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Abstract

Acting in domains where an agent must plan several stepsiabeachieve
a goal can be a challenging task, especially if the agentisss provide only
noisy or partial information. In this setting, Partially Sdyvable Markov Deci-
sion Processes (POMDPSs) provide a planning framework tpttnally trades
between actions that contribute to the agent’s knowleddeaations that increase
the agent’s immediate reward. However, the task of spexjfihe POMDP’s pa-
rameters is often onerous. In particular, setting the imatedewards to achieve
a desired balance between information-gathering andgdtioften not intuitive.

In this work, we propose an approximation based on miningite immedi-
ate Bayes risk for choosing actions when transition, olagem, and reward mod-
els are uncertain. The Bayes risk criterion avoids the cdatjmunal intractability
of solving a POMDP a with multi-dimensional continuous stgppace; we show it
performs well in a variety of problems. We use policy querids which we ask
an expert for the correct action—to infer the consequentespotential pitfall
without experiencing its effects. More important for hurrabot interaction set-
tings, policy queries allow the agent to learn the reward ehaithout the reward
values ever being specified.

Key words: Partially observable Markov decision process, reinforeeim
learning, Bayesian methods

1. Introduction

The Partially Observable Markov Decision Processes (POM®® planning
framework that allows an agent to reason in the face of uaicgy; optimally
trading between actions that gather information and astibat achieve a desired
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goal. As a result, POMDPs are attractive for many real-wagglications where
an agent equipped with noisy and limited sensors must pl@ralesteps ahead to
achieve its goal. To date, POMDP-based planners have bedrfarsapplications
as diverse as robot navigation [1, 2], ecological moni@ii8], dynamic pric-
ing [4], and several areas of dialog management and hesdtlfisa6, 7]. Recent
advances in POMDP approximation algorithms allow agenfgan in POMDPs
with tens of thousands of states [8, 9].

The POMDP model posits that the world is fully described bynecstate
that is hidden from the agent (but may be affected by the &yaations). The
agent observes the world through sensors that may be nolat-ist imprecise
and inaccurate—or that provide only partial informatioror Example, a voice-
activated dialog system must infer what a user wants (theégmctate) based on
audio inputs passed through a microphone and a speechaigoongystem. The
audio input is likely corrupted by background noise, andgpeech-recognition
system may not be able to convert (noisy) audio to text witfiegéaccuracy. The
agent’s actions may also have unexpected results: in tleeot#éise dialog system,
a question from the system may cause the user to change reswahts. Finally,
the agent also receives a reward after each action, conédion the world state.
These rewards encode the agent’s goals: a dialog managet reagive a small
penalty for each question it asks, associated with takinthapuser’s time, and
a large reward if it completes the task successfully. Thatiked values of these
rewards will bias the agent toward asking more or less quesas it attempts the
task.

Three factors are key for POMDP applications that involvenao-machine
interaction: learning, accurate reinforcement, and robakavior. The first fac-
tor, learning the POMDP model, is crucial because as theasiosrand the agent’s
sensors become more complex, the POMDP model requires i@agieg number
of parameters to describe problem dynamics and rewardsenGlfese param-
eters are difficult to specify from domain knowledge alonathgring sufficient
training data to estimate all the parameters may also balptiobly expensive.
Learning online ensures that we refine our knowledge abautrtbdel in areas
that are most relevant to the task at hand. In this work, wegmteapproxima-
tion techniques based on Bayesian reinforcement learneigads to learn larger
POMDPs. Bayesian methods [10, 11, 12, 13] allow expertsdorporate domain
knowledge via priors over models, while letting the agerdpadts belief over
models as new observations arrive.

Secondly, learning POMDPs from human-robot interactioRIjHs particu-
larly challenging because traditional learning approadhiid, 15, 16] generally
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require a reinforcement signal to be provided after eachefgent’s actions, but
such numerical reinforcement signals from human usersfege maccurate [17].

Inverse reinforcement learning approaches [18] identifgveard model without

explicit reinforcement but pose computational challendaghis work, we note

that in HRI domains, policy information may be more accuthss asking for nu-

merical reward: a human user may know what he wishes the &mdot but may

be unable to provide the agent with accurate reward sighsiéstake an active-
learning approach in which the agent asks an expert for threaaaction to take

only if it will help it refine its knowledge of the underlying@MDP model.

Lastly, asking an expert for the correct policy also addressur third factor
for HRI-oriented POMDP learning: robustness. Most reioémnent learning ap-
proaches require the agent to experience a large penadlyigthmake a critical
mistake) to discover the consequences of a poor decisiomnWiteracting with
humans, a poor decision may undermine the user’s confidenbe isystem and
potentially compromise safety. We apply policy queriesltovathe agent to act
robustly in the face of uncertain models while learning:hié tagent deems that
model uncertainty may cause it to take undue risks, it gaeneexpert regarding
what action it should perform. These queries both limit theoant of training
required and allow the agent to infer the potential consege®of an action with-
out executing it; actions that are recommended by the exjaedbe assumed to be
better than those that are not recommended. Combined wijtedtan reinforce-
ment learning, policy queries allow the agent to learn a@nlireceive accurate
reinforcement, and act robustly.

To date, Bayesian reinforcement learning has focused onifgpobservation
and transition distributions [13, 12], where updates hdesad forms (such as up-
dating Dirichlet counts), and rewards, if initially unknoyare at least observable
during learning. The use of a policy query does reflect a moearate way of ex-
tracting information from human users, but it does pose adatnal challenges.
The user’s response regarding the correct action placestregrts on possible re-
ward values: for example, if a user states that the agentgpoawvide information
about the weather when queried about the forecast, the egreassume that other
actions—such as providing information about the TV schedwould have re-
sulted in lower rewards. However, there are many valuesaifdvards that could
result in the expert’s choice being the correct action.

In this work?, we propose an approximation based on minimizing the immedi

1This work expands upon work previously published by the anstfil 9]



ate Bayes risk for choosing actions when transition, olagem, and reward mod-
els are uncertain. The Bayes risk criterion avoids the cdatjmnal intractability
of solving a POMDP a with multi-dimensional continuous stspaces; we show
it performs well on a range of benchmark problems. To gatfferimation about
the model without assuming state observability, we usepalueries, which pro-
vide information about actions that the agent should takergihe current history.
Combined with importance sampling techniques to keep aeposbver possible
models, we show that policy queries accelerate learningnalpdthe agent to infer
the consequences of a potential pitfall without experiegdis effects.

2. The POMDP Model

A POMDP consists of the n-tupleS,A,0,7,Q,R~}. S, A, andO are sets
of states, actions, and observations [20]. The transitimetion7'(s, a, s') is a
distribution over the states the agent may transition teraéking actioru from
states. The observation functiofl(s, a, o) is a distribution over observations
that may occur in state after taking actioru. The deterministic reward func-
tion R(s, a) specifies the immediate reward for each state-action phe.factor
v € [0,1) weighs the importance of current and future rewargds= 0 implies
that only current rewards mattey; = 1 implies that current rewards and future
rewards are equally valuable. We assume that theSets andO are discrete
and finite?

Assumption 2.1 We assume that is a discrete and finite set of possible rewards
This assumption makes inference more tractable and ismabkoin many prob-
lems where learning the relative scales of the rewards i afdke challenge.

In the POMDP model, the agent must choose actions based orolpsey-
vations; the true state is hidden. In general, all of the Bggast actions and
observations may be needed to determine the optimal de@sibe current time.
Keeping track of the entire history of actions and obseovetican become cum-
bersome, but fortunately the probability distribution otee current true state,
known as a belief, is a sufficient statistic for the historiieToelief at timeg + 1
can be computed from the previous beligf,the last actior, and observation,
by applying Bayes rule:

bi1(s) xQ(s, a,0) Z T(s,a,s)by(s")/Pr(olb,a), (1)

s'eS

2There has been recent progress in developing solvers forFMvith continuous, A, and
O [21, 22]. However, these solvers are not yet as effectiveasalvers for discrete models.
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wherePr(olby, a)=73_ .4 s",a,0)) s T(s,a,s)b:(s). If the goal is to max-
imize the expected discounted rewatd .°  ~'r], then the optimal policy is
given by the Bellman equation:

V*(bt) = r;leaj( Q* (bt7 CL), (2)
Q*(bba’) = R<bt7a> +VZPT(O|bt7a)V*(bg7O>7 (3)
0€0

whereR(b;,a) = >, R(s,a)b(s) and Pr(o|b,,a) = >, Pr(o|s,a)b(s). The
optimal value functiort’*(b,) is the expected discounted reward that an agent will
receive if its current belief isandQ* (b, ) is the value of taking actioain belief

b and then acting optimally. The exact solution to equatios @nly tractable for
tiny problems, so we use a point-based solver to approxithatsolution.

3. Bayesian Model of POMDP Uncertainty

We assume that the cardinality of the s8tsA, O, and R are known. The
POMDP learning problem is to sufficiently constrain the mlsition of the pa-
rameters’’, ), and R so that the agent may act near-optimally. Specifically, we
note that the agent may not need to know the exact model valué€s (2, and
R to act sensibly, as long as all likely models direct the agemake the correct
action. We begin by expressing our domain knowledge thra@ughor over the
model parameters, and improve upon this prior with expegerThis Bayesian
approach is attractive in many real-world settings becaystem designers may
often have strong notions regarding certain parametetshbwexact values of all
the parameters may be unknown.

Let M =T x Q x R be the space of all valid values of the model parameters,
andm € M be a particular model. To build a POMDP that incorporatesribdel
parameters into the hidden state, we consider the joirg sfaEceS’ = S x M.
Although S’ is continuous and high dimensional, the transition modelMois
simple if the true model is static. Figure 1 shows graphicadiats for the original
POMDP and the model-uncertainty POMDP (as in [10, 23]). & standard
POMDP (Figure 1(a)), the world state is hidden, but how tlaestransitions
given actions is known. In the model-uncertainty POMDP (iregl (b)), the world
model is also hidden, and the transitions of the hidden wstdte depend on the
unknown model (which we assume is stationary).

Our prior considers a joint beliefy,(m) overT, ), and R; that is, we allow
the agent’s belief over the transitions, observations, reméirds to be coupled.
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(a) Standard POMDP model (b) Model-Uncertainty POMDP

Figure 1: (a) The standard POMDP model. (b) The extended PRKtDdel. In both cases, the
arrows show which parts of the model are affected by each &itva timet to ¢ + 1.

(We usep,, for the belief over models to avoid confusion with(s), the belief
over the hidden state given model) These model parameters are continuous,
and information from observations and policy queries ittime complex depen-
dencies between the parameters (so the bgliefloes not factor). Except for
very small or specialized model classes, conjugate moaetstiexist to update
the beliefp,, in closed form. We choose to represent the belief over maets
set of samples:

pu(m) = Z w;0(m;, m)

wherew; represents the weight associated with modehndé(m,, -) is a delta-
function at modeln;. The collection of samples, each a model, represents the
agent’s uncertainty about the true POMDP model. The weigh&nd the models
m; are updated via sequential importance sampling [24] asdbatacts in the
world. (We describe the belief update in greater detail otiea 5.2.)

While fully general, one difficulty with the sample-basegnmesentation is that
if the model spacé/ is large, many samples may be required to provide an ac-
curate representation of the belief. If we want to weight glas based on as-
pects of their policies—for example, how often they agrethan expert’s action
choices—each sample will require a significant computalimvestment because
each contains a POMDP model to be solved. In Section 5.2.2leseribe how
we address this issue through importance sampling.



4. Policy Queries

The formulation in section 3 makes the agent aware of thertaingy in the
model parameters, and by trying various actions, it canaeduncertainty both
in its state and in the parameters. However, the model irdton provided by
the actions may be weak, and we would like the agent to be abéxlice model
uncertainty in a safe and explicit manner. We augment thieraset A of our
original POMDP with a set of policy querigs)} to enable active learning. We
refer to the actions in the original action sétas the domain actions.

The policy queries consult an oracle (that is, a domain exper the opti-
mal action at a particular time step. We assume that the ekperaccess to the
history of actions and observations (as does the agent)ethasvthe underlying
world dynamics, and thus can advise the agent on the optittiahaat any partic-
ular time. Unlike the oracle of [13], the policy queries aek ihformation about
the correct action, not the underlying state, which can heomant since model-
reduction techniques to improve the efficiency of POMDP ewften make the
state space unintuitive to the user (e.g., [25]). For exampldialog management
scenarios, a user may find it more convenient to respond testiqu of the form
“I think you want me to go to the coffee machine. Should | ga¢?é rather than
“Please enter exactly your most recent statement.”

Depending on the form of the interaction, the agent may askhi® policy
information through a series of yes-no questions (“I thinks the best action.
Should I doa;?”) or list (“Here are actions and my confidence in them. Which
should | do?”). The key in either case is giving the user as@fithe agent’s
uncertainty so they can advise the agent appropridtétyan ideal setting, the
user would have sufficient information to provide the optiasion for the agent’s
current belief over world states.

We can think of these policy queries simply as additional actions and at-
tempt to solve the model-uncertainty POMDP with this augi®@m@ction space.
However, solving the model-uncertainty POMDP is generalisactable. There-
fore, we treat the policy query as a special action to be tékitye other actions
are too risky. We take the cost¢ of querying the user to be a fixed parameter of
the problem.

3If the expert is another agent, the format of these queriaddy@f course, be adapted to
whatever input representation is required for the experhtp provide a near-optimal action.



5. Solution Approach

As with all POMDPs, acting optimally in a model-uncertai@MDP re-
quires two capabilities. First, given a history of actiom&l abservations, the
agent must be able to select the next action. Second, the agest be able to
update its distribution over the model parameters givenstiected action and
the subsequent observation from the environment. In the gevgeral case, both
steps are intractable via standard POMDP solution teclesig{Analytic updates
are possible if the distributions take certain forms [26if, &ven in this case func-
tion approximation is needed to keep the solutions to adldetsize.)

We assume that out problem domains consist of episodic,tés&sis, that
they are periodically restarted. An episode may end wheragfemt reaches a
goal, or, if the task has no explicit goal, once the histopches a certain length.
Table 1 summarizes our approach and outlines the followenotians. Sections 5.1
and 5.2 focus on the aspects of the POMDP-solving procesarihanique to the
model-uncertainty POMDP: we describe how actions are tslegiven a belief
over models in section 5.1 and how to update the belief ovelatson section 5.2.
Each of these steps requires approximations, and we proadeds on the ap-
proximation error in sections 6.1 and 6.2. For planning agltebmonitoring in
standard discrete POMDPs, we refer the reader to classicsuzh as [27].

5.1. Bayes-Risk Action Selection

Given a beliefp,;(m) over model§ each with a belieb,,(s) over states,
the optimal—or highest-valued—action in the model-uraiaty POMDP can be
found through an application of the Bellman equation reeiéw section 2:

V*(pars {bm}) = Igea}Q*(pM,{bm}ﬂ), (4)

Q (par. (b)) = /MpM<m>R<bm<s>,a>+ (5)
| patm)y 3 Preofon(s)a,mv 655 (B¢ ). @
M oeO

4At any point in time, the belief over modelsjis; (m|h, ¥), that is, the probability of model
m given the history:, of domain actions and observations and the policy qudrigor notational
clarity, in this section, we consider choosing actions gigeme arbitrary beliep,;(m) over
models.



Table 1: Approach for Active Learning in POMDP models.
ACTIVE LEARNING WITH BAYES RISK

e Sample POMDP models from a prior distributiorp,,(m)

e During an episode, choose actions based on Baye®ii&k; {b,, }), where
{b. } is the belief over states held by each moatel

— Use the POMDP samples to compute the action with minimal Baye
risk (Section 5.1).

— If the risk is larger than a givef, perform a policy query (Sectio
5.1).

— Update each POMDP sample’s beligf (m|h, ¥) based on the obse
vation received (Section 5.2).

=)

-~
1

e Once an episode is completed, update the belief over modeton the
new history (Section 5.2):

— Sample POMDP models from a proposal distributign(m|h) incor-
porating the action-observation histdry
— Weight POMDPs based on policy query histdry

Performance and termination bounds are in Sections 6.1.2nd 6

where we us€b,, } to represent the set of beligig (s) for all m € M. In gen-
eral, the integral over model space is intractable; evenardime planning meth-
ods [28] cannot achieve the search-depths necessary faniptain the model-
uncertainty POMDP. In this section we describe how the agentselect robust
actions without solving the intractable model-uncertalPOMDP.

Specifically, let the model-specific lods,,(a, a*;b,,) of taking actiona in
modelm be Q% (b, a) — QF, (b, a*), wherea* is the optimal action in model

m given beliefb over the hidden states. Augmented with the beligfm) over
models, the expected logs,[L] is the Bayes risk:

BR(a: {bn}) = /M (@ (b ) — Q@ (B, a2 par(im), )

where)M is the space of models,, is the belief according to modet, anda;, is
the optimal action irb,,, according to model’s value functiag;,. The first term
within the integral,(Q?, (b, a) — QF, (bm,ar,)), is the loss incurred by taking

m
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actiona instead of the optimal actiom’, with respect to modet:. In general,
different models may have different optimal actiafs; the Bayes risk is the
expected loss after averaging over models. d’et arg max,c4 BR(a) be the
action with the least risk.

The actiona’ represents the least risky action from our domain actiomsv-H
ever, if the risk ofd’ is large, the agent may still incur significant losses; thenag
should be sensitive to the absolute magnitude of the risiedkés. Therefore we
consider both performing—the best option from the domain actions—and using
a policy queryy to determine the optimal action. We assume that the€gsif a
policy query is a constant fixed across all models (with vélaged on the cost of
getting policy information in the given domain). In the &etiearning scenario,
the agent performs a policy query HR(a’) is less than-¢, that is, if the least
expected loss is more than the cost of the policy query. THieypquery will
lead the agent to choose the correct action and thus incusko In section 7,
we empirically compare the performance of an agent thatasi@se learning to a
passive agent that always selects the least risky action.

5.1.1. Relationship to th@,,pp heuristic

The Bayes-risk criterion selects the least risky action o assumes that
the uncertainty over models will be resolved at the next tstep. To see this
interpretation, we first rearrange equation 7 to get:

BR(a)= /M @ (s @pas(m) = [ Q" )pr(m), ®)

The second term is independent of the action choice. ThusatomiseBR(a),
one may simply maximise the first term:

Ver = max /M Q (b, a)par(m). 9)

As expressed in equation 9, the Bayes risk criterion is sintd theQ)vipp heuris-
tic [29], which uses the approximationi(b) = max ) Q(s,a)b(s) to plan in
known POMDPs. In our case, the belief over stdigs is replaced by a belief
over model®,,(m), and the action-value function over sta{gs, a) is replaced
by an action-value function over belief¥(b,,,a). The Qupp heuristic encodes
the assumption that the uncertainty over states will belvedafter the next time
step. The Bayes-risk criterion may be viewed as similarbuasng that the next
action will resolve the uncertainty over models.
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Although similar, the Bayes risk action selection criterdiffers fromQ,;pp
in two important ways. First, our actions come from POMDRusiohs and thus
we do fully consider the uncertainty in the POMDP state. €f@e, our approach
will take actions to reduce state uncertainty: unkikg pp, we do not act on the
assumption that our state uncertainty will be resolved &dlking the next action.
Our approximation supposes that only the model uncertaiiitpe resolved. The
agent will take actions to reduce state uncertainty regasdbf whether the agent
is passive (that is, it does not ask policy querig®r active.

The second difference is explicitly in the active learnirggting, when the
agentdoesuse policy querieg. Without policy queries, the agent may take ac-
tions to resolve state uncertainty, but it will never takéaarts to reduce model
uncertainty. However, policy queries allow the agent toidie¢o reduce model
uncertainty by helping it prune away unlikely models. Ppligieries also ensure
that the agent rarely (with probability takes a less thafroptimal action in ex-
pectation. Thus the policy queries make the learning psoedsust from the start
and allow the agent to resolve model uncertamty.

5.2. Updating the Model Distribution

The second part of solving the model-uncertainty POMDP idatipg the
agent’s belief over models once it has received an obsenagpecifically, we
need to track the beliefy,(m|h, ), whereh is the history of domain actions and
observations and is the history of responses. We accomplish this task usirg im
portance sampling, using the distributiog (m|h), which ignores the expert pro-
vided information, to more efficiently draw samples from thhech more complex
distributionpy, (m/|h, ¥).

In this section, we first outline the various factors invalwe the belief update
for the model-uncertainty POMDP. We next provide a quickeevof importance
sampling and discuss the challenges particular to the mattrtainty POMDP
before detailing our approach.

5.2.1. Updates to the Model Distribution from Domain Histor

As our agent interacts with the environment, it receives $oorces of infor-
mation to update its prior: a histofyof domain actions and observations and a
history of policy queries (and responsds) Givenh and ¥, the posteriop |, v

SAn interesting area for future work might be to compute tagtrisk values using different
underlying approximations, such as the fast informed bq8aj
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over models is:

punw(mlh, ) oc p(|m)p(h|m)py(m), (10)

whereV andh are conditionally independent givembecause they are both com-
puted from the model parameters. The historg the sequence of domain actions
and observations singe, was last updated. The s@tis the set ofall policy
gueries asked and the expert’s responses. Each of thesmation sourcesh
andV¥, poses a different challenge when updating the posterior.

We place Dirichlet priors over the transition, observatiand reward distri-
butions. If the agent were to have access to the hidden ymigdtate, then it
would be straightforward to compupg,|, (m|h) oc p(h|m)py(m): the updates to
each part of the model would factor, and each update coulding@ated in closed
form using Dirichlet-multinomial conjugacy. However, whihe state sequence is
unknown, the problem becomes more difficult; the agent msestits belief over
the state sequence to update the posterior.

5.2.2. Updates to the Model Distribution from Policy Qusrie

The policy query information poses a different challendee questions pro-
vide information about the policy, but our priors are over thodel parameters.
Any particular model, when solved, will produce a policyttheay or may not be
consistent with a policy query. If the oracle answering tbkgy queries was per-
fect, any model producing a policy inconsistent with a poligciery would have
zero likelihood: either the modeth produces a policy that is consistent with the
policy query p(¥|m) = 1), or it does not{(¥|m) = 0). In practice, such hard
constraints make the inference difficult by quickly rendgrmost models infea-
sible (e.g., figure 2); it also may be reasonable to assuneraiser or expert
will occasionally make mistakes. We soften this hard camnstby modeling the
probability of seeing: consistent responsesin...; trials as a binomial variable
with parametep,, such thap()|m) = p. if m is consistent with the policy query
¥ andp(v¥|m) = 1 — p. otherwise. Whether or not the oracle is assumed to be
perfect, policy queries make the inference more challepbecause a policy is
typically derived from a complex, nonlinear combinationioé model’s transition,
observation, and reward parameters. Thus, a constrairiteopdlicy introduces
dependencies between the model parameters, and theitmansliservation, and
reward distributions can no longer be considered indep#hyde

Recall from Section 3 that we maintain a distribution oveapaeterized mod-
els, so we represent the posterior over models by a set oflsamfp update the
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posterior, we must therefore apply the belief update (egudt) to our sample-
based representation of the belief. The most general esaperiance sampling [24],
dictates that for samples from some proposal distributioli (1) to be an unbi-
ased approximation of the desired postepigf;, v, the samples must be weighted

by

PM|n,w
= 11
wim) = 20 (12)
It is straightforward to derive the sequential weight updat a set of samples at
time ¢ with weightsw;,

Pai1(m) (12)

welm) = )

wherep,, is the probability of the modeh under the true posterior.

With only mild conditions onk (m)—it must have support whereves;, v
has support—the weighted samples are an unbiased apptointd the true
posterior. However, a good choice of proposal will reduce vhriance in the
approximation, which is important when relatively few sdegpare being used.
Indeed, because the model-uncertainty space is so largsaamples—models—
are relatively expensive, a good proposal distributiorriscal to our task [24].
In particular, a single policy query can render a large paithe model space
infeasible in a single time-step. After some interactionhwhe environment,
only a small part of that space may have significant proldgioiiass. If the agent’s
belief consists of only a few samples, then it is possiblé ahf@w policy queries
may make all of the samples infeasible.

5.2.3. Example of Model Inference

For illustration, we show a toy example on the canonicalrtigeblem [29].
In the tiger problem, a tiger hides behind one of two doors.ed¢h time step,
the agent may try to open a door or listen for the tiger; it nexa large reward
for opening the door without the tiger. The tiger problem bageral parameters,
but for the purposes of this discussion, we assume that aiolyate unknown, the
penalty for opening the door with the tiger and the probgbdf hearing the tiger
correctly, so the model spadé can be represented in two dimensions.

Figure 2 shows various aspects on the distribution spaee thi¢ agent has
tried opening the door 25 times on 3 independent trials @nsehe true model).
The top row shows the size of the feasible region, that isrélgeon of model
space consistent with the policy queries that have beerdaBleeh of the 3 trials
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have slightly different feasible regions because diffepaicy queries may have
been asked on each run, and we see that often times the regiobs quite small.

The small regions produced by this binary threshold—whetie model is
consistent with all policy queries—makes searching for el®dvith non-zero
probability difficult. The second two rows of figure 2 show waf softening this
hard, binary constraint. For each mode] the second row shows the total loss
> Qk (bn, al ) — Qr (b, ay,) for taking the actionu?, that is optimal undem
instead of the actioa;,. that is optimal under the true model, summed over the
histories associated with each policy query. The loss fangtenalizes models for
choosing actions that result in lower values, rather thaerpbki choosing actions
different from the expert. The smooth gradients in the sdaow give a sense
of models that, while not fully consistent with the policyegies, may still have
good performance. Although tlig* functions are smooth (and thus possibly well-
suited for gradient-based optimizations), computing tiiemtractable in all but
the smallest domains—such as the restricted tiger doméavbén contrast, we
see that the third row, which shows for how many policy queeach model is
inconsistent, is very non-smooth and thus difficult to ojen As in the first row,
a small set of models in the third row are consistent with ihe policy queries.
However, among the models that provide inconsistent resgsofor at least one
policy, looking at the number of inconsistent responses dahgives can help us
distinguish models closer to the true model.

We can define the “feasible” region as the region of the mopats where
the corresponding policies have little to no disagreemaettt tlve policy query re-
sponses (the light gray or white regions of Figure 2). Thethis low-dimensional
case, one might imagine using non-uniform grids to iteedgivefine the feasible
region. However, as the dimensionality of the model spaceeases (recall that
each POMDP parameter is a dimension), grid-based tectsguiekly become
intractable. The case of the tiger problem illustrates fbaour belief update
to be computationally robust, two factors are particulanhportant. First, as
policy queries can drastically affect the likelihood ofdarparts of the model
space, a belief update that makes only local adjustmengsiples—such as gra-
dient ascent—is unlikely to be successfuBecond, we see that a hard feasibility
constraint can make finding probable models extremely diffibut quantities
such as a model’s loss or inconsistent responses provideteeraneasures of a

8In the limit of a large number of samples, of course, feagibigons can always be found—
even if they are small.
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Figure 2: The first row plots feasible regions after 25 int&oms for three different tiger trials:
the black area represents the space of feasible models if@raioed by policy-queries), and
the red dot shows the true model. Depending on how the irtterscproceeded and how many
policy queries were asked, we see that the feasible regiomugkly become quite small. The
second and third rows show the incurred loss and number ohsistent policy query responses,
respectively.

model’s quality. Softening the feasibility constraint rotly simplifies the prob-
lem computationally, but it also corresponds to the behiaf the policy oracle and
the POMDP solver are occasionally fallible—both true in-wearld situations.

5.2.4. Resampling Models Between Tasks

Equation 11 describes how samples from a proposal disiwibut (m) can
be used to provide an unbiased representation for our dedis&ibutionp s, v-
We call this step the resampling step because we are drawmgrodels (instead
of adjusting weights on fixed models). Resampling modelsmsartant because,
over time, even a re-weighted set of samples may no longezsept the posterior
well. Moreover, if only a few high-weight samples remaing tBayes risk may
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appear smaller than it really is because most of the sampdaa ¢he wrong part
of the space. In this work, we resample models at regularrexpee intervals
(e.g., every 100 interactions with the environment) as a&lf the model weights
fall below a threshold (suggesting that none of the mod@gersbable).

We defineK (m) as the posterior over models given only the histohi€aot
the policy queriesl), that is, K(m) = py(ml|h), noting that for a Dirichlet-
multinomial prior, this distribution will have full suppbover the model space.
We use a Markov chain Monte Carlo approach, forward-filggbhackward-sampling
(FFBS) [31] to sample dynamics models from this proposatidistion K (m).
FFBS alternates between sampling potential state segsi@ncepotential obser-
vation and transition matrices. To sample the state segu&RdBS first computes
the standard forward pass of the Viterbi algorithm [32]:

a1 (s) = s, ar, 0r) Z ar(s)T'(s, ar, s')

whereqy(s) is initialized to the initial belief state of the POMDP. Hoves, in-
stead of computing the marginal distributions of each siatthe backward pass,
FFBS samples a possible state sequence. The finakgtsteampled fronav;(s).
Starting withsy_1, the remaining states are sampled according to

Sg ~ Oét(S)T(S, G, 3t+1)Q(3t+17 G, Ot)

Given a sequence of visited states, the observation anditimnmatrices
are easily sampled if we use a Dirichlet prior for each oletgon distribution
Q(s, a, -) and transition distributiof'( s, a, -). For example, given a Dirichlet prior
with parametergc,, c, ..., cjo|} and countgn,, , n,, ..., nO‘O‘} of how often each
observation is observed following stateind actiornz in our sampled sequence,
the observation distributiofi(s, a, ) is distributed as a Dirichlet with parameters
{e1+noy, ca + Ny, s Clo) + Mo, - BY repeating the process of resampling state
sequences and resampling the transition and observatiticesaseveral times,
FFBS draws samples from the true posterior over observatdriransition ma-
trices given the history. Each sampled model has equal weigh

The reward model remains to be sampled. Assuming that thardsware
discrete—that is, we have a set of possible reward valuesfeguebeforehand—
we can place a Dirichlet prior over reward models; “evidérzan be added to
the prior in the form of counts. Starting from the prior, we apply a proposal
distribution of the following form:

"Continuous rewards could be modeled in the same framewang (sr example, Beta priors,
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¢ With probability p,, use the prior over reward models as the base distribu-
tion.

e With probability1 — p,, use a base distribution that adds the weighted mean
reward model (from the previous samples) as a set of counitetorior.

e Randomly perturb the base distribution with counts chosem {—d, dJ.
e Sample a reward model from the perturbed distribution.

wherep, is the proportion of policy queries with which the best sagdpinodel
is inconsistent (so as the models improve, we are more liketiyust their reward
models as good starting points for sampling). For our expenits, we setl to
0.5.

Finally, once we have sampled a modelfrom this proposal distribution
K(m), we must assign it a weight. Our choice®{m) results in a particularly
simple form of the reward likelihood as the reward

_ pM|h,\I/(m|h> ‘I’)
puin(m|h)

w(m

x p(¥|m, h) (13)

where the likelihoogh(W|m, h) can be computed by solving each sampled model
m, playing forward the history leading to each policy quenryd @omputing the
action the POMDP model would have suggested. Specificatlynadel the prob-
ability of seeingk incorrect responses imtrials as a binomial variable with pa-
rameterp., wherep, is the probability a model fails a policy query due to the
approximate solver. Assigning the model the appropriatgontance sampling
weight corrects of the fact that the rewards were not chosen the true poste-
rior and ensures that the set of modelss an unbiased representation of the true
posterior,

5.2.5. Updating Weights during a Task

Resampling models is a computationally-intensive prgabssefore we only
resample models after the agent has gained a substantiahusk of experience
or if none of its current models have high weights. Betweears¢hresampling
periods, we update the weights on the models so that theincerto represent the

but inference would be much more challenging as the priottaadikelihood would no longer be
conjugate.
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current belief over models. If a policy quetyoccurs at time, thenp,, ;(m) o
p(¥|m)pars—1(m), and the weight update reduces to

wy(m) = w1 (m)p(y|m). (14)

wherep(y)|m) is p. if modelm is consistent with the policy query and1 — p,
otherwise.

6. Performance and Policy Query Bounds

6.1. Performance Bounds

The procedure in Section 5.1 defines how an agent can act imdtuk|-
uncertainty POMDP using the Bayes risk action selectioteigan. A reason-
able question is how well we can expect this procedure tcopartompared to
an agent that always queries the expert (and therefore ptitaally). We now
show formally in what sense the agent’s behavior is robust.\* be the value
of the optimal policy under the true (unknown) model. We fatsbw that we can
ensure that the expected loss at each action is no more thah high probabil-
ity. Next, we show how bounding the expected loss gives usuadon overall
performance.

Expected Loss for a Single ActioRecall from section 3 that the agent represents
its belief over POMDP models through a set of samples. Thesjrttegral in
equation 7 reduces to a sum over the agent’'s sample of POMDPstlie space

of models:

BR(a) ~ Z(ani(bi, a) — Q, (bi, a}))par(my) (15)

(2

The Bayes risk valuéR(a) is an approximation to the true Bayes risk?(a)

for two reasons. First, we are approximating the integradédqonation 7 with a
set of samples. Second, we are approximating the true acailore function?),,,
with a point-based approximatiap,, . We bound the error due to each of these
approximations to derive an overall bound for the erroBiR.

We first consider the error due using an approximate actﬂuevfunctior@mi
rather than the true action-value functi@y,,. Let the true risk-; be (Q(b;, a) —
Q(b;, a?)) and the approximate risk be(Q(b;, a)—Q(b;, a¥)). Then errofr; — 7|
due to the point-based approximation is given by:
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Lemma 6.1. Letd be the density of the belief points, defined to be the maximum
distance between any reachable belief to the nearest saneléef point. Then
the absolute difference; — 7;| may have an error of up to

2(Rmax — Rmin)éB
e (1—=7)

Proof. Lemma 6.1 follows directly from the PBVI error bound [27]. O

Now, suppose that no approximation was needed to computectiom-value

function, that is,@,,, could be computed exactly. L&ER be the approximate
Bayes risk computed by substituting the action-value fionan equation 15:

BR(a) ~ Y (Qp, (bi,a) — Qp,. (b, af))par(m;)
The quality of the approximatioBAR/ can be guaranteed with high probability if
a sufficient number of sampled modets are used:
Lemma 6.2. To bound the error of the approximatid® R — BAR,\ < €5 With
probability 1 — 4, n,, independent samples are needed from where
(Rmax - min(Rmina g))? 1

1 _
2(1 — )22 85

Ny, =

Proof. The maximum value of the differenc®b;, a) — Q(b;, a}) is trivially lower
bounded by feex—2itihuind) and upper bounded by zero (note that the risk is

1
always non-positive). Next we apply the Hoeffding boundwgampling erroe,

and confidence. O

Finally, we can combine the results from lemmas 6.1 and 6l2tmd the
error in the Bayes riskBR(a) — BR(a)| for any particular actior with high
probability:

Lemma 6.3. Let the number of samples, used to approximate the Bayes risk
be given by
(Rmax - min(Rmina g))?

0g <,
2 Rmax*Rmin 9
2(1 - 7)2(5 ~ A (1—)2 ) B)Q 0

wheredp is the sampling density of the belief points used to appratenthe
action-value functiord),,,,. Then the deviationBR(a) — BR(a)| will be less than
e with probability1 — 4.
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Proof. We want to bound the total error iy Lemma 6.1 gives deterministic
bound ofepz on any particular value of the differenpe — 7;|. To get an overall
bound of§, we sete, = £ — epg When computing the number of samples needed
T O

Before deriving a performance bound from this specific bourel note that
the Markov chain Monte Carlo inference presented in se@&i@t does not pro-
duce independent samples: the previous sample is used to propose the next
sample. To apply the bounds from lemma 6.3, one would haventpate the
effective number of samples, which would depend on chariatits of the under-
lying Markov chain. However, the Hoeffding bounds used towdethis approxi-
mation are already quite loose; for example in the benchiR@kIDP problems
presented in Section 7, we obtained good results with 50 Esmnphereas theo-
rem 6.3 suggested over 3000 samples may have been necessawith a perfect
POMDP solver.

Overall performance Bound.emma 6.3 bounds the risk associated with a single
action to be less thaph The following theorem provides a bound on the difference
between the Bayes-risk agent and an optimal agent:

Theorem 6.4. Suppose that an agent performs an action whose value isnwithi
¢ of the optimal action at every time step with probability Then the expected
valueV' is lower bounded by

V' >V — %) +(1—mn) ff";, (16)
where
_(1-90-v
BRSO

Proof. From lemma 6.3, we have that the agent will suffer a loss greaan¢ at
time ¢ with probabilityy. When the Bayes risk approximation fails, there are no
guarantees on the reward the agent receives; in the wossitoasuld end up in
an absorbing state in which it receivRs,;,, forever.

We consider a two-state Markov chain. In state 1, the “ndirette, the
agent receives a reward &f — &, whereR is the value the agent would have
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received under the optimal policy. In state 2, the agentivese?,,;,. Equation
17 describes the transitions in this simple chain and theegabf the states:

Vil | R-¢ 1—0 4 Vi
R R N o A Y
The first action puts the agent in state 1 with probability 6 and in state

2 with probabilityd. Solving the system gives the desired lower bound/6n=
(1 =0)Vi +dVa. O

In general, the actual performance will be much better tharbbund in equa-
tion 16, since most problems do not have an absorhipg-state from which the
agent can never escape.

Finally, we note that all of the performance guaranteesiggdéction are with
respect to the prior: we are treating the unknown medels a random variable,
and the optimal policy/ is one that makes the best decisigigen the uncer-
tainty p,, in the modelsTheorem 6.4 provides a bound on the expected Vilue
when making decisions regarding model uncertainty usiedtyes risk action-
selection criterion from Section 5.1 instead of solving fillémodel-uncertainty
POMDP.

6.2. Policy Query Bounds

Next we consider bounds on the number of policy queries askadt, we
show that the agent will only ask a finite number of policy dger Second, we
show that while it is difficult to characterize exactly hovetbbservation and tran-
sition models will evolve over time, we can check if the aniaddal & inter-
actions are sufficient to ensure that the probability of mgka policy query—
or equivalently, the probability of encountering a higbkrsituation—are below
some parameter,. We emphasize that the procedures described below are for
the purpose of analysis and not implementation. Theyateneant to be used to
determine how long that process will take.

The Number of Policy Queries Asked is Boundédlst, we argue that the agent
will ask only a finite number of policy queries, that is, thewher of policy queries
is bounded:

Theorem 6.5. An agent following the algorithm in Table 1 will ask only fenit
number of policy queries over an infinite learning trial.

21



Proof. If the transition, observation, and reward models are dr&dam finite
sets, then the total number of possible models is finite. &sgach policy query
invalidates at least one POMDP—we would not have requesteebgy if all the
sampled models agreed—we must eventually stop askingypolieries.

A similar argument holds even if the rewards are not drawmfaadiscrete set.
Here, the cost of a policy query limits the model resolutiSuppose a POMDP
m has an optimal policyr with valueV,,. If we adjust all the model parameters
by some smalt to create a new modet, then the valué’;, of the same policyr
will be close toV,, ( [33], theorem 1):

HR RHOO + 7“R||OO sup ||Ts,a_Ts,a||1

1—7 (1 =7)? seSaca

Thus, we can lower-bound the value of the optimal policy umdedelm in
some nearby modeh; specifically, we can create a ball around each medtsr
which the policies are withig. In this way, the valug¢ imposes a minimal level
of discretization over the reward space. Thus, by invalidgd modeln, a policy
guery invalidates a particular ball in the model space. Tthesnumber of policy
gueries will be bounded. O

||Vm - VﬁlHoo <

Probability of a Policy Query.The specific convergence rate of the active learning
will depend heavily upon the problem. Here, we show that anéd:(in theory)
test if £ additional interactions reduce the probability of makingadicy query

to some valug, with confidencej,. The core idea is that each interaction cor-
responds to a count when computing the Dirichlet posteri@ace the counts
are sufficiently large, the variance of the Dirichlet will bmall. Thus, even if
the mean of the distribution shifts with time, no additiopalicy queries will be
asked.

Theorem 6.6.Given a set of state-action visit courdt§rom the FFBS algorithm,
the following procedure will test # additional interactions reduce the probability
of making a policy query tp, with confidenceé,:

1. Update the count€’ with k interactions spread out so as to maximize the
entropy of the posterior. Sampitg, models from this posterior, where,,
is computed from lemma 6.3.

2. Computep; = py(1 — 2(1 — 0)), whered is the confidence used in the
approximation of the Bayes risk (lemma 6.3).

3. Sampler, > —27/4- (p;’)—?’ log 4, beliefsb uniformly from the belief space.
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4. Compute the Bayes risk for each belieflf less than gp;-proportion of
beliefs require policy queries, then, with confidenge: is an upper bound
on the number of interactions required until probabilityagking a policy

1 /!
query isp/.

Proof. We go through each part of the procedure step by step and $tatihe
final computation satisfies the desired bound.

1. Computing Bayes Risk from a Conservative PosteriorWe do not know
a priori the response to the interactions, so we use the maximurapgntr
Dirichlet posterior to compute the posterior Bayes risla(ils, assign thé
counts to assign an equal number of counts to each varidlfie)maximum-
entropy Dirichlet is conservative in that, compared to attyeo Dirichlet
posterior, it spreads out models as much as possible andveugstimates
the Bayes risk.

2. Correction for Approximate Bayes Risk. Lemma 6.3 gave the number of
modelsn,, required to estimate the Bayes risk witkiinvith confidence’.
This bound implies that we may misclassify the risk assediatith a belief
b with probability §. Thus, if the true fraction of beliefs requiring policy
queries ig,, we will only observe a fractiofil — §)p, in expectation. Since
the beliefs are uniformly sampled, we can apply a Chernatinoloto this
expectation to state that with probability— 4, no than2(1 — §)n, beliefs
will be misclassified.

Thus, we set our empirical test proportionfp= p,(1 — 2(1 — 9)).

3. Sampling a Sufficient Number of Beliefs.The last step of the procedure
involves computing the Bayes risk far, beliefs sampled uniformly and
accepting the value df if the empirical proportion of policy querigs, =
ng/me < pg, Wheren, is the number of beliefs that require policy queries
according to the Bayes risk computation.

Minimizing the number of sample, needed to guarantee that is near
p, With high probability requires two steps. First, we reqgsitbatp, to
be withine, of p; = p, — ¢, with probability j,. Next we optimize the
associated Chernoff bourdgd = e~"#/3; settinge, to 2/3p, gives us the
desired expressiom, > —27/4 - (p,)~* log d,. Finally, we substitute! for
p, to account for the approximation in computing the Bayes risk

8This bound requires; > 2 log %, but we will find that our final bound fom, is greater than
this value.
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Figure 3: Box plot of performance for three POMDP learningraches when learning over
a discrete set of four possible models. The medians of thieipslare comparable, but the ac-
tive learner (left) makes fewer mistakes than the passané (center). The Bayes risk action
selection criterion (right) does not cause the performamseffer.

7. Results

We first solve a discretized model-uncertainty POMDP to shwwitility of
policy queries. We next combine the policy queries with oay@&s-risk criterion
for learning with continuous-valued unknown parameters.ofAthe approaches
were coded in reasonably-optimized Matlab; depending esite of the domain,
a complete learning trials took between an hour to severaisho

7.1. Learning from a Limited Set of Models

In domains where model uncertainty is limited to a few, ddsemparameters,
we may be able to solve the model-uncertainty POMDP (in whiath the world
state and the world model are hidden variables) using stdrld@MDP meth-
ods. We consider a simple POMDP-based dialog manageménf3élswhere
the reward is unknown. We presume the model contains oneuof(thscrete)
possible reward levels and that the policy query had a fixedaated cost. Fig-
ure 3 compares the performance of the optimal policy—thdhessolution to the
model-uncertainty POMDP-with policy queries (left column), an optimal policy
without policy queries (middle column), and our Bayes risk pohegh policy
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Table 2: Problem Descriptions

Problem Number of Number of Number of
States Actions Observa-

tions

Tiger [29] 2 3 2

Network [29] 7 4 2

Shuttle [35] 8 3 5

Bulkhead [29] 10 6 6

Gridworld (adapted from [29] 25 4 16

Follow (adapted from [36]) 26 5 6

queries (right column). The difference in median perforoeis small, but the
variance reduction from the policy queries is substadtial.

Unfortunately, simply discretizing the model space dodsseale when try-
ing to solve model-uncertainty POMDP; adding one more le¥eliscretization,
which increases the number of models from four to 48, redutigpoor-quality
global solutions when using standard techniques. Next, negent results using
our Bayes-risk action selection criterion where we alloe/plarameters to take on
many more values.

7.2. Learning from a General Set of Models

We applied our approach to learn the complete model—tiansitobserva-
tions, and rewards—for several standard problems, suraethin table 2. For
each problem, 50 POMDP samples were initially taken from taofla= 1 prior
over models. The sampled POMDPs were solved very approgiyaising rel-
atively few belief points (500) and only 25 backups (see isgitg analysis in
Section A for details on the effects of these parameter esdicl he policy oracle
used a solution to the true model with many more belief pdib®@0-5000) and
250 backups. We took this solution to be the optimal poliayriBg a trial, which
continued until either the task was completed or a maximumbr of iterations

9Although the total reward obtained by the Bayes risk appnation appears higher, the dif-
ference in performance in both median and variance is ribigipetween the optimal policy and
the Bayes risk approximation.
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was reached, the agent had the choice of either taking a daawton or asking

a policy query § = —1) and then taking the supplied optimal action. The proba-
bility of expert errorp, was set to 0.3 in all tests. POMDPs were resampled every
100 interactions and the learning process consisted of tfi@0nteractions. The
entire learning process was repeated 10 times per problem.

The passive learner resampled its POMDP set after updasngrior over
transitions and observations using FFBS. Its reward modsl dvawn from the
prior, and it chose the action with the least Bayes risk (migas of how risky
that action was in absolute terms). The active learner us8&Ko sample models
given the action-observation histories and re-weightedséimples based on the
consistency of their responses to the policy queries. Intiaddto the Bayes
Risk criterion, we avoided common sample-death issuested with particle
filtering by replacing it with an importance sampling apprioghat provided better
approximations of the posterior. We also forced the actagrier to ask a policy
query if all model weights fell below a threshold. None of #ystems received
explicit reward information, but the active learner usedigyoqueries to infer
information about the reward model. Depending on the prablasks required
an average of 10 to 30 actions to complete.

Figure 4 compares the results of the passive learner ancttive &arner on
several standard problems. In general, the active leara@mtains a relatively
steady level of mean rewards: initially it uses the policeges to choose good
actions; later the agent performs well because it has endaghto reason about
the model. Thus, the policy queries “cover” for the agensueimg good per-
formance while it is still learning. The plots below eachfpanance plot show
that the number of policy queries generally decreases., Buisagent eventually
learns to perform well on its own but uses expert knowledgm#intain good
performance from the start.

Compared to the results for our previous work [19], this iefeee approach
generally results in better relative performance for thevadearner. For example,
in our previous work active learning improved the passiagrer’s final rewards
by 16.4 in tiger and 80.6 in gridworld; with the new inferertbe final rewards
now differ by 60 in tiger and 125 in gridworld. Passive penfi@ance also some-
times improves: for example, in shuttle, the passive l@adnes nearly match the
active learner’s performance in the end.

Inference in this model is still difficult, however, and pleims that require
specific sequences of moves—such as bulkhead or shuttleddprachallenge to
our approach. The combination of constrained transiti@cep with non-smooth
reward spaces results in many local optima from which it edlelnging to extract
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excellent solutions; resulting in occasional performagips during the learning
process. The exact reasons for these dips—aside from théhttcthe poste-
rior space is generally complex—is difficult to ascertaiayeloping more robust
inference techniques is a subject for future work.
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Figure 4: Performance of the passive learner (gray) andealgtarner (black) on several standard
problems. Error bars show the standard error of the mearrdewaach block of 500 counts of
experience. Plots below each performance plot show the auaflpolicy queries used in a trial.



8. Related Work

Using Bayesian methods for reinforcement learning is a aetive area of re-
search. One approach to MDP model learning, the Beetleitligof12], converts
a discrete MDP into a continuous POMDP with state varialdegfch MDP pa-
rameter. However, their analytic solution does not scalatalle the entire model
as a hidden state in POMDPs. Also, since the MDP is fully olzd®e, Beetle can
easily adjust its prior over the MDP parameters as it acquesgperience; in our
POMDP scenario, we needed to estimate the possible stateththagent had
visited. The authors have extended Beetle to partially mlagde domains [26],
providing similar analytic solutions to the POMDP case. Wk outlines effi-
cient approximations but results are not provided. Ano#relytic approach to
POMDP learning [37] extends concepts from utile suffix memor online re-
inforcement learning. All of these approaches require gwveards to be directly
observed—not indirectly inferred from policy queries—ahds are not applica-
ble to our setting.

Related work in MDP and POMDP learning has also considersgbkag to
approximate a distribution over uncertain models. Deartead. [10] discusses
several approaches for representing and updating pri@sMDPs using sam-
pling and value function updates. Strens [11] shows thavfoP problems, ran-
domly sampling only one model from a prior over models, andgithat model to
make decisions, is guaranteed to converge to the optimalypbbne resamples
the MDP sufficiently frequently from an updated prior overdats.

More recent work in Bayesian MDPs have provided a formalattarization
of the sample complexity required to achieve near-optireadard [38, 39, 40],
including for cases where the learner has access to a te@uméar to an oracle
to achieve efficient uses the notion of teacher (similar toracle) to achieve ef-
ficient apprenticeship learning [41]. This analysis usesessimilar assumptions
as the results in this paper, though does not cover partbbgrvable domains.

Extending bayesian methods to the case of POMDPs, Meduka\aigls the
problem of knowing how to update the prior by occasionallyuesting the true
state based on model-uncertainty heuristics. It convei@éise true model but
may make several mistakes before convergence. More rgcBatyes-adaptive
POMDPs [36, 22] learn POMDPs by incorporating parameterssitzs such as
Dirichlet counts and Gaussian means into the state spackeweraging the rel-
atively simple iterative updates when applying forwardnpiag. All of these
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methods assume that the reward function is kné&fwn.

Learning rewards—or preferences—is widely studied in tin@&n-computer
and human-robot interaction literature. The preferenmatation literature [44,
45] focuses on learning preferences based on queries, énat, flearning the re-
wards is itself the objective: the agent does not have tacalhetween learning a
model and performing a task. An exception is [46], wheretéwedition and obser-
vation parameters of a POMDP are considered known, but tardegparameters
are unknown. Much of the work in inverse reinforcement leagrassumes that
states are fully-observable [18, 47, 48, 49, 50]. Extersstorthe partially observ-
able case are less common; one recent example showed holhid¢geathis using
entire trajectory demonstrations as input [51]. Finatlre is a rich body of work
on learning by demonstration; for the most part, the objeas quite different,
in that the goal is to achieve expert-like behavior, but rextassarily to correctly
infer the underlying model.

9. Discussion and Conclusion

We presented an approach to POMDP model learning that is frartli-
pled and flexible enough for domains requiring online adagia Unlike the
approaches described in Section 8, our risk-based heuast policy queries
provide correctness and convergence guarantees throudjedearning process.
This risk-based action-selection allows us to choose @astrobustly in a com-
putationally tractable manner. The policy queries als@ hel address the is-
sue of robustness, by allowing the agent to ask questions wthe confused.
The policy queries also allow us to side-step issues of naleheedback when
interacting with humans. To demonstrate our approach oblg@mws from the
POMDP literature, we use a sample-based representatidre shodel posterior.
Using importance sampling for the belief update allows usc¢orporate heuristic
information—such as the approximated model posterior—prirecipled manner
that reduces the amount of computation required and yetinsnf@thful to the
true posterior.

Our approach for active learning in POMDPs robustly choa@s®#®ns and
has the flexibility to learn models for a variety of POMDP dansa To scale

10A somewnhat related area of work is planning with imprecisepeters [42, 43], but unlike
learning approaches, this area assumes that additioeahations with the environment cannot
reduce model-uncertainty.
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further, future work should aim to develop more refined psapalistributions—
for example, ones that incorporate some of the policy-quenrystraints—and
gradient-based approaches that can efficiently updatecleart We found that
in our domains, reward learning—the part of the model irf@rirom the policy
gueries—posed the most difficulties in the inference. Whisition and ob-
servation models could be learned for larger domains thar2@state, 5-action
gridworld presented in this work, learning the reward medel such domains
solely from policy queries started to become intractabledil reward vari-
ables, rather than discrete rewards, could also helpiparthe search space more
efficiently.

While incorporating policy queries poses the most infeeetitallenges, other
innovations could also reduce computational complexity tus help scale the
concepts in this work to larger domains. First, using adapkiCMC meth-
ods [52] could make the sampling more efficient. Second esime expect that
the model posterior will have smaller changes later in thenieg process, heuris-
tics for increasing the number of interactions betweenmgdiag steps—such
as monitoring the effective number of samples—may reduocgpcational load.
Using fewer samples or running fewer updates may also wotkiw@ractice,
although developing principled online inference would oficse be required to
maintain learning guarantees. Finally, As the number ofpdasneeded to rep-
resent the posterior grows, using POMDP solvers that altovitérative solution
refinement and methods for allocating more computation toerpoomising so-
lutions will also be key. These innovations will allow POMD&arning to be
deployed on larger, real-time applications.
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A. Sensitivity to POMDP solution parameters

To speed up computations, we used very approximate soduiahe sampled
POMDPs in section 7.2. Here, we show the sensitivity of ther@amations—
specifically, the number of belief points used and the nurableackups applied—
in two of the test domains, network and gridworld. For eadtiregg we ran 10
runs of 75 iterations for 25 random samples of the belief {sqfor a total of 250
runs per setting). When the running sensitivity analysishennumber of belief
points, the number of backups was held fixed at 50; when rigrnthi@ sensitivity
analysis for the on the number of backups, the number offselias held fixed at
500.

The plots in figure 5 show the distributions of the total resdgaeceived during
each run. Very small numbers of belief points (10) or back{fjshave much
lower rewards, but even moderate approximations, such @e@ef points and
25 backups, already have good performance. Thus, our appat&ns with 500
belief points and 25 backups should have been fairly clofegtoptimal solution.
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Network: Effect of PBVI Backups on Rewards Network: Effect of PBVI Backups on Rewards
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Figure 5: Effect of number of belief points and number of hgakon two of the test domains. We
see that overall, relatively few belief points—around 20 relatively few backups—around
25—already achieve good performance.
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