
Reinforcement Learning with Limited Reinforcement:
Using Bayes Risk for Active Learning in POMDPs

Finale Doshi-Veleza, Joelle Pineaub, Nicholas Roya

aMassachusetts Institute of Technology, Cambridge, USA
bMcGill University, Montreal, Canada

Abstract

Acting in domains where an agent must plan several steps ahead to achieve
a goal can be a challenging task, especially if the agent’s sensors provide only
noisy or partial information. In this setting, Partially Observable Markov Deci-
sion Processes (POMDPs) provide a planning framework that optimally trades
between actions that contribute to the agent’s knowledge and actions that increase
the agent’s immediate reward. However, the task of specifying the POMDP’s pa-
rameters is often onerous. In particular, setting the immediate rewards to achieve
a desired balance between information-gathering and acting is often not intuitive.

In this work, we propose an approximation based on minimizing the immedi-
ate Bayes risk for choosing actions when transition, observation, and reward mod-
els are uncertain. The Bayes risk criterion avoids the computational intractability
of solving a POMDP a with multi-dimensional continuous state space; we show it
performs well in a variety of problems. We use policy queries—in which we ask
an expert for the correct action—to infer the consequences of a potential pitfall
without experiencing its effects. More important for human-robot interaction set-
tings, policy queries allow the agent to learn the reward model without the reward
values ever being specified.

Key words: Partially observable Markov decision process, reinforcement
learning, Bayesian methods

1. Introduction

The Partially Observable Markov Decision Processes (POMDP) is a planning
framework that allows an agent to reason in the face of uncertainty, optimally
trading between actions that gather information and actions that achieve a desired

Preprint submitted to Artificial Intelligence January 15, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83208785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goal. As a result, POMDPs are attractive for many real-worldapplications where
an agent equipped with noisy and limited sensors must plan several steps ahead to
achieve its goal. To date, POMDP-based planners have been used for applications
as diverse as robot navigation [1, 2], ecological monitoring [3], dynamic pric-
ing [4], and several areas of dialog management and healthcare [5, 6, 7]. Recent
advances in POMDP approximation algorithms allow agents toplan in POMDPs
with tens of thousands of states [8, 9].

The POMDP model posits that the world is fully described by some state
that is hidden from the agent (but may be affected by the agent’s actions). The
agent observes the world through sensors that may be noisy—that is, imprecise
and inaccurate—or that provide only partial information. For example, a voice-
activated dialog system must infer what a user wants (the hidden state) based on
audio inputs passed through a microphone and a speech-recognition system. The
audio input is likely corrupted by background noise, and thespeech-recognition
system may not be able to convert (noisy) audio to text with perfect accuracy. The
agent’s actions may also have unexpected results: in the case of the dialog system,
a question from the system may cause the user to change his or her wants. Finally,
the agent also receives a reward after each action, conditioned on the world state.
These rewards encode the agent’s goals: a dialog manager might receive a small
penalty for each question it asks, associated with taking upthe user’s time, and
a large reward if it completes the task successfully. The relative values of these
rewards will bias the agent toward asking more or less questions as it attempts the
task.

Three factors are key for POMDP applications that involve human-machine
interaction: learning, accurate reinforcement, and robust behavior. The first fac-
tor, learning the POMDP model, is crucial because as the scenarios and the agent’s
sensors become more complex, the POMDP model requires an increasing number
of parameters to describe problem dynamics and rewards. Often these param-
eters are difficult to specify from domain knowledge alone, gathering sufficient
training data to estimate all the parameters may also be prohibitively expensive.
Learning online ensures that we refine our knowledge about the model in areas
that are most relevant to the task at hand. In this work, we present approxima-
tion techniques based on Bayesian reinforcement learning methods to learn larger
POMDPs. Bayesian methods [10, 11, 12, 13] allow experts to incorporate domain
knowledge via priors over models, while letting the agent adapt its belief over
models as new observations arrive.

Secondly, learning POMDPs from human-robot interaction (HRI) is particu-
larly challenging because traditional learning approaches [14, 15, 16] generally

2

require a reinforcement signal to be provided after each of the agent’s actions, but
such numerical reinforcement signals from human users are often inaccurate [17].
Inverse reinforcement learning approaches [18] identify areward model without
explicit reinforcement but pose computational challenges. In this work, we note
that in HRI domains, policy information may be more accuratethan asking for nu-
merical reward: a human user may know what he wishes the agentto do, but may
be unable to provide the agent with accurate reward signals.We take an active-
learning approach in which the agent asks an expert for the correct action to take
only if it will help it refine its knowledge of the underlying POMDP model.

Lastly, asking an expert for the correct policy also addresses our third factor
for HRI-oriented POMDP learning: robustness. Most reinforcement learning ap-
proaches require the agent to experience a large penalty (that is, make a critical
mistake) to discover the consequences of a poor decision. When interacting with
humans, a poor decision may undermine the user’s confidence in the system and
potentially compromise safety. We apply policy queries to allow the agent to act
robustly in the face of uncertain models while learning: if the agent deems that
model uncertainty may cause it to take undue risks, it queries an expert regarding
what action it should perform. These queries both limit the amount of training
required and allow the agent to infer the potential consequences of an action with-
out executing it; actions that are recommended by the expectcan be assumed to be
better than those that are not recommended. Combined with Bayesian reinforce-
ment learning, policy queries allow the agent to learn online, receive accurate
reinforcement, and act robustly.

To date, Bayesian reinforcement learning has focused on learning observation
and transition distributions [13, 12], where updates have closed forms (such as up-
dating Dirichlet counts), and rewards, if initially unknown, are at least observable
during learning. The use of a policy query does reflect a more accurate way of ex-
tracting information from human users, but it does pose computational challenges.
The user’s response regarding the correct action places constraints on possible re-
ward values: for example, if a user states that the agent should provide information
about the weather when queried about the forecast, the agentcan assume that other
actions—such as providing information about the TV schedule—would have re-
sulted in lower rewards. However, there are many values of the rewards that could
result in the expert’s choice being the correct action.

In this work1, we propose an approximation based on minimizing the immedi-

1This work expands upon work previously published by the authors [19]

3

ate Bayes risk for choosing actions when transition, observation, and reward mod-
els are uncertain. The Bayes risk criterion avoids the computational intractability
of solving a POMDP a with multi-dimensional continuous state spaces; we show
it performs well on a range of benchmark problems. To gather information about
the model without assuming state observability, we use policy queries, which pro-
vide information about actions that the agent should take given the current history.
Combined with importance sampling techniques to keep a posterior over possible
models, we show that policy queries accelerate learning andhelp the agent to infer
the consequences of a potential pitfall without experiencing its effects.

2. The POMDP Model

A POMDP consists of the n-tuple{S,A,O,T ,Ω,R,γ}. S, A, andO are sets
of states, actions, and observations [20]. The transition functionT (s, a, s′) is a
distribution over the states the agent may transition to after taking actiona from
states. The observation functionΩ(s, a, o) is a distribution over observationso
that may occur in states after taking actiona. The deterministic reward func-
tionR(s, a) specifies the immediate reward for each state-action pair. The factor
γ ∈ [0, 1) weighs the importance of current and future rewards:γ = 0 implies
that only current rewards matter;γ = 1 implies that current rewards and future
rewards are equally valuable. We assume that the setsS, A, andO are discrete
and finite.2

Assumption 2.1. We assume thatR is a discrete and finite set of possible rewards.
This assumption makes inference more tractable and is reasonable in many prob-
lems where learning the relative scales of the rewards is most of the challenge.

In the POMDP model, the agent must choose actions based on past obser-
vations; the true state is hidden. In general, all of the agent’s past actions and
observations may be needed to determine the optimal decision at the current time.
Keeping track of the entire history of actions and observations can become cum-
bersome, but fortunately the probability distribution over the current true state,
known as a belief, is a sufficient statistic for the history. The belief at timet + 1
can be computed from the previous belief,bt, the last actiona, and observationo,
by applying Bayes rule:

bt+1(s)∝Ω(s, a, o)
∑

s′∈S

T (s, a, s′)bt(s
′)/Pr(o|bt, a), (1)

2There has been recent progress in developing solvers for POMDPs with continuousS, A, and
O [21, 22]. However, these solvers are not yet as effective as the solvers for discrete models.

4

wherePr(o|bt, a)=
∑

s′∈S Ω(s′, a, o)
∑

s∈S T (s, a, s′)bt(s). If the goal is to max-
imize the expected discounted rewardE[

∑∞
t=1 γ

trt], then the optimal policy is
given by the Bellman equation:

V ∗(bt) = max
a∈A

Q∗(bt, a), (2)

Q∗(bt, a) = R(bt, a) + γ
∑

o∈O

Pr(o|bt, a)V
∗(ba,o

t), (3)

whereR(bt, a) =
∑

sR(s, a)bt(s) andPr(o|bt, a) =
∑

s Pr(o|s, a)bt(s). The
optimal value functionV ∗(bt) is the expected discounted reward that an agent will
receive if its current belief isb andQ∗(b, a) is the value of taking actiona in belief
b and then acting optimally. The exact solution to equation 3 is only tractable for
tiny problems, so we use a point-based solver to approximatethe solution.

3. Bayesian Model of POMDP Uncertainty

We assume that the cardinality of the setsS, A, O, andR are known. The
POMDP learning problem is to sufficiently constrain the distribution of the pa-
rametersT , Ω, andR so that the agent may act near-optimally. Specifically, we
note that the agent may not need to know the exact model valuesof T , Ω, and
R to act sensibly, as long as all likely models direct the agentto take the correct
action. We begin by expressing our domain knowledge througha prior over the
model parameters, and improve upon this prior with experience. This Bayesian
approach is attractive in many real-world settings becausesystem designers may
often have strong notions regarding certain parameters, but the exact values of all
the parameters may be unknown.

LetM = T ×Ω×R be the space of all valid values of the model parameters,
andm ∈M be a particular model. To build a POMDP that incorporates themodel
parameters into the hidden state, we consider the joint state spaceS ′ = S ×M .
AlthoughS ′ is continuous and high dimensional, the transition model for M is
simple if the true model is static. Figure 1 shows graphical models for the original
POMDP and the model-uncertainty POMDP (as in [10, 23]). In the standard
POMDP (Figure 1(a)), the world state is hidden, but how the state transitions
given actions is known. In the model-uncertainty POMDP (Figure 1(b)), the world
model is also hidden, and the transitions of the hidden worldstate depend on the
unknown model (which we assume is stationary).

Our prior considers a joint beliefpM(m) overT , Ω, andR; that is, we allow
the agent’s belief over the transitions, observations, andrewards to be coupled.

5

(a) Standard POMDP model (b) Model-Uncertainty POMDP

Figure 1: (a) The standard POMDP model. (b) The extended POMDP model. In both cases, the
arrows show which parts of the model are affected by each other from timet to t + 1.

(We usepM for the belief over models to avoid confusion withbm(s), the belief
over the hidden state given modelm.) These model parameters are continuous,
and information from observations and policy queries introduce complex depen-
dencies between the parameters (so the beliefpM does not factor). Except for
very small or specialized model classes, conjugate models do not exist to update
the beliefpM in closed form. We choose to represent the belief over modelsas a
set of samples:

pM(m) ≈
∑

wiδ(mi, m)

wherewi represents the weight associated with modelmi andδ(mi, ·) is a delta-
function at modelmi. The collection of samples, each a model, represents the
agent’s uncertainty about the true POMDP model. The weightswi and the models
mi are updated via sequential importance sampling [24] as the agent acts in the
world. (We describe the belief update in greater detail in section 5.2.)

While fully general, one difficulty with the sample-based representation is that
if the model spaceM is large, many samples may be required to provide an ac-
curate representation of the belief. If we want to weight samples based on as-
pects of their policies—for example, how often they agree with an expert’s action
choices—each sample will require a significant computational investment because
each contains a POMDP model to be solved. In Section 5.2.2, wedescribe how
we address this issue through importance sampling.

6

4. Policy Queries

The formulation in section 3 makes the agent aware of the uncertainty in the
model parameters, and by trying various actions, it can reduce uncertainty both
in its state and in the parameters. However, the model information provided by
the actions may be weak, and we would like the agent to be able to reduce model
uncertainty in a safe and explicit manner. We augment the action setA of our
original POMDP with a set of policy queries{ψ} to enable active learning. We
refer to the actions in the original action setA as the domain actions.

The policy queries consult an oracle (that is, a domain expert) for the opti-
mal action at a particular time step. We assume that the expert has access to the
history of actions and observations (as does the agent), as well as the underlying
world dynamics, and thus can advise the agent on the optimal action at any partic-
ular time. Unlike the oracle of [13], the policy queries ask for information about
the correct action, not the underlying state, which can be important since model-
reduction techniques to improve the efficiency of POMDP solvers often make the
state space unintuitive to the user (e.g., [25]). For example, in dialog management
scenarios, a user may find it more convenient to respond to a question of the form
“I think you want me to go to the coffee machine. Should I go there?” rather than
“Please enter exactly your most recent statement.”

Depending on the form of the interaction, the agent may ask for the policy
information through a series of yes-no questions (“I thinkai is the best action.
Should I doai?”) or list (“Here are actions and my confidence in them. Which
should I do?”). The key in either case is giving the user a sense of the agent’s
uncertainty so they can advise the agent appropriately.3 In an ideal setting, the
user would have sufficient information to provide the optimal action for the agent’s
current belief over world states.

We can think of these policy queriesψ simply as additional actions and at-
tempt to solve the model-uncertainty POMDP with this augmented action space.
However, solving the model-uncertainty POMDP is generallyintractable. There-
fore, we treat the policy query as a special action to be takenif the other actions
are too risky. We take the cost−ξ of querying the user to be a fixed parameter of
the problem.

3If the expert is another agent, the format of these queries would, of course, be adapted to
whatever input representation is required for the expert agent to provide a near-optimal action.

7

5. Solution Approach

As with all POMDPs, acting optimally in a model-uncertaintyPOMDP re-
quires two capabilities. First, given a history of actions and observations, the
agent must be able to select the next action. Second, the agent must be able to
update its distribution over the model parameters given theselected action and
the subsequent observation from the environment. In the most general case, both
steps are intractable via standard POMDP solution techniques. (Analytic updates
are possible if the distributions take certain forms [26], but even in this case func-
tion approximation is needed to keep the solutions to a tractable size.)

We assume that out problem domains consist of episodic tasks, that is, that
they are periodically restarted. An episode may end when theagent reaches a
goal, or, if the task has no explicit goal, once the history reaches a certain length.
Table 1 summarizes our approach and outlines the following sections. Sections 5.1
and 5.2 focus on the aspects of the POMDP-solving process that are unique to the
model-uncertainty POMDP: we describe how actions are selected given a belief
over models in section 5.1 and how to update the belief over models in section 5.2.
Each of these steps requires approximations, and we providebounds on the ap-
proximation error in sections 6.1 and 6.2. For planning and belief monitoring in
standard discrete POMDPs, we refer the reader to classic work such as [27].

5.1. Bayes-Risk Action Selection

Given a beliefpM(m) over models4, each with a beliefbm(s) over states,
the optimal—or highest-valued—action in the model-uncertainty POMDP can be
found through an application of the Bellman equation reviewed in section 2:

V ∗(pM , {bm}) = max
a∈A

Q∗(pM , {bm}, a), (4)

Q∗(pM , {bm}, a) =

∫

M

pM(m)R(bm(s), a) + (5)
∫

M

pM(m)γ
∑

o∈O

Pr(o|bm(s), a,m)V ∗(pa,o
M , {ba,o

m }), (6)

4At any point in time, the belief over models ispM (m|h, Ψ), that is, the probability of model
m given the historyh of domain actions and observations and the policy queriesΨ. For notational
clarity, in this section, we consider choosing actions given some arbitrary beliefpM (m) over
models.

8

Table 1: Approach for Active Learning in POMDP models.
ACTIVE LEARNING WITH BAYES RISK

• Sample POMDP modelsm from a prior distributionpM(m)

• During an episode, choose actions based on Bayes riskBR(a; {bm}), where
{bm} is the belief over states held by each modelm:

– Use the POMDP samples to compute the action with minimal Bayes
risk (Section 5.1).

– If the risk is larger than a givenξ, perform a policy query (Section
5.1).

– Update each POMDP sample’s beliefpM(m|h,Ψ) based on the obser-
vation received (Section 5.2).

• Once an episode is completed, update the belief over models based on the
new history (Section 5.2):

– Sample POMDP models from a proposal distributionpM(m|h) incor-
porating the action-observation historyh.

– Weight POMDPs based on policy query historyΨ.

Performance and termination bounds are in Sections 6.1 and 6.2.

where we use{bm} to represent the set of beliefsbm(s) for all m ∈ M . In gen-
eral, the integral over model space is intractable; even newonline planning meth-
ods [28] cannot achieve the search-depths necessary for planning in the model-
uncertainty POMDP. In this section we describe how the agentcan select robust
actions without solving the intractable model-uncertainty POMDP.

Specifically, let the model-specific lossLm(a, a∗; bm) of taking actiona in
modelm beQ∗

m(bm, a) − Q∗
m(bm, a

∗), wherea∗ is the optimal action in model
m given beliefb over the hidden states. Augmented with the beliefpM(m) over
models, the expected lossEM [L] is the Bayes risk:

BR(a; {bm}) =

∫

M

(Q∗
m(bm, a) −Q∗

m(bm, a
∗
m))pM(m), (7)

whereM is the space of models,bm is the belief according to modelm, anda∗m is
the optimal action inbm according to model’s value functionQ∗

m. The first term
within the integral,(Q∗

m(bm, a) − Q∗
m(bm, a

∗
m)), is the loss incurred by taking

9

actiona instead of the optimal actiona∗m with respect to modelm. In general,
different models may have different optimal actionsa∗m; the Bayes risk is the
expected loss after averaging over models. Leta′ = arg maxa∈ABR(a) be the
action with the least risk.

The actiona′ represents the least risky action from our domain actions. How-
ever, if the risk ofa′ is large, the agent may still incur significant losses; the agent
should be sensitive to the absolute magnitude of the risks ittakes. Therefore we
consider both performinga′—the best option from the domain actions—and using
a policy queryψ to determine the optimal action. We assume that the cost−ξ of a
policy query is a constant fixed across all models (with valuebased on the cost of
getting policy information in the given domain). In the active learning scenario,
the agent performs a policy query ifBR(a′) is less than−ξ, that is, if the least
expected loss is more than the cost of the policy query. The policy query will
lead the agent to choose the correct action and thus incur no risk. In section 7,
we empirically compare the performance of an agent that usesactive learning to a
passive agent that always selects the least risky action.

5.1.1. Relationship to theQMDP heuristic
The Bayes-risk criterion selects the least risky action nowand assumes that

the uncertainty over models will be resolved at the next timestep. To see this
interpretation, we first rearrange equation 7 to get:

BR(a)=

∫

M

Q∗(bm, a)pM(m) −

∫

M

Q∗(bm, a
∗
m)pM(m). (8)

The second term is independent of the action choice. Thus, tomaximiseBR(a),
one may simply maximise the first term:

VBR = max
a

∫

M

Q(bm, a)pM(m). (9)

As expressed in equation 9, the Bayes risk criterion is similar to theQMDP heuris-
tic [29], which uses the approximationV (b) = max

∑

sQ(s, a)b(s) to plan in
known POMDPs. In our case, the belief over statesb(s) is replaced by a belief
over modelspM(m), and the action-value function over statesQ(s, a) is replaced
by an action-value function over beliefsQ(bm, a). TheQMDP heuristic encodes
the assumption that the uncertainty over states will be resolved after the next time
step. The Bayes-risk criterion may be viewed as similarly assuming that the next
action will resolve the uncertainty over models.

10

Although similar, the Bayes risk action selection criterion differs fromQMDP

in two important ways. First, our actions come from POMDP solutions and thus
we do fully consider the uncertainty in the POMDP state. Therefore, our approach
will take actions to reduce state uncertainty: unlikeQMDP , we do not act on the
assumption that our state uncertainty will be resolved after taking the next action.
Our approximation supposes that only the model uncertaintywill be resolved. The
agent will take actions to reduce state uncertainty regardless of whether the agent
is passive (that is, it does not ask policy queriesψ) or active.

The second difference is explicitly in the active learning setting, when the
agentdoesuse policy queriesψ. Without policy queries, the agent may take ac-
tions to resolve state uncertainty, but it will never take actions to reduce model
uncertainty. However, policy queries allow the agent to decide to reduce model
uncertainty by helping it prune away unlikely models. Policy queries also ensure
that the agent rarely (with probabilityδ) takes a less thanξ-optimal action in ex-
pectation. Thus the policy queries make the learning process robust from the start
and allow the agent to resolve model uncertainty.5

5.2. Updating the Model Distribution

The second part of solving the model-uncertainty POMDP is updating the
agent’s belief over models once it has received an observation. Specifically, we
need to track the beliefpM(m|h,Ψ), whereh is the history of domain actions and
observations andΨ is the history of responses. We accomplish this task using im-
portance sampling, using the distributionpM(m|h), which ignores the expert pro-
vided information, to more efficiently draw samples from themuch more complex
distributionpM(m|h,Ψ).

In this section, we first outline the various factors involved in the belief update
for the model-uncertainty POMDP. We next provide a quick review of importance
sampling and discuss the challenges particular to the model-uncertainty POMDP
before detailing our approach.

5.2.1. Updates to the Model Distribution from Domain History
As our agent interacts with the environment, it receives twosources of infor-

mation to update its prior: a historyh of domain actions and observations and a
history of policy queries (and responses)Ψ. Givenh andΨ, the posteriorpM |h,Ψ

5An interesting area for future work might be to compute tighter risk values using different
underlying approximations, such as the fast informed bound[30].

11

over models is:

pM |h,Ψ(m|h,Ψ) ∝ p(Ψ|m)p(h|m)pM(m), (10)

whereΨ andh are conditionally independent givenm because they are both com-
puted from the model parameters. The historyh is the sequence of domain actions
and observations sincepM was last updated. The setΨ is the set ofall policy
queries asked and the expert’s responses. Each of these information sources,h
andΨ, poses a different challenge when updating the posterior.

We place Dirichlet priors over the transition, observation, and reward distri-
butions. If the agent were to have access to the hidden underlying state, then it
would be straightforward to computepM |h(m|h) ∝ p(h|m)pM(m): the updates to
each part of the model would factor, and each update could be computed in closed
form using Dirichlet-multinomial conjugacy. However, when the state sequence is
unknown, the problem becomes more difficult; the agent must use its belief over
the state sequence to update the posterior.

5.2.2. Updates to the Model Distribution from Policy Queries
The policy query information poses a different challenge: the questions pro-

vide information about the policy, but our priors are over the model parameters.
Any particular model, when solved, will produce a policy that may or may not be
consistent with a policy query. If the oracle answering the policy queries was per-
fect, any model producing a policy inconsistent with a policy query would have
zero likelihood: either the modelm produces a policy that is consistent with the
policy query (p(Ψ|m) = 1), or it does not (p(Ψ|m) = 0). In practice, such hard
constraints make the inference difficult by quickly rendering most models infea-
sible (e.g., figure 2); it also may be reasonable to assume that the user or expert
will occasionally make mistakes. We soften this hard constraint by modeling the
probability of seeingk consistent responses inntotal trials as a binomial variable
with parameterpe, such thatp(ψ|m) = pe if m is consistent with the policy query
ψ andp(ψ|m) = 1 − pe otherwise. Whether or not the oracle is assumed to be
perfect, policy queries make the inference more challenging because a policy is
typically derived from a complex, nonlinear combination ofthe model’s transition,
observation, and reward parameters. Thus, a constraint on the policy introduces
dependencies between the model parameters, and the transition, observation, and
reward distributions can no longer be considered independently.

Recall from Section 3 that we maintain a distribution over parameterized mod-
els, so we represent the posterior over models by a set of samples. To update the

12

posterior, we must therefore apply the belief update (equation 1) to our sample-
based representation of the belief. The most general case, importance sampling [24],
dictates that for samplesm from some proposal distributionK(m) to be an unbi-
ased approximation of the desired posteriorpM |h,Ψ, the samples must be weighted
by

w(m) =
pM |h,Ψ

K(m)
(11)

It is straightforward to derive the sequential weight update for a set of samples at
time t with weightswt,

wt+1(m) = wt(m)
pM,t+1(m)

pM,t(m)
(12)

wherepM is the probability of the modelm under the true posterior.
With only mild conditions onK(m)—it must have support whereverpM |h,Ψ

has support—the weighted samples are an unbiased approximation of the true
posterior. However, a good choice of proposal will reduce the variance in the
approximation, which is important when relatively few samples are being used.
Indeed, because the model-uncertainty space is so large, and samples—models—
are relatively expensive, a good proposal distribution is critical to our task [24].
In particular, a single policy query can render a large part of the model space
infeasible in a single time-step. After some interactions with the environment,
only a small part of that space may have significant probability mass. If the agent’s
belief consists of only a few samples, then it is possible that a few policy queries
may make all of the samples infeasible.

5.2.3. Example of Model Inference
For illustration, we show a toy example on the canonical tiger problem [29].

In the tiger problem, a tiger hides behind one of two doors. Ateach time step,
the agent may try to open a door or listen for the tiger; it receives a large reward
for opening the door without the tiger. The tiger problem hasseveral parameters,
but for the purposes of this discussion, we assume that only two are unknown, the
penalty for opening the door with the tiger and the probability of hearing the tiger
correctly, so the model spaceM can be represented in two dimensions.

Figure 2 shows various aspects on the distribution space after the agent has
tried opening the door 25 times on 3 independent trials (in red is the true model).
The top row shows the size of the feasible region, that is, theregion of model
space consistent with the policy queries that have been asked. Each of the 3 trials

13

have slightly different feasible regions because different policy queries may have
been asked on each run, and we see that often times the regionscan be quite small.

The small regions produced by this binary threshold—whether the model is
consistent with all policy queries—makes searching for models with non-zero
probability difficult. The second two rows of figure 2 show ways of softening this
hard, binary constraint. For each modelm, the second row shows the total loss
∑

hQ
∗
m(bh, a

∗
m∗) − Q∗

m(bh, a
∗
m) for taking the actiona∗m that is optimal underm

instead of the actiona∗m∗ that is optimal under the true modelm∗, summed over the
histories associated with each policy query. The loss function penalizes models for
choosing actions that result in lower values, rather than simply choosing actions
different from the expert. The smooth gradients in the second row give a sense
of models that, while not fully consistent with the policy queries, may still have
good performance. Although theQ∗ functions are smooth (and thus possibly well-
suited for gradient-based optimizations), computing themis intractable in all but
the smallest domains—such as the restricted tiger domain below. In contrast, we
see that the third row, which shows for how many policy queries each modelm is
inconsistent, is very non-smooth and thus difficult to optimize. As in the first row,
a small set of models in the third row are consistent with all of the policy queries.
However, among the models that provide inconsistent responses for at least one
policy, looking at the number of inconsistent responses a model gives can help us
distinguish models closer to the true model.

We can define the “feasible” region as the region of the model space where
the corresponding policies have little to no disagreement with the policy query re-
sponses (the light gray or white regions of Figure 2). Then, in this low-dimensional
case, one might imagine using non-uniform grids to iteratively refine the feasible
region. However, as the dimensionality of the model space increases (recall that
each POMDP parameter is a dimension), grid-based techniques quickly become
intractable. The case of the tiger problem illustrates thatfor our belief update
to be computationally robust, two factors are particularlyimportant. First, as
policy queries can drastically affect the likelihood of large parts of the model
space, a belief update that makes only local adjustments to samples—such as gra-
dient ascent—is unlikely to be successful.6 Second, we see that a hard feasibility
constraint can make finding probable models extremely difficult, but quantities
such as a model’s loss or inconsistent responses provide smoother measures of a

6In the limit of a large number of samples, of course, feasibleregions can always be found—
even if they are small.

14

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

−100 −80 −60 −40 −20 0

0.1

0.2

0.3

0.4

0.5

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

Feasible Regions after 25 Interactions

−100 −80 −60 −40 −20 0

0.1

0.2

0.3

0.4

0.5

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

−100 −80 −60 −40 −20 0

0.1

0.2

0.3

0.4

0.5

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

−100 −50 0

0.1

0.2

0.3

0.4

0.5

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

Model Loss after 25 Interactions

−100 −50 0

0.1

0.2

0.3

0.4

0.5

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

−100 −50 0

0.1

0.2

0.3

0.4

0.5

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

−100 −50 0

0.1

0.2

0.3

0.4

0.5

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

Number of Violated Policy Queries after 25 Interactions

−100 −50 0

0.1

0.2

0.3

0.4

0.5

Reward for Wrong

P
r(

 h
ea

r
co

rr
ec

tly
)

−100 −50 0

0.1

0.2

0.3

0.4

0.5

0

20

40

60

0

10

20

30

40

50

0

10

20

30

40

0

2

4

6

8

10

0

2

4

6

8

0

0.5

1

1.5

2

Figure 2: The first row plots feasible regions after 25 interactions for three different tiger trials:
the black area represents the space of feasible models (as constrained by policy-queries), and
the red dot shows the true model. Depending on how the interactions proceeded and how many
policy queries were asked, we see that the feasible region can quickly become quite small. The
second and third rows show the incurred loss and number of inconsistent policy query responses,
respectively.

model’s quality. Softening the feasibility constraint notonly simplifies the prob-
lem computationally, but it also corresponds to the belief that the policy oracle and
the POMDP solver are occasionally fallible—both true in real-world situations.

5.2.4. Resampling Models Between Tasks
Equation 11 describes how samples from a proposal distribution K(m) can

be used to provide an unbiased representation for our desired distributionpM |h,Ψ.
We call this step the resampling step because we are drawing new models (instead
of adjusting weights on fixed models). Resampling models is important because,
over time, even a re-weighted set of samples may no longer represent the posterior
well. Moreover, if only a few high-weight samples remain, the Bayes risk may

15

appear smaller than it really is because most of the samples are in the wrong part
of the space. In this work, we resample models at regular experience intervals
(e.g., every 100 interactions with the environment) as wellas if the model weights
fall below a threshold (suggesting that none of the models are probable).

We defineK(m) as the posterior over models given only the historiesh (not
the policy queriesΨ), that is,K(m) = pM(m|h), noting that for a Dirichlet-
multinomial prior, this distribution will have full support over the model space.
We use a Markov chain Monte Carlo approach, forward-filtering backward-sampling
(FFBS) [31] to sample dynamics models from this proposal distributionK(m).
FFBS alternates between sampling potential state sequences and potential obser-
vation and transition matrices. To sample the state sequence, FFBS first computes
the standard forward pass of the Viterbi algorithm [32]:

αt+1(s) = Ω(s, at, ot)
∑

s′

αt(s
′)T (s, at, s

′)

whereα0(s) is initialized to the initial belief state of the POMDP. However, in-
stead of computing the marginal distributions of each stateon the backward pass,
FFBS samples a possible state sequence. The final statesT is sampled fromαT (s).
Starting withsT−1, the remaining states are sampled according to

st ∼ αt(s)T (s, at, st+1)Ω(st+1, at, ot)

Given a sequence of visited states, the observation and transition matrices
are easily sampled if we use a Dirichlet prior for each observation distribution
Ω(s, a, ·) and transition distributionT (s, a, ·). For example, given a Dirichlet prior
with parameters{c1, c2, ..., c|O|} and counts{no1

, no2
, ..., no|O|

} of how often each
observation is observed following states and actiona in our sampled sequence,
the observation distributionΩ(s, a, ·) is distributed as a Dirichlet with parameters
{c1 + no1

, c2 + no2
, ..., c|O| + no|O|

}. By repeating the process of resampling state
sequences and resampling the transition and observation matrices several times,
FFBS draws samples from the true posterior over observationand transition ma-
trices given the history. Each sampled model has equal weight.

The reward model remains to be sampled. Assuming that the rewards are
discrete—that is, we have a set of possible reward values specified beforehand—
we can place a Dirichlet prior over reward models; “evidence” can be added to
the prior in the form of counts.7 Starting from the prior, we apply a proposal
distribution of the following form:

7Continuous rewards could be modeled in the same framework using, for example, Beta priors,

16

• With probabilitypk, use the prior over reward models as the base distribu-
tion.

• With probability1−pk, use a base distribution that adds the weighted mean
reward model (from the previous samples) as a set of counts tothe prior.

• Randomly perturb the base distribution with counts chosen from [−d, d].

• Sample a reward model from the perturbed distribution.

wherepk is the proportion of policy queries with which the best sampled model
is inconsistent (so as the models improve, we are more likelyto trust their reward
models as good starting points for sampling). For our experiments, we setd to
0.5.

Finally, once we have sampled a modelm from this proposal distribution
K(m), we must assign it a weight. Our choice ofK(m) results in a particularly
simple form of the reward likelihood as the reward

w(m) =
pM |h,Ψ(m|h,Ψ)

pM |h(m|h)
∝ p(Ψ|m, h) (13)

where the likelihoodp(Ψ|m, h) can be computed by solving each sampled model
m, playing forward the history leading to each policy query, and computing the
action the POMDP model would have suggested. Specifically, we model the prob-
ability of seeingk incorrect responses inn trials as a binomial variable with pa-
rameterpe, wherepe is the probability a model fails a policy query due to the
approximate solver. Assigning the model the appropriate importance sampling
weight corrects of the fact that the rewards were not chosen from the true poste-
rior and ensures that the set of modelsm is an unbiased representation of the true
posterior,

5.2.5. Updating Weights during a Task
Resampling models is a computationally-intensive process; therefore we only

resample models after the agent has gained a substantial newchunk of experience
or if none of its current models have high weights. Between these resampling
periods, we update the weights on the models so that they continue to represent the

but inference would be much more challenging as the prior andthe likelihood would no longer be
conjugate.

17

current belief over models. If a policy queryψ occurs at timet, thenpM,t(m) ∝
p(ψ|m)pM,t−1(m), and the weight update reduces to

wt(m) = wt−1(m)p(ψ|m). (14)

wherep(ψ|m) is pe if modelm is consistent with the policy queryψ and1 − pe

otherwise.

6. Performance and Policy Query Bounds

6.1. Performance Bounds

The procedure in Section 5.1 defines how an agent can act in themodel-
uncertainty POMDP using the Bayes risk action selection criterion. A reason-
able question is how well we can expect this procedure to perform compared to
an agent that always queries the expert (and therefore acts optimally). We now
show formally in what sense the agent’s behavior is robust. Let V ∗ be the value
of the optimal policy under the true (unknown) model. We firstshow that we can
ensure that the expected loss at each action is no more thanξ with high probabil-
ity. Next, we show how bounding the expected loss gives us a bound on overall
performance.

Expected Loss for a Single Action.Recall from section 3 that the agent represents
its belief over POMDP models through a set of samples. Thus, the integral in
equation 7 reduces to a sum over the agent’s sample of POMDPs from the space
of models:

B̂R(a) ≈
∑

i

(Q̂∗
mi

(bi, a) − Q̂∗
mi

(bi, a
∗
i))pM(mi) (15)

The Bayes risk valueB̂R(a) is an approximation to the true Bayes riskBR(a)
for two reasons. First, we are approximating the integral inequation 7 with a
set of samples. Second, we are approximating the true action-value functionQmi

with a point-based approximation̂Qmi
. We bound the error due to each of these

approximations to derive an overall bound for the error inB̂R.
We first consider the error due using an approximate action-value functionQ̂mi

rather than the true action-value functionQmi
. Let the true riskri be(Q(bi, a) −

Q(bi, a
∗
i)) and the approximate risk̂ri be(Q̂(bi, a)−Q̂(bi, a

∗
i)). Then error|ri−r̂i|

due to the point-based approximation is given by:

18

Lemma 6.1. Let δB be the density of the belief points, defined to be the maximum
distance between any reachable belief to the nearest sampled belief point. Then
the absolute difference|ri − r̂i| may have an error of up to

ǫPB =
2(Rmax −Rmin)δB

(1 − γ)2
.

Proof. Lemma 6.1 follows directly from the PBVI error bound [27].

Now, suppose that no approximation was needed to compute theaction-value
function, that is,Qmi

could be computed exactly. Let̂BR
′

be the approximate
Bayes risk computed by substituting the action-value function in equation 15:

B̂R(a)′ ≈
∑

i

(Q∗
mi

(bi, a) −Q∗
mi

(bi, a
∗
i))pM(mi)

The quality of the approximation̂BR
′
can be guaranteed with high probability if

a sufficient number of sampled modelsmi are used:

Lemma 6.2. To bound the error of the approximation|BR − B̂R
′
| < ǫs with

probability1 − δ, nm independent samples are needed frompM , where

nm =
(Rmax − min(Rmin, ξ))

2

2(1 − γ)2ǫ2s
log

1

δ

Proof. The maximum value of the differenceQ(bi, a)−Q(bi, a
∗
i) is trivially lower

bounded by−Rmax−min(Rmin,ξ)
1−γ

and upper bounded by zero (note that the risk is
always non-positive). Next we apply the Hoeffding bound with sampling errorǫs
and confidenceδ.

Finally, we can combine the results from lemmas 6.1 and 6.2 tobound the
error in the Bayes risk|B̂R(a) − BR(a)| for any particular actiona with high
probability:

Lemma 6.3. Let the number of samplesnm used to approximate the Bayes risk
be given by

nm =
(Rmax − min(Rmin, ξ))

2

2(1 − γ)2(ξ − 2(Rmax−Rmin)δB

(1−γ)2
)2

log
1

δ
,

whereδB is the sampling density of the belief points used to approximate the
action-value functionQmi

. Then the deviation|B̂R(a)−BR(a)| will be less than
ǫ with probability1 − δ.

19

Proof. We want to bound the total error byξ. Lemma 6.1 gives deterministic
bound ofǫPB on any particular value of the difference|ri − r̂i|. To get an overall
bound ofξ, we setǫs = ξ − ǫPB when computing the number of samples needed
nm.

Before deriving a performance bound from this specific bound, we note that
the Markov chain Monte Carlo inference presented in section5.2.4 does not pro-
duce independent samplesmi: the previous sample is used to propose the next
sample. To apply the bounds from lemma 6.3, one would have to compute the
effective number of samples, which would depend on characteristics of the under-
lying Markov chain. However, the Hoeffding bounds used to derive this approxi-
mation are already quite loose; for example in the benchmarkPOMDP problems
presented in Section 7, we obtained good results with 50 samples, whereas theo-
rem 6.3 suggested over 3000 samples may have been necessary even with a perfect
POMDP solver.

Overall performance Bound.Lemma 6.3 bounds the risk associated with a single
action to be less thanξ. The following theorem provides a bound on the difference
between the Bayes-risk agent and an optimal agent:

Theorem 6.4. Suppose that an agent performs an action whose value is within
ξ of the optimal action at every time step with probabilityδ. Then the expected
valueV ′ is lower bounded by

V ′ > η(V ∗ −
ξ

1 − γ
) + (1 − η)

Rmin

1 − γ
, (16)

where

η =
(1 − δ)(1 − γ)

1 − γ(1 − δ)
.

Proof. From lemma 6.3, we have that the agent will suffer a loss greater thanξ at
time t with probabilityδ. When the Bayes risk approximation fails, there are no
guarantees on the reward the agent receives; in the worst case it could end up in
an absorbing state in which it receivesRmin forever.

We consider a two-state Markov chain. In state 1, the “normal” state, the
agent receives a reward ofR − ξ, whereR is the value the agent would have

20

received under the optimal policy. In state 2, the agent receivesRmin. Equation
17 describes the transitions in this simple chain and the values of the states:

[

V1

V2

]

=

[

R− ξ
Rmin

]

+

[

1 − δ δ
0 1

] [

V1

V2

]

(17)

The first action puts the agent in state 1 with probability1 − δ and in state
2 with probabilityδ. Solving the system gives the desired lower bound onV ′ =
(1 − δ)V1 + δV2.

In general, the actual performance will be much better than the bound in equa-
tion 16, since most problems do not have an absorbingRmin-state from which the
agent can never escape.

Finally, we note that all of the performance guarantees in this section are with
respect to the prior: we are treating the unknown modelm as a random variable,
and the optimal policyV is one that makes the best decisionsgiven the uncer-
taintypM in the models. Theorem 6.4 provides a bound on the expected valueV ′

when making decisions regarding model uncertainty using the Bayes risk action-
selection criterion from Section 5.1 instead of solving thefull model-uncertainty
POMDP.

6.2. Policy Query Bounds

Next we consider bounds on the number of policy queries asked. First, we
show that the agent will only ask a finite number of policy queries. Second, we
show that while it is difficult to characterize exactly how the observation and tran-
sition models will evolve over time, we can check if the an additional k inter-
actions are sufficient to ensure that the probability of asking a policy query—
or equivalently, the probability of encountering a high-risk situation—are below
some parameterpq. We emphasize that the procedures described below are for
the purpose of analysis and not implementation. They arenot meant to be used to
determine how long that process will take.

The Number of Policy Queries Asked is Bounded..First, we argue that the agent
will ask only a finite number of policy queries, that is, the number of policy queries
is bounded:

Theorem 6.5. An agent following the algorithm in Table 1 will ask only finite
number of policy queries over an infinite learning trial.

21

Proof. If the transition, observation, and reward models are drawnfrom finite
sets, then the total number of possible models is finite. Since each policy query
invalidates at least one POMDP—we would not have requested aquery if all the
sampled models agreed—we must eventually stop asking policy queries.

A similar argument holds even if the rewards are not drawn from a discrete set.
Here, the cost of a policy query limits the model resolution.Suppose a POMDP
m has an optimal policyπ with valueVm. If we adjust all the model parameters
by some smallǫ to create a new model̂m, then the valueVm̂ of the same policyπ
will be close toVm ([33], theorem 1):

||Vm − Vm̂||∞ ≤
||R− R̂||∞

1 − γ
+
γ||R̂||∞
(1 − γ)2

sup
s∈S,a∈A

||Ts,a − T̂s,a||1

Thus, we can lower-bound the value of the optimal policy under modelm in
some nearby model̂m; specifically, we can create a ball around each modelm for
which the policies are withinξ. In this way, the valueξ imposes a minimal level
of discretization over the reward space. Thus, by invalidating a modelm, a policy
query invalidates a particular ball in the model space. Thus, the number of policy
queries will be bounded.

Probability of a Policy Query.The specific convergence rate of the active learning
will depend heavily upon the problem. Here, we show that one could (in theory)
test if k additional interactions reduce the probability of making apolicy query
to some valuepq with confidenceδq. The core idea is that each interaction cor-
responds to a count when computing the Dirichlet posteriors. Once the counts
are sufficiently large, the variance of the Dirichlet will besmall. Thus, even if
the mean of the distribution shifts with time, no additionalpolicy queries will be
asked.

Theorem 6.6.Given a set of state-action visit countsC from the FFBS algorithm,
the following procedure will test ifk additional interactions reduce the probability
of making a policy query topq with confidenceδq:

1. Update the countsC with k interactions spread out so as to maximize the
entropy of the posterior. Samplenm models from this posterior, wherenm

is computed from lemma 6.3.
2. Computep′′q = pq(1 − 2(1 − δ)), whereδ is the confidence used in the

approximation of the Bayes risk (lemma 6.3).
3. Samplenb > −27/4 · (p′′q)

−3 log δq beliefsb uniformly from the belief space.

22

4. Compute the Bayes risk for each beliefb. If less than ap′′q -proportion of
beliefs require policy queries, then, with confidenceδq, k is an upper bound
on the number of interactions required until probability ofasking a policy
query isp′′q .

Proof. We go through each part of the procedure step by step and show that the
final computation satisfies the desired bound.

1. Computing Bayes Risk from a Conservative Posterior.We do not know
a priori the response to the interactions, so we use the maximum-entropy
Dirichlet posterior to compute the posterior Bayes risk (that is, assign thek
counts to assign an equal number of counts to each variable).The maximum-
entropy Dirichlet is conservative in that, compared to any other Dirichlet
posterior, it spreads out models as much as possible and thusover-estimates
the Bayes risk.

2. Correction for Approximate Bayes Risk. Lemma 6.3 gave the number of
modelsnm required to estimate the Bayes risk withinξ with confidenceδ.
This bound implies that we may misclassify the risk associated with a belief
b with probability δ. Thus, if the true fraction of beliefs requiring policy
queries ispq, we will only observe a fraction(1−δ)pq in expectation. Since
the beliefs are uniformly sampled, we can apply a Chernoff bound to this
expectation to state that with probability1 − δ, no than2(1 − δ)nb beliefs
will be misclassified.8

Thus, we set our empirical test proportion top′′q = pq(1 − 2(1 − δ)).
3. Sampling a Sufficient Number of Beliefs.The last step of the procedure

involves computing the Bayes risk fornb beliefs sampled uniformly and
accepting the value ofk if the empirical proportion of policy querieŝpq =
nq/nb < pq, wherenq is the number of beliefsb that require policy queries
according to the Bayes risk computation.
Minimizing the number of samplenb needed to guarantee thatp̂q is near
pq with high probability requires two steps. First, we requires that p̂q to
be within ǫq of p′q = pq − ǫq with probability δq. Next we optimize the
associated Chernoff boundδq = e−nbp

′
qǫ2q/3; settingǫq to 2/3pq gives us the

desired expressionnb > −27/4 · (pq)
−3 log δq. Finally, we substitutep′′q for

pq to account for the approximation in computing the Bayes risk.

8This bound requiresnb > 3

δ
log 1

δ
, but we will find that our final bound fornb is greater than

this value.

23

Figure 3: Box plot of performance for three POMDP learning approaches when learning over
a discrete set of four possible models. The medians of the policies are comparable, but the ac-
tive learner (left) makes fewer mistakes than the passive learner (center). The Bayes risk action
selection criterion (right) does not cause the performanceto suffer.

7. Results

We first solve a discretized model-uncertainty POMDP to showthe utility of
policy queries. We next combine the policy queries with our Bayes-risk criterion
for learning with continuous-valued unknown parameters. All of the approaches
were coded in reasonably-optimized Matlab; depending on the size of the domain,
a complete learning trials took between an hour to several hours.

7.1. Learning from a Limited Set of Models

In domains where model uncertainty is limited to a few, discrete parameters,
we may be able to solve the model-uncertainty POMDP (in whichboth the world
state and the world model are hidden variables) using standard POMDP meth-
ods. We consider a simple POMDP-based dialog management task [34] where
the reward is unknown. We presume the model contains one of four (discrete)
possible reward levels and that the policy query had a fixed associated cost. Fig-
ure 3 compares the performance of the optimal policy—that is, the solution to the
model-uncertainty POMDP—with policy queries (left column), an optimal policy
without policy queries (middle column), and our Bayes risk policywith policy

24

Table 2: Problem Descriptions

Problem Number of
States

Number of
Actions

Number of
Observa-
tions

Tiger [29] 2 3 2
Network [29] 7 4 2
Shuttle [35] 8 3 5
Bulkhead [29] 10 6 6
Gridworld (adapted from [29] 25 4 16
Follow (adapted from [36]) 26 5 6

queries (right column). The difference in median performance is small, but the
variance reduction from the policy queries is substantial.9

Unfortunately, simply discretizing the model space does not scale when try-
ing to solve model-uncertainty POMDP; adding one more levelof discretization,
which increases the number of models from four to 48, resulted in poor-quality
global solutions when using standard techniques. Next, we present results using
our Bayes-risk action selection criterion where we allow the parameters to take on
many more values.

7.2. Learning from a General Set of Models

We applied our approach to learn the complete model—transitions, observa-
tions, and rewards—for several standard problems, summarized in table 2. For
each problem, 50 POMDP samples were initially taken from a flat α = 1 prior
over models. The sampled POMDPs were solved very approximately, using rel-
atively few belief points (500) and only 25 backups (see sensitivity analysis in
Section A for details on the effects of these parameter choices). The policy oracle
used a solution to the true model with many more belief points(1000-5000) and
250 backups. We took this solution to be the optimal policy. During a trial, which
continued until either the task was completed or a maximum number of iterations

9Although the total reward obtained by the Bayes risk approximation appears higher, the dif-
ference in performance in both median and variance is negligible between the optimal policy and
the Bayes risk approximation.

25

was reached, the agent had the choice of either taking a domain action or asking
a policy query (ξ = −1) and then taking the supplied optimal action. The proba-
bility of expert errorpe was set to 0.3 in all tests. POMDPs were resampled every
100 interactions and the learning process consisted of 5000total interactions. The
entire learning process was repeated 10 times per problem.

The passive learner resampled its POMDP set after updating its prior over
transitions and observations using FFBS. Its reward model was drawn from the
prior, and it chose the action with the least Bayes risk (regardless of how risky
that action was in absolute terms). The active learner used FFBS to sample models
given the action-observation histories and re-weighted the samples based on the
consistency of their responses to the policy queries. In addition to the Bayes
Risk criterion, we avoided common sample-death issues associated with particle
filtering by replacing it with an importance sampling approach that provided better
approximations of the posterior. We also forced the active learner to ask a policy
query if all model weights fell below a threshold. None of thesystems received
explicit reward information, but the active learner used policy queries to infer
information about the reward model. Depending on the problem, tasks required
an average of 10 to 30 actions to complete.

Figure 4 compares the results of the passive learner and the active learner on
several standard problems. In general, the active learner maintains a relatively
steady level of mean rewards: initially it uses the policy queries to choose good
actions; later the agent performs well because it has enoughdata to reason about
the model. Thus, the policy queries “cover” for the agent, ensuring good per-
formance while it is still learning. The plots below each performance plot show
that the number of policy queries generally decreases. Thus, our agent eventually
learns to perform well on its own but uses expert knowledge tomaintain good
performance from the start.

Compared to the results for our previous work [19], this inference approach
generally results in better relative performance for the active learner. For example,
in our previous work active learning improved the passive learner’s final rewards
by 16.4 in tiger and 80.6 in gridworld; with the new inferencethe final rewards
now differ by 60 in tiger and 125 in gridworld. Passive performance also some-
times improves: for example, in shuttle, the passive learner does nearly match the
active learner’s performance in the end.

Inference in this model is still difficult, however, and problems that require
specific sequences of moves—such as bulkhead or shuttle—provide a challenge to
our approach. The combination of constrained transition spaces with non-smooth
reward spaces results in many local optima from which it is challenging to extract

26

excellent solutions; resulting in occasional performancedips during the learning
process. The exact reasons for these dips—aside from the fact that the poste-
rior space is generally complex—is difficult to ascertain; developing more robust
inference techniques is a subject for future work.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−100

−80

−60

−40

−20

m
ea

n
re

w
ar

d

tiger reward by experience

Passive
Active

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.5

0

0.5

1

1.5
tiger policy queries by experience

experience count

m
ea

n
po

lic
y

qu
er

ie
s

(a) Tiger

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−3000

−2000

−1000

0

1000

m
ea

n
re

w
ar

d

network reward by experience

Passive
Active

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20
network policy queries by experience

experience count

m
ea

n
po

lic
y

qu
er

ie
s

(b) Network

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−200

−150

−100

−50

0

50

100

m
ea

n
re

w
ar

d

shuttle reward by experience

Passive
Active

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4
shuttle policy queries by experience

experience count

m
ea

n
po

lic
y

qu
er

ie
s

(c) Shuttle

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

−8

−6

−4

−2

0
x 10

4

m
ea

n
re

w
ar

d

bulkhead reward by experience

Passive
Active

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30
bulkhead policy queries by experience

experience count

m
ea

n
po

lic
y

qu
er

ie
s

(d) Bulkhead

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−200

−150

−100

−50

0

50

m
ea

n
re

w
ar

d

gridworld reward by experience

Passive
Active

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5
gridworld policy queries by experience

experience count

m
ea

n
po

lic
y

qu
er

ie
s

(e) Gridworld

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−800

−600

−400

−200

0

m
ea

n
re

w
ar

d

follow reward by experience

Passive
Active

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40
follow policy queries by experience

experience count

m
ea

n
po

lic
y

qu
er

ie
s

(f) Follow

Figure 4: Performance of the passive learner (gray) and active learner (black) on several standard
problems. Error bars show the standard error of the mean reward in each block of 500 counts of
experience. Plots below each performance plot show the number of policy queries used in a trial.

27

8. Related Work

Using Bayesian methods for reinforcement learning is a veryactive area of re-
search. One approach to MDP model learning, the Beetle algorithm [12], converts
a discrete MDP into a continuous POMDP with state variables for each MDP pa-
rameter. However, their analytic solution does not scale tohandle the entire model
as a hidden state in POMDPs. Also, since the MDP is fully observable, Beetle can
easily adjust its prior over the MDP parameters as it acquires experience; in our
POMDP scenario, we needed to estimate the possible states that the agent had
visited. The authors have extended Beetle to partially observable domains [26],
providing similar analytic solutions to the POMDP case. Thework outlines effi-
cient approximations but results are not provided. Anotheranalytic approach to
POMDP learning [37] extends concepts from utile suffix memory to online re-
inforcement learning. All of these approaches require the rewards to be directly
observed—not indirectly inferred from policy queries—andthus are not applica-
ble to our setting.

Related work in MDP and POMDP learning has also considered sampling to
approximate a distribution over uncertain models. Deardenet al. [10] discusses
several approaches for representing and updating priors over MDPs using sam-
pling and value function updates. Strens [11] shows that forMDP problems, ran-
domly sampling only one model from a prior over models, and using that model to
make decisions, is guaranteed to converge to the optimal policy if one resamples
the MDP sufficiently frequently from an updated prior over models.

More recent work in Bayesian MDPs have provided a formal characterization
of the sample complexity required to achieve near-optimal reward [38, 39, 40],
including for cases where the learner has access to a teacher(similar to an oracle
to achieve efficient uses the notion of teacher (similar to anoracle) to achieve ef-
ficient apprenticeship learning [41]. This analysis uses some similar assumptions
as the results in this paper, though does not cover partiallyobservable domains.

Extending bayesian methods to the case of POMDPs, Medusa [13] avoids the
problem of knowing how to update the prior by occasionally requesting the true
state based on model-uncertainty heuristics. It convergesto the true model but
may make several mistakes before convergence. More recently, Bayes-adaptive
POMDPs [36, 22] learn POMDPs by incorporating parameter statistics such as
Dirichlet counts and Gaussian means into the state space andleveraging the rel-
atively simple iterative updates when applying forward planning. All of these

28

methods assume that the reward function is known.10

Learning rewards—or preferences—is widely studied in the human-computer
and human-robot interaction literature. The preference elicitation literature [44,
45] focuses on learning preferences based on queries, but there, learning the re-
wards is itself the objective: the agent does not have to balance between learning a
model and performing a task. An exception is [46], where the transition and obser-
vation parameters of a POMDP are considered known, but the reward parameters
are unknown. Much of the work in inverse reinforcement learning assumes that
states are fully-observable [18, 47, 48, 49, 50]. Extensions to the partially observ-
able case are less common; one recent example showed how to achieve this using
entire trajectory demonstrations as input [51]. Finally, there is a rich body of work
on learning by demonstration; for the most part, the objective is quite different,
in that the goal is to achieve expert-like behavior, but not necessarily to correctly
infer the underlying model.

9. Discussion and Conclusion

We presented an approach to POMDP model learning that is bothprinci-
pled and flexible enough for domains requiring online adaptation. Unlike the
approaches described in Section 8, our risk-based heuristic and policy queries
provide correctness and convergence guarantees throughout the learning process.
This risk-based action-selection allows us to choose actions robustly in a com-
putationally tractable manner. The policy queries also help us address the is-
sue of robustness, by allowing the agent to ask questions when it is confused.
The policy queries also allow us to side-step issues of numerical feedback when
interacting with humans. To demonstrate our approach on problems from the
POMDP literature, we use a sample-based representation of the model posterior.
Using importance sampling for the belief update allows us toincorporate heuristic
information—such as the approximated model posterior—in aprincipled manner
that reduces the amount of computation required and yet remains faithful to the
true posterior.

Our approach for active learning in POMDPs robustly choosesactions and
has the flexibility to learn models for a variety of POMDP domains. To scale

10A somewhat related area of work is planning with imprecise parameters [42, 43], but unlike
learning approaches, this area assumes that additional interactions with the environment cannot
reduce model-uncertainty.

29

further, future work should aim to develop more refined proposal distributions—
for example, ones that incorporate some of the policy-queryconstraints—and
gradient-based approaches that can efficiently update particles. We found that
in our domains, reward learning—the part of the model inferred from the policy
queries—posed the most difficulties in the inference. Whiletransition and ob-
servation models could be learned for larger domains than the 26-state, 5-action
gridworld presented in this work, learning the reward models for such domains
solely from policy queries started to become intractable. Ordinal reward vari-
ables, rather than discrete rewards, could also help partition the search space more
efficiently.

While incorporating policy queries poses the most inference challenges, other
innovations could also reduce computational complexity and thus help scale the
concepts in this work to larger domains. First, using adaptive MCMC meth-
ods [52] could make the sampling more efficient. Second, since we expect that
the model posterior will have smaller changes later in the learning process, heuris-
tics for increasing the number of interactions between resampling steps—such
as monitoring the effective number of samples—may reduce computational load.
Using fewer samples or running fewer updates may also work well in practice,
although developing principled online inference would of course be required to
maintain learning guarantees. Finally, As the number of samples needed to rep-
resent the posterior grows, using POMDP solvers that allow for iterative solution
refinement and methods for allocating more computation to more promising so-
lutions will also be key. These innovations will allow POMDPlearning to be
deployed on larger, real-time applications.

References

[1] A. R. Cassandra, L. P. Kaelbling, J. A. Kurien, Acting under uncertainty:
Discrete Bayesian models for mobile-robot navigation, in:Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems,
1996, pp. 963–972.

[2] M. T. J. Spaan, N. Vlassis, A point-based POMDP algorithmfor robot plan-
ning, in: Proceedings of the IEEE International Conferenceon Robotics and
Automation, New Orleans, Louisiana, 2004, pp. 2399–2404.

[3] B. White, An Economic Analysis of Ecological Monitoring, Ecological
Modeling 189 (2005) 241–250.

30

[4] Y. Aviv, A. Pazgal, A partially observed Markov decisionprocess for dy-
namic pricing, Management Science 51 (2005) 1400–1416.

[5] J. D. Williams, S. Young, Partially observable Markov decision processes
for spoken dialog systems, Computer Speech Languange 21 (2)(2007) 393–
422.

[6] J. Hoey, P. Poupart, C. Boutilier, A. Mihailidis, POMDP models for assis-
tive technology, in: Proceedings of the AAAI Fall Symposiumon Caring
Machines: AI in Eldercare, 2005.

[7] N. Roy, J. Pineau, S. Thrun, Spoken dialogue management using probabilis-
tic reasoning, in: Proceedings of the 38th Annual Meeting ofthe ACL, Hong
Kong, 2000.

[8] G. Shani, R. Brafman, S. Shimony, Forward search value iteration for
POMDPs, in: International Joint Conference on AI, 2007.

[9] W. S. L. Hanna Kurniawati, David Hsu, SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces, in:
Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland,
2008.

[10] R. Dearden, N. Friedman, D. Andre, Model based Bayesianexploration, in:
Proceedings of Uncertainty in Artificial Intelligence, 1999, pp. 150–159.

[11] M. Strens, A Bayesian framework for reinforcement learning, in: Interna-
tional Conference in Machine Learning, 2000.

[12] P. Poupart, N. Vlassis, J. Hoey, K. Regan, An analytic solution to discrete
Bayesian reinforcement learning, in: International Conference in Machine
Learning, ACM Press, New York, NY, USA, 2006, pp. 697–704.

[13] R. Jaulmes, J. Pineau, D. Precup, Learning in non-stationary partially ob-
servable markov decision processes, in: European Conference in Machine
Learning Workshop, 2005.

[14] C. Watkins, Learning from delayed rewards, Ph.D. thesis, Cambridge Uni-
versity (1989).

31

[15] A. L. Strehl, L. Li, M. L. Littman, Incremental model-based learners with
formal learning-time guarantees, in: Uncertainty in Artificial Intelligence,
2006.

[16] E. Even-Dar, S. M. Kakade, Y. Mansour, Reinforcement learning in
POMDPs without resets., in: International Joint Conference on AI, 2005,
pp. 690–695.

[17] W. B. Knox, P. Stone, Combining manual feedback with subsequent mdp re-
ward signals for reinforcement learning, in: Proceedings of 9th International
Conference on Autonomous Agents and Multiagent Systems, 2010.

[18] A. Ng, S. Russell, Algorithms for inverse reinforcement learning, in: Inter-
national Conference in Machine Learning, 2000.

[19] F. Doshi, J. Pineau, N. Roy, Reinforcement learning with limited reinforce-
ment: Using Bayes risk for active learning in POMDPs, in: International
Conference on Machine Learning, Vol. 25, 2008.

[20] E. J. Sondik, The optimial control of partially observable Markov processes,
Ph.D. thesis, Stanford University (1971).

[21] J. M. Porta, N. Vlassis, M. Spaan, P. Poupart, An point-based value iteration
for continuous POMDPs, Journal of Machine Learning Research.

[22] S. Ross, B. Chaib-draa, J. Pineau, Bayesian reinforcement learning in con-
tinuous POMDPs with application to robot navigation, in: International Con-
ference on Robotics and Automation, 2008, pp. 2845–2851.

[23] F. Doshi, N. Roy, Spoken language interaction with model uncertainty: An
adaptive human-robot interaction system, Connection Science 20 (4) (2008)
299–318.

[24] P. D. Moral, A. Doucet, A. Jasra, Sequential monte carlosamplers, Journal
of The Royal Statistical Society: Series B-statistical Methodology 68 (2002)
411–436.

[25] J. Williams, S. Young, Scaling up POMDPs for dialogue management: The
”Summary POMDP” method, in: Proceedings of the IEEE ASRU Work-
shop, 2005.

32

[26] P. Poupart, N. Vlassis, Model-based Bayesian reinforcement learning in par-
tially observable domains, in: Interanational Symposium on AI and Mathe-
matics, 2008.

[27] J. Pineau, G. Gordon, S. Thrun, Point-based value iteration: An anytime
algorithm for POMDPs, in: International Joint Conferenceson Artificial In-
telligence, 2003.

[28] D. Silver, J. Veness, Monte-Carlo Planning in Large POMDPs, in: Proceed-
ings of the Conference on Neural Information Processing Systems, 2010.

[29] M. L. Littman, A. R. Cassandra, L. P. Kaelbling, Learning policies for par-
tially observable environments: Scaling up, in: International Conference in
Machine Learning, 1995.

[30] M. Hauskrecht, Value-function approximations for partially observable
markov decision processes, Journal of Artificial Intelligence Research 13
(2000) 33–94.

[31] S. L. Scott, Bayesian methods for hidden markov models –recursive com-
puting in the 21st century, Journal of the American Statistical Association
97 (2002) 337–351.

[32] L. R. Rabiner, A tutorial on hidden Markov models and selected applications
in speech recognition, Proceedings of the IEEE 77 (2) (1989)257–286.

[33] S. Ross, M. T. Izadi, M. Mercer, D. L. Buckeridge, Sensitivity analysis of
pomdp value functions, in: ICMLA, 2009, pp. 317–323.

[34] F. Doshi, N. Roy, Efficient model learning for dialog management, in: Tech-
nical Report SS-07-07, AAAI Press, Palo Alto, CA, 2007.

[35] L. Chrisman, Reinforcement learning with perceptual aliasing: The percep-
tual distinctions approach, in: Proceedings of the Tenth National Conference
on Artificial Intelligence, AAAI Press, 1992, pp. 183–188.

[36] S. Ross, B. Chaib-draa, J. Pineau, Bayes-adaptive POMDPs, in: Advances
in Neural Information Processing Systems 20, 2008, pp. 1225–1232.

[37] G. Shani, R. I. Brafman, S. E. Shimony, Model-based online learning of
POMDPs, in: European Conference on Machine Learning, 2005,pp. 353–
364.

33

[38] J. Asmuth, L. Li, M. L. Littman, A. Nouri, D. Wingate, A bayesian sam-
pling approach to exploration in reinforcement learning, in: Proceedings of
Uncertainty in Artificial Intelligence, 2009.

[39] J. Z. Kolter, A. Y. Ng, Near-bayesian exploration in polynomial time, in:
International Conference on Machine Learning, 2009.

[40] J. Sort, S. Singh, R. L. Lewis, Variance-based rewards for approximate
bayesian reinforcement learning, in: Proceedings of Uncertainty in Artifi-
cial Intelligence, 2010.

[41] T. J. Walsh, K. Subramanian, M. L. Littman, C. Diuk, Generalizing appren-
ticeship learning across hypothesis classes, in: International Conference on
Machine Learning, 2010.

[42] H. Itoh, K. Nakamura, Partially observable Markov decision processes with
imprecise parameters, Artificial Intelligence 171 (2007) 452–490.

[43] A. Nilim, L. Ghaoui, Robustness in Markov decision problems with uncer-
tain transition matrices, in: Proceedings of Neural Information Processing
Systems, 2004.

[44] C. Boutilier, A POMDP formulation of preference elicitation problems, in:
Eighteenth national conference on Artificial intelligence, American Associ-
ation for Artificial Intelligence, 2002, pp. 239–246.

[45] L. Chen, P. Pu, Survey of preference elicitation methods, Tech. rep., Ecole
Politechnique Federale de Lausanne (EPFL), IC/2004/67 (2004).

[46] A. Atrash, J. Pineau, A bayesian reinforcement learning approach for cus-
tomizing human-robot interfaces, in: IUI, 2009, pp. 355–360.

[47] W. B. Knox, P. Stone, Combining manual feedback with subsequent mdp
reward signals for reinforcement learning, in: Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems, 2010,
pp. 5–12.

[48] B. D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learn-
ing from demonstration, Robot. Auton. Syst. 57 (2009) 469–483.

[49] S. Chernova, M. M. Veloso, Interactive policy learningthrough confidence-
based autonomy, Journal of Artificial Intelligence Research 34 (2009) 1–25.

34

[50] M. Lopes, F. S. Melo, L. Montesano, Active learning for reward estima-
tion in inverse reinforcement learning, in: European Conference on Machine
Learning, Bled, Slovenia, 2009.

[51] J. Choi, K. eung Kim, Inverse reinforcement learning inpartially observable
environments, in: International Joint Conference on Artificial Intelligence,
2009, pp. 1028–1033.

[52] C. Andrieu, J. Thoms, A tutorial on adaptive mcmc, Statistics and Comput-
ing 18 (2008) 343–373.

A. Sensitivity to POMDP solution parameters

To speed up computations, we used very approximate solutions to the sampled
POMDPs in section 7.2. Here, we show the sensitivity of the approximations—
specifically, the number of belief points used and the numberof backups applied—
in two of the test domains, network and gridworld. For each setting, we ran 10
runs of 75 iterations for 25 random samples of the belief points (for a total of 250
runs per setting). When the running sensitivity analysis onthe number of belief
points, the number of backups was held fixed at 50; when running the sensitivity
analysis for the on the number of backups, the number of beliefs was held fixed at
500.

The plots in figure 5 show the distributions of the total rewards received during
each run. Very small numbers of belief points (10) or backups(5) have much
lower rewards, but even moderate approximations, such as 200 belief points and
25 backups, already have good performance. Thus, our approximations with 500
belief points and 25 backups should have been fairly close tothe optimal solution.

35

5 30 55 80 105
−500

0

500

1000

1500

2000

2500

3000

Number of Backups

Network: Effect of PBVI Backups on Rewards

T
ot

al
 R

ew
ar

ds
 p

er
 R

un

(a) Effect of Belief Points in Network

5 30 55 80 105
−500

0

500

1000

1500

2000

2500

3000

Number of Backups

Network: Effect of PBVI Backups on Rewards

T
ot

al
 R

ew
ar

ds
 p

er
 R

un

(b) Effect of Backup Count in Network

5 20 35 50 65
−80

−60

−40

−20

0

20

40

Number of Backups

Gridworld: Effect of PBVI Backups on Rewards

T
ot

al
 R

ew
ar

ds
 p

er
 R

un

(c) Effect of Belief Points in Gridworld

5 20 35 50 65
−80

−60

−40

−20

0

20

40

Number of Backups

Gridworld: Effect of PBVI Backups on Rewards

T
ot

al
 R

ew
ar

ds
 p

er
 R

un

(d) Effect of Backup Count in Gridworld

Figure 5: Effect of number of belief points and number of backups on two of the test domains. We
see that overall, relatively few belief points—around 200—and relatively few backups—around
25—already achieve good performance.

36

