p : {0, . . . , T − 1}×S ×S ×A → Q describes the transition probabilities. In particular, pt(s′ | s, a)

is the probability that the state at time t+ 1 is s′, given that the state at time t is s, and that action

a is chosen at time t.
1Negative complexity results are straightforward to extend to the more general case of infinite horizon problems. Also, some of the positive

results, such as the approximation algorithms of Section VI, can be extended to the infinite horizon discounted case; this is beyond the scope

of this paper.
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(d) g : {0, . . . , T − 1} × R × S × A → Q is a set of reward distributions. In particular, gt(r | s, a) is

the probability that the immediate reward at time t is r, given that the state and action at time t is

s and a, respectively.

With few exceptions (e.g., for the time horizon T ), we use capital letters to denote random variables, and

lower case letters to denote ordinary variables. The process starts at the designated initial state. At every

stage t = 0, 1, . . . , T − 1, the decision maker observes the current state St and chooses an action At.

Then, an immediate reward Rt is obtained, distributed according to gt( · |St, At), and the next state St+1

is chosen, according to pt( · |St, At). Note that we have assumed that the possible values of the immediate

reward and the various probabilities are all rational numbers. This is in order to address the computational

complexity of various problems within the standard framework of digital computation. Finally, we will

use the notation x0:t to indicate the tuple (x0, . . . , xt).

B. Policies

We will use the symbol π to denote policies. Under a deterministic policy π = (µ0, . . . , µT−1), the

action at each time t is determined according to a mapping µt whose argument is the history Ht =

(S0:t, A0:t−1, R0:t−1) of the process, by letting At = µt(Ht). We let Πh be the set of all such history-based

policies. (The subscripts are used as a mnemonic for the variables on which the action is allowed to

depend.) We will also consider randomized policies. Intuitively, at each point in time, the policy can pick

an action at random, with the probability of each action determined by the current information (which

is Ht as well as the outcomes of earlier randomizations). Randomness can always be simulated by using

an independent uniform random variable as the seed, which leads to the following formal definition. We

assume that there is available a sequence of i.i.d. uniform random variables U0, U1, . . . , UT−1, which are

independent from everything else. In a randomized policy, the action at time t is determined by letting

At = µt(Ht, U0:t). Let Πh,u be the set of all randomized policies.

In classical MDPs, it is well known that restricting to Markovian policies (policies that take into account

only the current state St) results in no loss of performance. In our setting, there are two different possible

“states” of interest: the original state St, or the augmented state (St,Wt), where

Wt =
t−1∑
k=0

Rk,
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(with the convention that W0 = 0). Accordingly, we define the following classes of policies: Πt,s (under

which At = µt(St)), and Πt,s,w (under which At = µt(St,Wt)), and their randomized counterparts Πt,s,u

(under which At = µt(St, Ut)), and Πt,s,w,u (under which At = µt(St,Wt, Ut). Notice that

Πt,s ⊂ Πt,s,w ⊂ Πh,

and similarly for their randomized counterparts.

C. Performance Criteria

Once a policy π and an initial state s is fixed, the cumulative reward WT becomes a well-defined random

variable. The performance measures of interest are its mean and variance, defined by Jπ = Eπ[WT ] and

Vπ = Varπ(WT ), respectively. Under our assumptions (finite horizon, and bounded rewards), it follows

that there are finite upper bounds of KT and K2T 2, for |Jπ| and Vπ, respectively, independent of the

policy.

Given our interest in complexity results, we will focus on “decision” problems that admit a yes/no

answer, except for Section VI. We define the following problem.

Problem MV-MDP(Π): Given an MDP M and rational numbers λ, v, does there exist a policy in the set

Π such that Jπ ≥ λ and Vπ ≤ v?

Clearly, an algorithm for the problem MV-MDP(Π) can be combined with binary search to solve (up to

any desired precision) the problem of maximizing the expected value of WT subject to an upper bound

on its variance, or the problem of minimizing the variance of WT subject to a lower bound on its mean.

III. COMPARISON OF POLICY CLASSES

Our first step is to compare the performance obtained from different policy classes. We introduce some

terminology. Let Π and Π′ be two policy classes. We say that Π is inferior to Π′ if, loosely speaking, the

policy class Π′ can always match or exceed the “performance” of policy class Π, and for some instances

it can exceed it strictly. Formally, Π is inferior to Π′ if the following hold: (i) if (M, c, d) is a “yes”

instance of MV-MDP(Π), then it is also a “yes” instance of MV-MDP(Π′); (ii) there exists some (M, c, d)

which is a “no” instance of MV-MDP(Π) but a “yes” instance of MV-MDP(Π′). Similarly, we say that two

policy classes Π and Π′ are equivalent if every “yes” (respectively, “no”) instance of MV-MDP(Π) is a

“yes” (respectively, “no”) instance of MV-MDP(Π′).
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We define one more convenient term. A state s is said to be terminal if it is absorbing (i.e., pt(s | s, a) =

1, for every t and a) and provides zero rewards (i.e., gt(0 | s, a) = 1, for every t and a).

A. Randomization Improves Performance

Our first observation is that randomization can strictly improve performance. This is not surprising given

that we are dealing simultaneously with two criteria, and that randomization is helpful in constrained MDPs

(e.g., Altman, 1999). (Clearly, it is not the case that there will always be improvement — consider a case

where rewards are identically zero, so that all policy classes offer the same performance. The content of

our result is that certain policies are not “equivalent,” meaning that there exist instances for which the

resulting performance is different.)

Theorem 1. (a) Πt,s is inferior to Πt,s,u;

(b) Πt,s,w is inferior to Πt,s,w,u;

(c) Πh is inferior to Πh,u.

Proof. It is clear that performance cannot deteriorate when randomization is allowed. It therefore suffices

to display an instance in which randomization improves performance.

Consider a one-stage MDP (T = 1). At time 0, we are at the initial state and there are two available

actions, a and b. The mean and variance of the resulting reward are both zero under action a, and both

equal to 1 under action b. After the decision is made, the rewards are obtained and the process terminates.

Thus WT = R0, the reward obtained at time 0.

Consider the problem of maximizing E[R0] subject to the constraint that Var(R0) ≤ 1/2. There is

only one feasible deterministic policy (choose action a), and it has zero expected reward. On the other

hand, a randomized policy that chooses action b with probability p has an expected reward of p and the

corresponding variance satisfies

Var(R0) ≤ E[R2
0] = pE[R2

0 |A0 = b] = 2p.

When 0 < p ≤ 1/4, such a randomized policy is feasible and improves upon the deterministic one.

Note that for the above instance we have Πt,s = Πt,s,w = Πh, and Πt,s,u = Πt,s,w,u = Πh,u. Hence the

above example establishes all three of the claimed statements.
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B. Information Improves Performance

We now show that in most cases, performance can improve strictly when we allow a policy to have

access to more information. The only exception arises for the pair of classes Πt,s,w,u and Πh,u, which we

show in Section V to be equivalent (cf. Theorem 6).

Theorem 2. (a) Πt,s is inferior to Πt,s,w, and Πt,s,u is inferior to Πt,s,w,u.

(b) Πt,s,w is inferior to Πh.

Proof.

(a) Consider the following MDP, with time horizon T = 2. The process starts at the initial state s0, at

which there are two actions. Under action a1, the immediate reward is zero and the process moves

to a terminal state. Under action a2, the immediate reward R0 is either 0 or 1, with equal probability,

and the process moves to state s1. At state s1, there are two actions, a3 and a4: under action a3, the

immediate reward R1 is equal to 0, and under action a4, it is equal to 1. We are interested in the

optimal value of the expected reward E[W2] = E[R0 +R1], subject to the constraint that the variance

is less than or equal to zero (and therefore equal to zero). Let p be the probability that action a2 is

chosen at state s0. If p > 0, and under any policy in Πt,s,u, the reward R0 at state s0 has positive

variance, and the reward R1 at the next stage is uncorrelated with R0. Hence, the variance of R0 +R1

is positive, and such a policy is not feasible; in particular, the constraint on the variance requires

that p = 0. We conclude that the largest possible expected reward under any policy in Πt,s,u (and, a

fortiori, under any policy in Πt,s) is equal to zero.

Consider now the following policy, which belongs to Πt,s,w and, a fortiori, to Πt,s,w,u: at state s0,

choose action a2; then, at state s1, choose a3 if W1 = R0 = 1, and choose a4 if W1 = R0 = 0. In

either case, the total reward is R0 + R1 = 1, while the variance of R0 + R1 is zero, thus ensuring

feasibility. This establishes the first part of the theorem.

(b) Consider the following MDP, with time horizon T = 3. At state s0 there is only one available action;

the next state S1 is either s1 or s′1, with probability p and 1−p, respectively, and the immediate reward

R0 is zero. At either state s1 or s′1, there is again only one available action; the next state, S2, is s2,

and the reward R1 is zero. At state s2, there are two actions, a and b. Under action a, the mean and

variance of the resulting reward R2 are both zero, and under action b, they are both equal to 1. Let
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us examine the largest possible value of E[W3] = E[R2], subject to the constraint Var(W2) ≤ 1/2.

The class Πt,s,w contains two policies, corresponding to the two deterministic choices of an action

at state s2; only one of them is feasible (the one that chooses action a), resulting in zero expected

reward. However, the following policy in Πh has positive expected reward: choose action b at state

s2 if and only if the state at time 1 was equal to s1 (which happens with probability p). As long as p

is sufficiently small, the constraint Var(W ) ≤ 1/2 is met, and this policy is feasible. It follows that

Πt,s,w is inferior to Πh.

IV. COMPLEXITY RESULTS

In this section, we establish that mean-variance optimization in finite horizon MDPs is unlikely to admit

polynomial time algorithms, in contrast to classical MDPs.

Theorem 3. The problem MV-MDP(Π) is NP-hard, when Π is Πt,s,w, Πt,s,w,u, Πh, or Πh,u.

Proof: We will actually show NP-hardness for the special case of MV-MDP(Π), in which we wish to

determine whether there exists a policy whose reward variance is equal to zero. (In terms of the problem

definition, this corresponds to letting λ = −KT and v = 0.) The proof uses a reduction from the

PARTITION problem: Given n positive integers, does there exist a subset B of {1, . . . , n} such that∑
i∈B ri =

∑
i/∈B ri?

Given an instance (r1, . . . , rn) of PARTITION, and for any of the policy classes of interest, we construct

an instance of MV-MDP(Π), with time horizon T = n + 1, as follows. At the initial state s0, there is

only one available action, resulting in zero immediate reward (R0 = 0). With probability 1/2, the process

moves to a terminal state; with probability 1/2, the process moves (deterministically) along a sequence of

states s1, . . . , sn. At each state si (i = 1, . . . , n), there are two actions: ai, which results in an immediate

reward of ri, and bi, which results in an immediate reward of −ri.

Suppose that there exists a set B ⊂ {1, . . . , n} such that
∑

i∈B ri =
∑

i/∈B ri. Consider the policy that

chooses action ai at state si if and only if i ∈ B. This policy achieves zero total reward, with probability

1, and therefore meets the zero variance constraint. Conversely, if a policy results in zero variance, then

the total reward must be equal to zero, with probability 1, which implies that such a set B exists. This

completes the reduction.

Note that this argument applies no matter which particular class of policies is being considered.
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The above proof also applies to the policy classes Πt,s and Πt,s,u. However, for these two classes, a

stronger result is possible. Recall that a problem is strongly NP-hard, if it remains NP-hard when restricted

to instances in which the numerical part of the instance description involves “small” numbers; see Garey

and Johnson (1979) for a precise definition.

Theorem 4. If Π is either Πt,s or Πt,s,u, the problem MV-MDP(Π) is strongly NP-hard.

Proof. As in the proof of Theorem 3, we will prove the result for the special case of MV-MDP, in which

we wish to determine whether there exists a policy under which the variance of the reward is equal

to zero. The proof involves a reduction from the 3-Satisfiability problem (3SAT). An instance of 3SAT

consists of n Boolean variables x1, . . . , xn, and m clauses C1, . . . , Cm, with three literals per clause. Each

clause is the disjunction of three literals, where a literal is either a variable or its negation. (For example,

x2 ∨ x4 ∨ x5 is such a clause, where a bar stands for negation.) The question is whether there exists an

assignment of truth values (“true” or “false”) to the variables such that all clauses are satisfied.

Suppose that we are given an instance of 3SAT, with n variables and m clauses, C1, . . . , Cm. We

construct an instance of MV-MDP(Π) as follows. There is an initial state s0, a state d0, a state cj associated

with each clause Cj , and a state yi associated with each literal xi. The actions, dynamics, and rewards

are as follows:

(a) Out of state s0, there is equal probability, 1/(m+ 1), of reaching any one of the states d0, c1, . . . , cm,

independent of the action; the immediate reward is zero.

(b) State d0 is a terminal state. At each state cj , there are three actions available: each action selects one

of the three literals in the clause, and the process moves to the state yi associated with that literal;

the immediate reward is 1 if the literal appears in the clause unnegated, and −1 if the literal appears

in the clause negated. For an example, suppose that the clause is of the form x2 ∨ x4 ∨ x5. Under

the first action, the next state is y2, and the reward is 1; under the second action, the next state is y4

and the reward is −1; under the third action, the next state is y5, and the reward is 1.

(c) At each state yi, there are two possible actions ai and bi, resulting in immediate rewards of 1 and

−1, respectively. The process then moves to the terminal state d0.

Suppose that we have a “yes” instance of 3SAT, and consider a truth assignment that satisfies all clauses.

We can then construct a policy in Πt,s (and a fortiori in Πt,s,u), whose total reward is zero (and therefore
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has zero variance) as follows. If xi is set to be true (respectively, false), we choose action bi (respectively,

ai) at state yi. At state cj we choose an action associated with a literal that makes the clause to be true.

Suppose that state cj is visited after the first transition, i.e., S1 = cj . If the literal associated with the

selected action at cj is unnegated, e.g., the literal xi, then the immediate reward is 1. Since this literal

makes the clause to be true, it follows that the action chosen at the subsequent state, yi, is bi, resulting in

a reward of −1, and a total reward of zero. The argument for the case where the literal associated with the

selected action at state cj is negated is similar. It follows that the total reward is zero, with probability 1.

For the converse direction, suppose that there exists a policy in Πt,s, or more generally, in Πt,s,u under

which the variance of the total reward is zero. Since the total reward is equal to 0 whenever the first

transition leads to state d0 (which happens with probability 1/(m + 1), it follows that the total reward

must be always zero. Consider now the following truth assignment: xi is set to be true if and only if the

policy chooses action bi at state yi, with positive probability. Suppose that the state visited after the first

transition is cj . Suppose that the action chosen at state cj leads next to state yi and that the literal xi

appears unnegated in clause Cj . Then, the reward at state cj is 1, which implies that the reward at state yi

is −1. It follows that the action chosen at yi is bi, and therefore xi has been set to be true. It follows that

clause Cj is satisfied. A similar argument shows that clause Cj is satisfied when the literal xi associated

with the chosen action at cj appears negated. In either case, we conclude that clause Cj is satisfied. Since

every state cj is possible at time 1, it follows that every clause is satisfied, and we have a “yes” instance

of 3SAT.

Because the immediate rewards are bounded, it is easily seen that an instance with general rewards is

equivalent to one with all positive (or all negative) rewards. It follows that our negative complexity results

remain valid even if we restrict to instances in which all rewards are positive (respectively, negative).

V. EXACT ALGORITHMS

The comparison and complexity results of the preceding two sections indicate that the policy classes

Πt,s, Πt,s,w, Πt,s,u, and Πh are inferior to the class Πh,u, and furthermore some of them (Πt,s, Πt,s,w)

appear to have higher complexity. Thus, there is no reason to consider them further. While the problem

MV-MDP(Πh,u) is NP-hard, there is still a possibility for approximate or pseudopolynomial time algorithms.

In this section, we focus on exact pseudopolynomial time algorithms.
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Our approach involves an augmented state, defined by Xt = (St,Wt). Let X be the set of all possible

values of the augmented state. Let |S| be the cardinality of the set S. Let |R| be the cardinality of the

set R. Recall also that K = maxr∈R |r|. If we assume that the immediate rewards are integers, then Wt

is an integer between −KT and KT . In this case, the cardinality |X | of the augmented state space X is

bounded by |S| · (2KT + 1), which is polynomial. Without the integrality assumption, the cardinality of

the set X remains finite, but it can increase exponentially with T . For this reason, we study the integer

case separately in Section V-B.

A. State-Action Frequencies

In this section, we provide some results on the representation of MDPs in terms of a state-action

frequency polytope, thus setting the stage for our subsequent algorithms.

For any policy π ∈ Πh,u, and any x ∈ X , a ∈ A, we define the state-action frequencies at time t by

zπt (x, a) = Pπ(Xt = x,At = a), t = 0, 1, . . . , T − 1,

and

zπt (x) = Pπ(Xt = x), t = 0, 1, . . . , T.

Let zπ be a vector that lists all of the above defined state-action frequencies.

For any family Π of policies, let Z(Π) = {zπ | π ∈ Π}. The following result is well known (e.g.,

Altman, 1999). It asserts that any feasible state-action frequency vector can be attained by policies that

depend only on time, the (augmented) state, and a randomization variable. Furthermore, the set of feasible

state-action frequency vectors is a polyhedron, hence amenable to linear programming methods.

Theorem 5. (a) We have Z(Πh,u) = Z(Πt,s,w,u).

(b) The set Z(Πh,u) is a polyhedron, specified by O(T · |X | · |A|) linear constraints.

Note that a certain mean-variance pair (λ, v) is attainable by a policy in Πh,u if and only if there exists

some z ∈ Z(Πh,u) that satisfies ∑
(s,w)∈X

wzT (s, w) = λ, (1)

∑
(s,w)∈X

w2zT (s, w) = v + λ2. (2)
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Furthermore, since Z(Πh,u) = Z(Πt,s,w,u), it follows that if a pair (λ, v) is attainable by a policy in Πh,u,

it is also attainable by a policy in Πt,s,w,u. This establishes the following result.

Theorem 6. The policy classes Πh,u and Πt,s,w,u are equivalent.

Note that checking the feasibility of the conditions z ∈ Z(Πh,u), (1), and (2) amounts to solving a linear

programming problem, with a number of constraints proportional to the cardinality of the augmented state

space X and, therefore, in general, exponential in T .

B. Integer Rewards

In this section, we assume that the immediate rewards are integers, with absolute value bounded by

K, and we show that pseudopolynomial time algorithms are possible. Recall that an algorithm is a

pseudopolynomial time algorithm if its running time is polynomial in K and the instance size. (This is

in contrast to polynomial time algorithms in which the running time can only grow as a polynomial of

logK.)

Theorem 7. Suppose that the immediate rewards are integers, with absolute value bounded by K. Consider

the following two problems:

(i) determine whether there exists a policy in Πh,u for which (Jπ, Vπ) = (λ, v), where λ and v are given

rational numbers; and,

(ii) determine whether there exists a policy in Πh,u for which Jπ = λ and Vπ ≤ v, where λ and v are

given rational numbers.

Then,

(a) these two problems admit a pseudopolynomial time algorithm; and,

(b) unless P=NP, these problems cannot be solved in polynomial time.

Proof.

(a) As already discussed, these problems amount to solving a linear program. In the integer case, the

number of variables and constraints is bounded by a polynomial in K and the instance size. The

result follows because linear programming can be solved in polynomial time.

(b) This is proved by considering the special case where λ = v = 0 and the exact same argument as in

the proof of Theorem 3.
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Similar to constrained MDPs, mean-variance optimization involves two different performance criteria.

Unfortunately, however, the linear programming approach to constrained MDPs does not translate into an

algorithm for the problem MV-MDP(Πh,u). The reason is that the set

PMV = {(Jπ, Vπ) | π ∈ Πh,u}

of achievable mean-variance pairs need not be convex. To bring the constrained MDP methodology to

bear on our problem, instead of focusing on the pair (Jπ, Vπ), we define Qπ = Eπ[W 2
T ], and focus on the

pair (Jπ, Qπ). This is now a pair of objectives that depend linearly on the state frequencies associated

with the final augmented state XT . Accordingly, we define

PMQ = {(Jπ, Qπ) | π ∈ Πh,u}.

Note that PMQ is a polyhedron, because it is the image of the polyhedron Z(Πh,u) under the linear

mapping specified by the left-hand sides of Eqs. (1)-(2). In contrast, PMV is the image of PMQ under a

nonlinear mapping:

PMV = {(λ, q − λ2) | (λ, q) ∈ PMQ},

and is not, in general, a polyhedron.

As a corollary of the above discussion, and for the case of integer rewards, we can exploit convexity

to devise pseudopolynomial algorithms for problems that can be formulated in terms of the convex

set PMQ. On the other hand, because of the non-convexity of PMV , we have not been able to devise

pseudopolynomial time algorithms for the problem MV-MDP(Πh,u), or even the simpler problem of deciding

whether there exists a policy π ∈ Πh,u that satisfies Vπ ≤ v, for some given number v, except for the

very special case where v = 0, which is the subject of our next result. For a general v, an approximation

algorithm will be presented in the next section.

Theorem 8. (a) If there exists some π ∈ Πh,u for which Vπ = 0, then there exists some π′ ∈ Πt,s,w for

which Vπ′ = 0.

(b) Suppose that the immediate rewards are integers, with absolute value bounded by K. Then the problem

of determining whether there exists a policy π ∈ Πh,u for which Vπ = 0 admits a pseudopolynomial

time algorithm.

Proof.
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(a) Suppose that there exists some π ∈ Πh,u for which Vπ = 0. By Theorem 6, π can be assumed,

without loss of generality, to lie in Πt,s,w,u. Let Varπ(WT |U0:T ), be the conditional variance of

WT , conditioned on the realization of the randomization variables U0:T . We have Varπ(WT ) ≥

Eπ[Varπ(WT |U0:T )], which implies that there exists some u0:T such that Varπ(WT |U0:T = u0:T ) = 0.

By fixing the randomization variables to this particular u0:T , we obtain a deterministic policy, in Πt,s,w

under which the reward variance is zero.

(b) If there exists a policy under which Vπ = 0, then there exists an integer k, with |k| ≤ KT such that,

under this policy, WT is guaranteed to be equal to k. Thus, we only need to check, for each k in the

relevant range, whether there exists a policy such that (Jπ, Vπ) = (k, 0). By Theorem 7, this can be

done in pseudopolynomial time.

The approach in the proof of part (b) above leads to a short argument, but yields a rather inefficient

(albeit pseudopolynomial) algorithm. A much more efficient and simple algorithm is obtained by realizing

that the question of whether WT can be forced to be k, with probability 1, is just a reachability game:

the decision maker picks the actions and an adversary picks the ensuing transitions and rewards (among

those that have positive probability of occurring). The decision maker wins the game if it can guarantee

that WT = k. Such sequential games are easy to solve in time polynomial in the number of (augmented)

states, decisions, and the time horizon, by a straightforward backward recursion. On the other hand a

genuinely polynomial time algorithm does not appear to be possible; indeed, the proof of Theorem 3

shows that the problem is NP-complete.

VI. APPROXIMATION ALGORITHMS

In this section, we deal with the optimization counterparts of the problem MV-MDP(Πh,u). We are

interested in computing approximately the following two functions:

v∗(λ) = inf
{π∈Πh,u:Jπ≥λ}

Vπ, (3)

and

λ∗(v) = sup
{π∈Πh,u:Vπ≤v}

Jπ. (4)

If the constraint Jπ ≥ λ (respectively, Vπ ≤ v) is infeasible, we use the standard convention v∗(λ) = ∞

(respectively, λ∗(v) = −∞). Note that the infimum and supremum in the above definitions are both
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attained, because the set PMV of achievable mean-variance pairs is the image of the polyhedron PMQ

under a continuous map, and is therefore compact.

We do not know how to efficiently compute or even generate a uniform approximation of either v∗(λ)

or λ∗(v) (i.e., find a value v′ between v∗(λ)− ε and v∗(λ) + ε, and similarly for λ∗(v)). In the following

two results we consider a weaker notion of approximation that is computable in pseudopolynomial time.

We discuss v∗(λ) as the issues for λ∗(v) are similar.

For any positive ε and ν, we will say that v̂(·) is an (ε, ν)-approximation of v∗(·) if, for every λ,

v∗(λ− ν)− ε ≤ v̂(λ) ≤ v∗(λ+ ν) + ε. (5)

This is an approximation of the same kind as those considered in Papadimitriou and Yannakakis (2000):

it returns a value v̂ such that (λ, v̂) is an element of the “(ε + ν)-approximate Pareto boundary” of the

set PMV . For a different view, the graph of the function v̂(·) is within Hausdorf distance ε+ ν from the

graph of the function v∗(·).

We will show how to compute an (ε, ν)-approximation in time which is pseudopolynomial, and poly-

nomial in the parameters 1/ε, and 1/ν.

We start in Section VI-A with the case of integer rewards, and build on the pseudopolynomial time

algorithms of the preceding section. We then consider the case of general rewards in Section VI-B. We

finally sketch an alternative algorithm in Section VI-C based on set-valued dynamic programming.

A. Integer Rewards

In this section, we prove the following result.

Theorem 9. Suppose that the immediate rewards are integers. There exists an algorithm that, given ε, ν,

and λ, outputs a value v̂(λ) that satisfies (5), and which runs in time polynomial in |S|, |A|, T , K, 1/ε,

and 1/ν.

Proof. Without loss of generality, and only for the purposes of this proof, we can and will assume that the

immediate rewards are nonnegative. Indeed, if the immediate rewards range in [−K,K] we can redefine

them, by adding K to the reward at each stage. Then, v̂(λ) for the original problem will be equal to

v̂(λ + K) for the new problem. Since the rewards are bounded by K, we have v∗(λ) =∞ for λ > KT

and v∗(λ) = v∗(0) for λ < 0. For this reason, we only need to consider λ ∈ [0, KT ]. To simplify the

presentation, we assume that ε = ν. We let δ be such that ε = 3δKT .
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The algorithm is as follows. We consider grid points λi defined by λi = (i− 1)δ, i = 1, . . . , n, where

n is chosen so that λn−1 ≤ KT , λn > KT . Note that n = O(KT/δ). For i = 1, . . . , n− 1, we calculate

q̂(λi), the smallest possible value of E[W 2
T ], when E[WT ] is restricted to lie in [λi, λi+1]. Formally,

q̂(λi) = min
{
q
∣∣ ∃ λ′ ∈ [λi, λi+1] s.t. (λ′, q) ∈ PMQ

}
.

We let û(λi) = q̂(λi)− λ2
i+1, which can be interpreted as an estimate of the least possible variance when

E[WT ] is restricted to the interval [λi, λi+1]. Finally, we set

v̂(λ) = min
i≥k

û(λi), if λ ∈ [λk, λk+1].

The main computational effort is in computing q̂(λi) for every i. Since PMQ is a polyhedron, this

amounts to solving O(KT/δ) linear programming problems. Thus, the running time of the algorithm has

the claimed properties.

We now prove correctness. Let q∗(λ) = min{q | (λ, q) ∈ PMQ}, and u∗(λ) = q∗(λ)− λ2, which is the

least possible variance for a given value of λ. Note that v∗(λ) = min{u∗(λ′) | λ′ ≥ λ}.

We have q̂(λi) ≤ q∗(λ′), for all λ′ ∈ [λi, λi+1]. Also, −λ2
i+1 ≤ −(λ′)2, for all λ′ ∈ [λi, λi+1]. By adding

these two inequalities, we obtain û(λi) ≤ u∗(λ′), for all λ′ ∈ [λi, λi+1]. Given some λ, let k be such that

λ ∈ [λk, λk+1]. Then,

v̂(λ) = min
i≥k

û(λi) ≤ min
λ′≥λk

u∗(λ′) ≤ min
λ′≥λ

u∗(λ′) = v∗(λ′),

so that v̂(λ) is always an underestimate of v∗(λ).

We now prove a reverse inequality. Fix some λ and let k be such that λ ∈ [λk, λk+1]. Let i ≥ k be

such that v̂(λ) = û(λi). Let also λ̄ ∈ [λi, λi+1] be such that q∗(λ̄) = q̂(λi). Note that

λ2
i+1 − λ̄2 ≤ λ2

i+1 − λ2
i = δ(λi + λi+1) ≤ 2δ(KT + δ) ≤ 3δKT. (6)

Then,

v̂(λ)
(a)
= û(λi)

(b)
= q̂(λi)− λ2

i+1

(c)
= q∗(λ̄)− λ2

i+1

(d)

≥ q∗(λ̄)− λ̄2 − 3δKT

(e)
= u∗(λ̄)− 3δKT

(f)

≥ v∗(λ̄)− 3δKT
(g)

≥ v∗(λ− δ)− 3δKT

(h)

≥ v∗(λ− ε)− ε.

In the above, (a) holds by the definition of i; (b) by the definition of û(λi); (c) by the definition of λ̄;

and (d) follows from Eq. (6). Equality (e) follows from the definition of u∗(·). Inequality (f) follows from
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the definition of v∗(·); and (g) is obtained because v∗(·) is nondecreasing and because λ̄ ≥ λ − δ. (The

latter fact is seen as follows: (i) if i > k, then λ ≤ λk+1 ≤ λi ≤ λ̄; (ii) if i = k, then both λ and λ̄

belong to [λk, λk+1], and their difference is at most δ.) Inequality (h) is obtained because of the definition

ε = 3δKT , the observation δ < ε, and the monotonicity of v∗(·).

Theorem 9 allows us to construct an approximate Pareto boundary. In addition, one may be interested

in obtaining corresponding policies. As is common in Markov decision theory, the construction of suitable

policies is implicit in value function calculations, and is immediate from the proof Theorem 9, as we now

describe. Suppose that are given some λ that happens to lie in some [λk, λk+1]. As in the proof of the

theorem, we find some i such that v̂(λ) = û(λi) = q̂(λi)−λ2
i+1. From the definition of q̂(λi), there exists

some (λ̄, q) ∈ PMQ with λ̄ ∈ [λi, λi+1] and q = q∗(λ̄) = q̂(λi). The key observation is that we can easily

find a policy for which E[WT ] and E[W 2
T ] are equal to λ̄ and q, respectively. This is done by finding a

corresponding state-action frequency vector in the polyhedron Z(Πh,u) (which is a linear programming

feasibility problem), and expressing that vector as a convex combination of extreme points of Z(Πh,u). As

is well known, extreme points of Z(Πh,u) are associated with deterministic policies. The desired policy

is a randomized policy obtained by combining these deterministic policies according to the coefficients

involved in the convex combination. The policy constructed in this manner has a variance equal to

q − (λ̄)2 = q̂(λi)− (λ̄)2 ≤ q̂(λi)− λ2
i+1 + 3δKT = v̂(λ) + 3δKT ≤ v̂(λ) + ε,

where the first inequality is obtained as in Eq. (6). We have thus found a policy whose performance is

within ε of the computed approximately optimal performance v̂(λ).

Similar policy constructions are possible in the other cases considered in this paper (as, for example, in

the next section). Given that these constructions do not involve any new ideas, we will not repeat them.

B. General Rewards

When rewards are arbitrary, we can discretize the rewards and obtain a new MDP. The new MDP is

equivalent to one with integer rewards to which the algorithm of the preceding subsection can be applied.

This is a legitimate approximation algorithm for the original problem because, as we will show shortly,

the function v∗(·) changes very little when we discretize using a fine enough discretization.

We are given an original MDP M = (T,S,A,R, p, g) in which the rewards are rational numbers in

the interval [−K,K], and an approximation parameter ε. We fix a positive number δ, a discretization
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parameter whose value will be specified later. We then construct a new MDP M′ = (T,S,A,R′, p, g′),

in which the rewards are rounded down to an integer multiple of δ. More precisely, all elements of the

reward range R′ are integer multiples of δ, and for every t, s, a ∈ {0, 1, . . . , T − 1} × S × A, and any

integer n, we have

g′t(δn | s, a) =
∑

r: δn≤r<δ(n+1)

gt(r | s, a).

We denote by J , Q and by J ′, Q′ the first and second moments of the total reward in the original and

new MDPs, respectively. Let Πh,u and Π′h,u be the sets of (randomized, history-based) policies in M and

M′, respectively. Let PMQ and P ′MQ be the associated polyhedra.

We want to to argue that the mean-variance tradeoff curves for the two MDPs are close to each other.

This is not entirely straightforward because the augmented state spaces (which include the possible values

of the cumulative rewards Wt) are different for the two problems and, therefore, the sets of policies are

also different. A conceptually simple but somewhat tedious approach involves an argument along the

lines of Whitt (1978, 1979), generalized to the case of constrained MDPs; we outline such an argument

in Section VI-C. Here, we follow an alternative approach, based on a coupling argument.

Proposition 1. There exists a polynomial function c(K,T ) such that the Hausdorf distance between PMQ

and P ′MQ is bounded above by 2KT 2δ. More precisely,

(a) For every policy π ∈ Πh,u, there exists a policy π′ ∈ Π′h,u such that

max
{
|J ′π′ − Jπ|, |Q′π′ −Qπ|

}
≤ 2KT 2δ.

(b) Conversely, for every policy Π′h,u, there exists a policy Πh,u such that the above inequality again

holds.

Proof. We denote by d(r) the discretized value of a reward r, that is, d(r) = max{nδ : nδ ≤ r, n ∈ Z}.

Let us consider a third MDP M′′ which is identical to M′, except that its rewards R′′t are generated as

follows. (We follow the convention of using a single or double prime to indicate variables associated with

M′ or M′′, respectively.) A random variable Rt is generated according to the distribution prescribed by

gt(r | st, at), and its value is observed by the decision maker, who then incurs the reward R′′t = d(Rt). Let

P ′′MQ be the polyhedron associated with M′′. We claim that P ′′MQ = P ′MQ. The only difference between

M′ and M′′ is that the decision maker in M′′ has access to the additional information Rt − d(Rt).
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However, this information is incosequential: it does not affect the future transition probabilities or reward

distributions.Thus, Rt−d(Rt) can only be useful as an additional randomization variable. Since P ′MQ is the

set of achievable pairs using general (history-based randomized) policies, having available an additional

randomization variable does not change the polyhedron, and P ′′MQ = P ′MQ. Thus, to complete the proof

it suffices to show that the polyhedra PMQ and P ′′MQ are close.

Let us compare the MDPs M and M′′. The information available to the decision maker is the same

for these two MDPs (since all the history of reward truncations {Rτ − d(Rτ )}t−1
τ=1 is available in M′′

for the decision at time t). Therefore, for every policy in one MDP, there exists a policy for the other

under which (if we define the two MDPs on a common probability space, involving common random

generators) the exact same sequence of states (St = S ′′t ), actions (At = A′′t ), and random variables Rt is

realized. The only difference is that the rewards are Rt and d(Rt), in M and M′′, respectively. Recall

that 0 ≤ Rt− d(Rt) ≤ δ. We obtain that for every policy π ∈ Π, there exists a policy π′′ ∈ Π′′ for which

0 ≤ WT −W ′′
T =

∑T−1
τ=0

(
Rt−d(Rt)) ≤ δT , and therefore, |W 2

T − (W ′′
T )2| ≤ 2KT 2δ. Taking expectations,

we obtain |Jπ − J ′′π | ≤ Tδ, |Qπ −Q′′π| ≤ 2KT 2δ. This completes the proof of part (a). The proof of part

(b) is identical.

Theorem 10. There exists an algorithm that, given ε, ν, and λ, outputs a value v̂(λ) that satisfies (5),

and which runs in time polynomial in |S|, |A|, T , K, 1/ε, and 1/ν.

Proof. Assume for simplicity that ν = ε. Given the value of ε, let δ be such that ε/2 = 2KT 2δ, and

construct the discretized MDPM′. Run the algorithm from Theorem 9 to find an (ε/2, ε/2)-approximation

v̂ forM′. Using Proposition 1, it is not hard to verify that this yields an (ε, ε)-approximation of v∗(λ).

C. An Exact Algorithm and its Approximation

There are two general approaches for constructing approximation algorithms. (i) One can discretize

the problem, to obtain an easier one, and then apply an algorithm specially tailored to the discretized

problem; this was the approach in the preceding subsection. (ii) One can design an exact (but inefficient)

algorithm for the original problem and then implement the algorithm approximately. This approach will

work provided the approximations do not build up excessively in the course of the algorithm. In this

subsection, we elaborate on the latter approach.

We defined earlier the polyhedron PMQ as the set of achievable first and second moments of the
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cumulative reward starting at time zero at the initial state. We extend this definition by considering

intermediate times and arbitrary (intermediate) augmented states. We let

Ct(s, w) =
{

(λ, q) : ∃π ∈ Πh,u s.t. Eπ[WT | St = s, Wt = w] = λ and (7)

Eπ[W 2
T | St = s, Wt = w) = q

}
.

Clearly, C0(s, 0) = PMQ. Using a straightforward backwards induction, it can be shown that Ct(·, ·)

satisfies the set-valued dynamic programming recursion 2

Ct(s, w) = conv
a∈A

{∑
s′∈S

pt(s
′ | s, a)

∑
r∈R

gt(r | s, a)Ct+1(s′, w + r)

}
, (8)

for every s ∈ S, w ∈ R, and for t = 0, 1, 2, . . . , T − 1, initialized with the boundary conditions

CT (s, w) = {(w,w2)}. (9)

A simple inductive proof shows that the sets Ct(s, w) are polyhedra; this is because CT (s, w) is either

empty or a singleton and because the sum or convex hull of finitely many polyhedra is a polyhedron. Thus,

the recursion involves a finite amount of computation, e.g., by representing each polyhedron in terms of its

finitely many extreme points. In the worst case, this translates into an exponential time algorithm, because

of the possibly large number of extreme points. However, such an algorithm can also be implemented

approximately. If we allow for the introduction of an O(ε/T ) error at each stage (where error is measured

in terms of the Hausdorf distance), we can work with approximating polyhedra that involve only O(1/ε)

extreme points, while ending up with a O(ε) total error; this is because we are approximating polyhedra in

the plane, as opposed to higher dimensions where the dependence on ε would have been worse dependence.

The details are straightforward but somewhat tedious and are omitted. On the other hand, in practice, this

approach is likely to be faster than the algorithm of the preceding subsection.

VII. CONCLUSIONS

We have shown that mean-variance optimization problems for MDPs are typically NP-hard, but some-

times admit pseudopolynomial approximation algorithms. We only considered finite horizon problems,

but it is clear that the negative results carry over to their infinite horizon counterparts. Furthermore, given

that the contribution of the tail of the time horizon in infinite horizon discounted problems (or in “proper”

2If X and Y are subsets of a vector space and α a scalar, we let αX = {αx | x ∈ X} and X + Y = {x + y | x ∈ X, y ∈ Y }.

Furthermore, if for every a ∈ A, we have a set Xa, then conva∈A{Xa} is the convex hull of the union of these sets.
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stochastic shortest path problems as in Bertsekas (1995)) can be made arbitrarily small, our approximation

algorithms can also yield approximation algorithms for infinite horizon problems.

Two more problems of some interest deal with finding a policy that has the smallest possible, or the

largest possible variance. There is not much we can say here, except for the following:

(a) The smallest possible variance is attained by a deterministic policy, that is,

min
π∈Πh,u

Vπ = min
π∈Πh

Vπ.

This is proved using the inequality Varπ(WT ) ≥ Eπ[Varπ(WT |U0:T )].

(b) Variance will be maximized, in general, by a randomized policy. To see this, consider a single stage

problem and two actions with deterministic rewards, equal to 0 and 1, respectively. Variance is

maximized by assigning probability 1/2 to each of the actions. The variance maximization problem

is equivalent to maximizing the concave function q−λ2 subject to (λ, q) ∈ PMQ. This is a quadratic

programming problem over the polyhedron PMQ and therefore admits a pseudopolynomial time

algorithm, when the rewards are integer.

Our results suggest several interesting directions for future research, which we briefly outline below.

First, our negative results apply to general MDPs. It would be interesting to determine whether the

hardness results remain valid for specially structured MDPs. One possibly interesting special case involves

multi-armed bandit problems: there are n separate MDPs (“arms”); at each time step, the decision maker

has to decide which MDP to activate, while the other MDPs remain inactive. Of particular interest here

are index policies that compute a value (“index”) for each MDP and select an MDP with maximal index;

such policies are often optimal for the classical formulations (see Gittins (1979) and Whittle (1988)).

Obtaining a policy that uses some sort of an index for the mean-variance problem or alternatively proving

that such a policy cannot exist would be interesting.

Second, a number of complexity questions have been left open. We list a few of them:

(a) Is there a pseudopolynomial time algorithm for computing v∗(λ) or λ∗(v) exactly?

(b) Is there a polynomial or pseudopolynomial time algorithm that computes v∗(λ) or λ∗(v) within a

uniform error bound ε?

(c) Is the problem of computing v̂(λ) with the properties in Eq. (5) NP-hard?

(d) Is there a pseudopolynomial time algorithm the smallest possible variance in the absence of any

constraints on the mean cumulative reward?



23

Third, bias-variance tradeoffs may pay an important role in speeding up certain control and learning

heuristics, such as those involving control variates (Meyn, 2008). Perhaps mean-variance optimization

can be used to address the exploration/exploitation tradeoff in model-based reinforcement learning, with

variance reduction serving as a means to reduce the exploration time (see Sutton and Barto (1998)

for a general discussion of exploration-exploitation in reinforcement learning). Of course, in light of

the computational complexity of bias-variance tradeoffs, incorporating bias-variance tradeoffs in learning

makes sense only if experimentation is nearly prohibitive and computation time is cheap. Such an approach

could be particularly useful if a coarse, low-complexity, approximate solution of a bias-variance tradeoff

problem can result in significant exploration speedup.

Fourth, we only considered mean-variance tradeoffs in this paper. However, there are other interesting

and potentially useful criteria that can be used to incorporate risk into multi-stage decision making. For

example, Liu and Koenig (2005) consider a utility function with a single switch. Many other risk aware

criteria have been considered in the single stage case. It would be interesting to develop a comprehensive

theory for the complexity of solving multi-stage decision problems under general (monotone convex or

concave) utility function and under risk constraints. This is especially interesting for the approximation

algorithms presented in Section VI.

Finally, it is reasonable to expect that our positive results (on approximation algorithms) can be extended

to problems involving continuous states and actions and/or unbounded rewards, by first discretizing the

problem, truncating the rewards, and then applying our algorithms to a discrete problem. Of course, one

would have to deal with the generic issues that arise in discretizing MDPs Whitt (1978, 1979); we expect

this line of work to be tedious without offering any substantial new insights, and have refrained from

pursuing it in this paper.
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