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Abstract

Recent compression tests of NiTi pillars of a wide range of diameters have

shown significant size dependency in the strain recovered upon unloading. In

this paper, we propose a numerical model supporting the previously proposed

explanation that the external Ti oxide layer may be responsible for the loss

of superelasticity in the small pillars. The shape memory alloy at the center

of the pillar is described using a nonlocal superelastic model, whereas the

Ti oxide layer is modeled as elastoplastic. Voigt-average analysis and finite

element calculations of the tests are compared to experiments for the range

of pillar sizes considered in the experiments. The simulation results also

suggest a size-dependent strain hardening due to the constraint on the phase

transformation effected by the confining Ti oxide layer.

Keywords: Shape memory alloys; Martensitic phase transformation; Size

effects

∗Corresponding author
Email address: rapa@mit.edu (Raul Radovitzky)

Preprint submitted to Acta Materialia April 9, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83208755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

The unique feature of shape recovery upon thermomechanical loading

cycle makes shape memory alloys (SMAs) very popular for applications in

aerospace industry, medical devices, consume products, and other engineer-

ing fields. The underlying mechanism for the shape memory and superelastic

effects, martensitic phase transformation, has been studied both theoretically

and experimentally [1–5]. Recent work has started to explore these effects at

the micro- and nanoscales for both single crystal and polycrystalline struc-

tures [6–8]. These studies have revealed some interesting size-dependent re-

sponses of copper-based SMAs and NiTi. For Cu-13.7 Al-5 Ni (wt.%) micro-

and nanopillars subject to compressive loading, it has been shown that the

stress hysteresis increases significantly as the diameter of the pillar decreases

[9]. The same effect has been observed in oligocrystalline Cu-13.7 Al-5 Ni

(wt.%) and Cu-22.9 Zn-6.3 Al (wt.%) microwire tension tests [7, 10, 11].

For bulk nanocrystalline Ni-50.3 at%Ti, it has been shown that thermally

induced martensitic phase transformation is suppressed in grains with diam-

eter less than 50 nm [12]. In addition, compression tests on single crystal

Ti-50.9 at.%Ni pillars have shown that the strain recovery diminishes with

the pillar diameter and is suppressed for pillars with diameter smaller than

about 200 nm [13]. Further study has revealed that this trend of losing

superelasticity at small pillar sizes does not depend on the crystal orienta-

tions [14]. Different explanations of this size-dependent behavior have been

proposed. In-situ compression tests have provided evidence of stress-induced

martensitic phase transformation in NiTi pillars with diameter below 200 nm

[15], which rules out the possible explanation that stress-induced martensitic
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phase transformation may be absent at this length scale. Focused ion beam

(FIB) machining that is commonly used to prepare these small pillars will

leave a Ga+ implanted outer layer about 10 nm in thickness, and it is hy-

pothesized that this damaged layer could significantly affect the mechanical

response of NiTi pillars when this outer layer thickness is comparable to the

pillar diameters [13]. Unfortunately, the mechanical properties of this Ga+

implanted NiTi layer are not available, which prevents further quantitative

investigation. Another explanation comes from the consideration of the sur-

face Ti oxide layer [13, 16], which has been shown to constrain the thermally

induced martensitic phase transformation in thin films [17, 18]. This Ti oxide

layer about 15 nm in thickness does not participate in the phase transforma-

tion, and also creates a Ti-depleted zone about 50 nm in thickness [16, 17, 19],

which has limited ability for the phase transformation since the increase in

the Ni content stabilizes the austenitic phase [1, 20]. For very small pillars,

Fig 1, the fixed-thickness Ti oxide layer and Ti-depleted zone take most of

the pillar volume, and the suppression of superelasticity can be expected.

In this work, we attempt to provide a model-based quantitative study on

how this Ti oxide layer affects the mechanical behavior of NiTi pillars under

compression, giving special emphasis to the size-dependent incomplete strain

recovery observed experimentally.

In the past, a large number of thermomechanical material models have

been developed for SMAs. A comprehensive review of these efforts can be

found in [5]. However, only a few address size effects: Sun and He proposed

a 2D strain gradient viscoelastic model to simulate the grain-size dependence

of stress hysteresis in bulk nanocrystalline NiTi [21]; Qiao et al. proposed

3



uncontaminated NiTi

Ti depleted zone

Ti oxide layer

Figure 1: Schematic cross-section of a NiTi nanopillar with Ti oxide layer and Ti-depleted

zone.

a 1D gradient plasticity model to study the size-dependent strain hardening

and stress hysteresis in single crystal Cu-Al-Ni [22]; Petryk et al. developed

a model of evolving martensitic microstructures to describe the grain-size de-

pendence of stress hysteresis [23, 24]; and Waitz et al. studied the suppression

of thermally induced martensitic phase transformation in the nanograins us-

ing an inclusion model [12]. There have also been a few papers addressing

incomplete strain recovery for SMAs: Yu et al. incorporated plasticity in

their austenite model at high temperature when slip becomes active [25];

Yan et al. incorporated plasticity in martensite to study the stabilization of

martensite due to slip [26]; Lagoudas et al. modeled the saturation of resid-

ual strain under cyclic loading, where the plastic strain rate was assumed to

be proportional to the rate of detwinned martensitic volume fraction [27, 28].

The modeling approach adopted in this paper treats the NiTi pillars as a

composite material comprising a uncontaminated NiTi core, and an external

Ti oxide layer. We propose a nonlocal superelastic model for the NiTi core,

and an elastoplastic model for the Ti oxide layer. Through Voigt-average

analysis and finite element simulations, these models are used to investigate
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the quantitative influence of the Ti oxide layer on the mechanical responses

of NiTi pillars under cyclic compression loading. The simulation results show

that the plastic deformation in the Ti oxide layer constrains the recovery of

deformation in the whole pillar, and the effect becomes severe with dimin-

ishing pillar size. The agreement with experimental results suggests that the

size-dependent strain recovery and the loss of superelasticity in small pillars

are likely to be associated with the plastic deformation in the Ti oxide layer.

2. Model

The NiTi pillar consists of a Ti oxide layer (mainly TiO2 [17, 29]), a

Ti-depleted zone and an uncontaminated NiTi SMA core, Fig. 1. The Ti-

depleted zone is expected to behave as a smooth transition from Ti oxide

to NiTi SMA. Due to the lack of material properties for this region, we

investigate the two bounding cases in which the Ti-depleted zone is either

full NiTi or full TiO2. The TiO2 layer has, respectively, a thickness of 15

and 65 nm. Material models for the NiTi SMA and TiO2 will be discussed

in the following subsections.

2.1. NiTi SMA – nonlocal superelasticity

We assume for simplicity isotropic response for both elastic and supere-

lastic effects. Specifically, we ignore the dependency of the elastic moduli,

the critical stresses for phase transformation, the maximum phase trans-

formation strain, and the phase transformation strain-hardening on crystal

orientation. For definiteness, we calibrate our model parameters to one spe-

cific composition and orientation. In our model, the displacement u and the

martensitic volume fraction ξ are the two primary unknown fields. The total
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strain E = 1
2
(∇u + (∇u)τ ), where ∇ denotes the spatial gradient and ()τ

denotes the transpose, is decomposed into an elastic part Ee and a phase

transformation part Et:

E = Ee + Et . (1)

The evolution of the phase transformation strain Et is assumed to follow the

relation

Ėt = ξ̇Λt (2)

where Λt is the phase transformation flow direction, and (̇) denotes temporal

derivatives. Following [30], Λt takes the following form

Λt =


√

3
2
ε̄t Sdev

‖Sdev‖ , for ξ̇ > 0√
3
2
ε̄t Et,r

‖Et,r‖ , for ξ̇ < 0
(3)

where Sdev is the deviatoric part of the Cauchy stress tensor S, the scalar ε̄t

is the maximum transformation strain along the loading direction, and Et,r

is the phase transformation strain tensor upon unloading.

The free energy per unit volume consists of the elastic, chemical, harden-

ing and nonlocal terms

ψNiTi =
1

2
(C : Ee) : Ee −∆seq(T − Teq)ξ

+
1

2
H t(ξ)2 +

1

2
S0`

2
e‖∇ξ‖2 . (4)

The elastic tensor C is the arithmetic average of the corresponding elastic

moduli for austenite and martensite, i.e. C = (1 − ξ)C A + ξCM . Teq is

the equilibrium temperature between the two phases in the stress-free state,

∆seq is the entropy for phase transformation from austenite to martensite at

Teq, and T is the temperature at which the experiments are performed. The
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hardening parameter H t has dimensions of stress and characterizes the classic

strain-hardening during phase transformation. The nonlocal term accounts

for the interfacial energy between the two phases. S0 is a model parameter

with dimensions of stress, and `e is the energetic length scale. Introducing

the gradient of the martensitic volume fraction ξ in the free energy leads to

an extra governing partial differential equation (micro-force equilibrium) in

addition to the classic force balance equation, both of which follow directly

from the principle of virtual power [31]. Consider any sub-domain V of the

NiTi SMA. The internal power expended on V can be expressed as

P int(Ėe, ξ̇) =

∫
V

S : Ėe + kξ̇ + knl · ∇ξ̇ dx (5)

where k and knl are the work-conjugate variables to ξ̇ and ∇ξ̇, respectively.

The external power expended on V can be expressed by

Pext(u̇, ξ̇) =

∫
∂V

t̂ · u̇ + k̂ξ̇ dx (6)

where ∂V is the surface of V , t̂ and k̂ are the traction and micro-traction,

respectively. Principle of virtual power states that

P int( ˙̃Ee, ˙̃ξ) = Pext( ˙̃u, ˙̃ξ) (7)

for any general velocity ( ˙̃u, ˙̃ξ, ˙̃Ee) satisfying the kinematic requirement ˙̃E =

1
2
(∇ ˙̃u + (∇ ˙̃u)τ ) = ˙̃Ee + ˙̃Et = ˙̃Ee + ˙̃ξΛt . Integrating by parts and using the

symmetry of the stress tensor S, the left hand side of Eq. (7) can be rewritten

as

P int( ˙̃Ee, ˙̃ξ) =

∫
V

(−∇ · S) · ˙̃u + (−S : Λ + k −∇ · knl) ˙̃ξ dx

+

∫
∂V

(S · n) · ˙̃u + (knl · n) ˙̃ξ dx (8)
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where n is the unit outer normal to the surface ∂V . Since Eq. (7) must

hold for any admissible field ˙̃u and ˙̃ξ, the following two partial differential

equations are obtained: the macro-force balance equation

∇ · S = 0 , (9)

and the micro-force balance equation

S : Λt − k +∇ · knl = 0 , (10)

as well as the following two boundary conditions: S ·n = t̂ and knl ·n = k̂ on

∂V . The second law of thermodynamics requires that the temporal increase

in the free energy cannot exceed the externally expended power:

˙∫
V

ψNiTi dx ≤ Pext . (11)

The temporal increment in free energy density can be expressed as ψ̇NiTi =

∂ψNiTi

∂Ee : Ėe + ∂ψNiTi

∂ξ
ξ̇ + ∂ψNiTi

∂(∇ξ) · ∇ξ̇. It then follows that

0 ≤ (S− ∂ψNiTi

∂Ee
) : Ėe + (k − ∂ψNiTi

∂ξ
)ξ̇

+ (knl − ∂ψNiTi

∂(∇ξ)
) · ∇ξ̇ . (12)

Inspired by the strain gradient plasticity theory in [31], the constitutive

relations for the work-conjugate variables are defined as S = ∂ψNiTi

∂Ee , k =

∂ψNiTi

∂ξ
+ Y sign(ξ̇), and knl = ∂ψNiTi

∂(∇ξ) , where the model parameter Y which has

dimensions of stress characterizes the resistance to phase transformation.

The first constitutive relation represents the classic Hooke’s law

S = C : Ee . (13)
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With the newly derived constitutive relations, Eq. (10) can be rewritten as

Y sign(ξ̇) = S : Λt − 1

2
(
∂C

∂ξ
: Ee) : Ee + ∆seq(T − Teq)

−H tξ + S0`
2
e(∇ · ∇)ξ , (14)

where the left hand side can be viewed as the resistance to the phase trans-

formation, i.e. ±Y for the forward and reverse transformation respectively,

and the right hand side can be viewed as the driving force for the phase

transformation. In the absence of the gradient term, Eq. 14) represents the

conventional local phase transformation conditions [30].

2.2. Ti oxide – plasticity

The TiO2 layer is modeled as isotropic elastic-perfectly plastic material.

The decomposition of the total strain tensor now reads

E = Ee + Ep , (15)

where Ep is the plastic strain tensor. The evolution of Ep follows the flow

rule

Ėp = ε̇pΛp , (16)

where ε̇p denotes the equivalent plastic strain rate, and Λp is the plastic flow

direction, which takes the normality rule

Λp =

√
3

2

Sdev

‖Sdev‖
. (17)

The constitutive relations include Hooke’s law,

S = C O : Ee , (18)
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where C O is the elastic moduli of TiO2, and the conventional J2 plastic yield

condition, √
3

2
‖Sdev‖ − σ̄y = 0 , (19)

where σ̄y is the compressive yield strength.

The plastic hardening of TiO2 is ignored because it is expected to be much

smaller than the strain-hardening rate of NiTi SMA. The fixed-thickness

TiO2 layer is supposed to dominate in the small pillars, while it has been

observed that pillars with diameter smaller than 200 nm exhibit less strain-

hardening than pillars with larger diameters, and the 162 nm [210] oriented

pillar even shows a perfect plateau [14].

2.3. Model parameters

The values of the SMA model parameters are determined for [111] ori-

ented Ti-50.9at%Ni, for which the size dependence of the strain recovery

is observed [13]. The elastic moduli are taken from the estimation of the

corresponding bulk material with the austenite Young’s modulus EA = 59

GPa, and the austenite Poisson’s ratio νA = 0.3 [13]. The elastic prop-

erties of martensite are assumed to be the same as those of austenite, i.e.

EM = EA = 59 GPa, νM = νA = 0.3. The equilibrium temperature Teq =

200 K, and the transformation entropy ∆seq = -4.05 J·mol−1·K−1/(a30NA) =

-0.245 MPa·K−1 are obtained from [20], where a0 = 0.3015 nm is the lat-

tice parameter of the austenite NiTi at room temperature [32], and NA is

the Avogadro constant. The maximum transformation strain ε̄t = 0.036 is

obtained from [33]. The transformation resistance, Y , is calculated through

10



the 1D degenerate case of the micro-force balance equation, Eq. (14),

Y sign(ξ̇) = σε̄t + ∆seq(T − Teq)−H tξ , (20)

where σ is the stress along the loading direction. At T = 298 K, a stress value

800 MPa has been reported as the point in which the forward martensitic

phase transformation initiates [14, 33]. Y = 4.6 MPa is then obtained by

applying the values of the parameters above. The hardening coefficient H t

is derived from the experimental strain-hardening rate in the following way.

From Eq. (20), one obtains ∂σ
∂ε
ε̄t − H t ∂ξ

∂ε
= 0 by taking the derivative with

respect to the total strain ε. From Eq. (13), one obtains ∂σ
∂ε

= E(1 − ∂ξ
∂ε
ε̄t)

with assumption E = EA = EM . Combining these two equations leads to

H t = ∂σ
∂ε

(ε̄t)2/(1 − 1
E
∂σ
∂ε

). By replacing ∂σ
∂ε

with the experimentally reported

value 20 GPa [14], H t = 39.2 MPa is obtained.

The group of parameters S0`
2
e has the effect to enhance the strain-hardening

rate for nonuniform phase transformations [22]. In this study, the values,

S0`
2
e = 0.01 nm2EA and 1 nm2EA, will be adopted to study this effect.

Material parameters for TiO2 including the Young’s modulus EO = 287

GPa, the Poisson’s ratio νO = 0.268, and the compressive yield strength σ̄y =

3 GPa are obtained from [34].

2.4. Composite Voigt-average model

In the analysis of composite materials, Voigt average, which assumes uni-

form strains, is commonly used to estimate the stiffness and the stresses.

In this work, we also employ it to analyze the response of the composite

NiTi/TiO2 pillars. Consider a NiTi pillar with diameter D that contains a

TiO2 layer with thickness tO. The strain along the loading direction ε is
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Figure 2: Compressive stress-strain curves of NiTi SMA and TiO2 under a uniaxial loading

cycle with maximum strain 3%.

assumed identical in the two materials. Given a strain history, the stress

along the loading direction within each material, σNiTi and σO, can be cal-

culated independently using its constitutive relations, Eq. (13), (20), (18)

and (19), where the gradient term in the NiTi SMA model is ignored. Fig.

2 plots the stress-strain curves of NiTi SMA and TiO2 during a compressive

loading cycle with maximum strain 3%. Complete strain recovery and stress

hysteresis in the strain-loading cycle can be observed in the response of NiTi

SMA. For TiO2, one can observe the typical strain-cycle response for an elas-

tic perfectly-plastic material leading to a residual stress when the strain goes

back to zero. The reaction force from the pillar cross-section, f , is the sum

of the reaction forces from the two materials, i.e.

f = π

(
D

2
− tO

)2

σNiTi + π

[(
D

2

)2

−
(
D

2
− tO

)2
]
σO . (21)
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And the average stress response of the composite can be obtained as follows

σ =
f

π
(
D
2

)2 = wσNiTi + (1− w)σO , (22)

where the weight w is defined as

w =

[
1− 2

(
tO

D

)]2
. (23)

The results using this model are shown in Section 3.

2.5. Finite element model

The composite model presented in the previous section does not consider

the interaction between the TiO2 layer and the NiTi core, and in particular

ignores the constraint from the TiO2 layer on the martensitic phase trans-

formation in NiTi SMA. In addition, due to the locality of the constitutive

models for the TiO2 plasticity and the SMA superelasticity, the homogenized

approach can only capture size effects through the volume ratio of the two

components but will be insensitive to a change of the spatial scale.

In order to explore the role of the interaction between the two components

including gradient effects at the TiO2-NiTi interface produced by the inter-

nal constraint to the phase transformation, three-dimensional finite element

calculations are performed using the full nonlocal SMA model. The pillar is

modeled as a cylinder of diameter D and height h. Due to symmetry, only

a quarter of the pillar is considered in the computation, Fig 3. In reality,

the top surface is also covered by the TiO2 layer, which could significantly

affect the mechanical response if the aspect ratio h/D is small. It has been

reported that the aspect ratio of all samples ranges between 1.6 and 3.9 [13],

although no such information for individual pillar is provided. For simplicity,
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Figure 3: Quarter pillar for finite element calculations.

we ignore this top TiO2 layer, and focus on the size effect related to changes

in the diameter. A fixed pillar height h = 100 nm is then assumed for all

the pillars in the finite element simulations. Due to the gradient terms, the

micro-force balance equation for NiTi SMA, Eq. (14), is a partial differential

equation of the martensitic volume fraction, and is coupled with the macro-

force balance equation, Eq. (9). With proper boundary conditions, these two

equations for NiTi SMA, and the governing equation for TiO2 (same as Eq.

(9)), complete the formulation of the pillar compression test boundary value

problem. A finite element discretization with a staggered coupled scheme is

used to approximate the resulting coupled macro- and micro-force balance

equations in weak form.

3. Results and Discussion

For both the composite Voigt-average and the finite element models, the

experiments are simulated as follows. Since both the superelasticity and the

plasticity are history-dependent, the strain history is applied in increments of
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Figure 4: Compressive stress-strain curves from (a) experiments [14] and (b) Voigt-average

analysis. Red and blue colors indicate the first and second loading cycles, respectively.

0.1%, and at each strain increment the constitutive models are integrated nu-

merically. Following the experimental conditions, the strain is first increased

to -3%, and then decreased until the reaction force becomes zero. The pillar

is then reloaded to -5% strain, and unloaded until the reaction force becomes

zero again. The evolution of the stress, the martensitic volume fraction (NiTi

SMA) and the plastic strain (TiO2) are recorded during the entire procedure.

The strain history is applied at a constant temperature T = 298 K.

3.1. Voigt-average model

In Fig 4, the stress-strain curves from the composite Voigt-average model

are compared to the experimental results for pillars with diameter 1030, 273,
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Figure 5: Comparison of experiments and Voigt-average of two extreme TiO2 thicknesses

for the displacement recovery during the first loading cycle.

and 173 nm. In these calculations, the TiO2 layer thickness tO is taken as 15

nm. The simulations reproduce some important features of the experimental

results. First, the residual strain at the end of the first loading cycle increases

significantly as the pillar diameter decreases. For the smallest diameter (173

nm) there is essentially no strain recovery except for the elastic response,

which indicates that in this case the superelastic effect is suppressed. By

contrast, the 1030 nm pillar almost completely recovers its deformation. The

medium-size pillar (273 nm) shows an intermediate response between these

two limits with some strain recovery. It can also be observed that the stress

hysteresis between the intermediate unloading and reloading clearly decreases

as the pillar diameter decreases.

Fig. 5 shows a summary of the experimentally-observed displacement

recovery as a function of pillar diameter as well as the predictions from the

Voigt model for two extreme TiO2 layer thicknesses. Two values of the
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Figure 6: Evolution of the stresses (top) and the strains (bottom) for the 273 nm pillar

from Voigt-average analysis.

TiO2 layer thickness, 15 and 65 nm, are used as described in Section 2.

It can be seen that the model captures the decrease in the displacement

recovery for decreasing pillar size and that the extreme cases in which the

Ti-depleted zone is considered as full NiTi and TiO2 provide nice bounds

for the experimental values. For very small pillar diameters, the two TiO2

layer thicknesses considered give an identical limit value of the recovered

displacement σ̄y/(E
O3%) ≈ 34.8%, which represents the response of pure

TiO2.

In order to gain more insight into the model response, in Fig. 6 we plot

the stress and strain history experienced by each material component as well

as the macroscopic average value as a function of load increment for the case

of the 273 nm pillar with TiO2 thickness 15 nm. More specifically, we show

the stress in NiTi, the stress in TiO2, and the average stress, Eq. (22); we also

show the applied strain, which is identical in the two materials, the phase
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transformation strain in NiTi, and the plastic strain in TiO2. The elastic

strains are not shown as they can be directly derived from the stresses in the

two materials. Singular points in the load history have been identified with

letters to facilitate the discussion. During the first thirty load increments

in which the applied strain is increased up to -3%, we can first observe the

elastic loading up to point (a) ( -1% applied strain) when TiO2 starts to

yield plastically, followed by the onset of transformation in NiTi SMA at

(b) ( -1.4%). Continued loading promotes the development of the phase

transformation strain and the plastic strain until (c) where the applied strain

reaches the prescribed maximum. At point (c) when unloading begins both

components experience elastic unloading until (d) when the NiTi SMA starts

the reverse phase transformation. It is worth noting that at point (e) during

the elastic unloading the stress in TiO2 vanishes before the average stress

does and becomes tensile with further decrease of the applied strain. At (f),

the average stress reaches zero and the first loading cycle is complete with

a residual strain of about -1.1%; residual stresses of about 2.5 GPa (tensile)

and -0.6 GPa (compressive) remain in TiO2 and NiTi SMA, respectively;

the residual plastic strain in TiO2 is about -2%, whereas the residual phase

transformation strain in NiTi SMA is about -0.1%. During the second loading

cycle the applied strain is increased from its residual value to -5% (i). There

is first elastic reloading up to (g) where the forward phase transformation

begins, whereas TiO2 continues to load elastically up to (h) where plastic

yielding starts again. Both the phase transformation strain and the plastic

strain continue developing until the applied strain reaches the prescribed

maximum at (i). Subsequent unloading from (i) proceeds elastically until
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Figure 7: Residual martensitic volume fraction in NiTi SMA and the percentage of dis-

placement recovery at the end of first loading cycle.

the reverse phase transformation of NiTi SMA starts at (j). At (k), the

stress in TiO2 becomes tensile as in the first loading cycle and grows to the

point (l) where plastic yielding under tension starts. At (m), the average

stress eventually decreases to zero, and the second loading cycle is complete

with a residual strain about -2.1%; residual stresses of about 3 GPa (tensile)

and -0.78 GPa (compressive) remain in TiO2 and NiTi SMA, respectively;

the residual plastic strain in TiO2 is about -3.2%, whereas the residual phase

transformation strain in NiTi SMA is about -0.8%.

Further insights can be obtained from the Voigt-average model. For exam-

ple, Fig. 7 shows the residual martensitic volume fraction in NiTi SMA and

the displacement recovery at the end of the first loading cycle as a function

of the volume fraction of NiTi SMA in the composite pillar, i.e. w defined

in Eq. (23). It can be seen that the residual martensitic volume fraction

decreases as w increases, and eventually vanishes at w = 0.85. For a fixed
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TiO2 thickness, it means that the stress-induced martensite does not fully

transform back to the austenite in small pillars; the amount of the residual

martensite decreases with increasing pillar size; and the reverse transforma-

tion will be complete for pillars with the volume fraction of NiTi SMA above

0.85. It can also be seen that the displacement recovery increases monoton-

ically with w. When w = 0, the displacement recovery equals σ̄y/(E
O3%),

which represents the pure TiO2 response. When w = 1, the displacement

recovery is 100%, which represents the pure NiTi SMA response. The curve

is steepest for w above 0.8, which indicates that the displacement recovery

is most sensitive within this range.

3.2. Finite element simulations

As mentioned in Section 2.5, we have also conducted three-dimensional

finite element simulations using the nonlocal SMA model in order to ex-

plore possible additional size effects resulting from the constraint to phase

transformation at the TiO2-NiTi interface.

The following boundary conditions are adopted to simulate the pillar

compression tests: ui = 0 at xi = 0 for i = 1, 2, 3, and u3 = û3 at x3 = h.

The displacement û3 is prescribed to match the strain history in the exper-

iments. At the TiO2-NiTi interface ((x21 + x22)
1
2 = D/2 − tO), we constrain

the martensitic phase transformation with the boundary condition in the

micro-force balance equation (10) by setting the martensite volume fraction

ξ = 0.

In Fig. 8, stress-strain curves extracted from finite element simulations

for three pillar diameters with TiO2 thickness of 15 nm and the nonlocal

energetic coefficient S0`
2
e = 1 nm2EA are compared with the Voigt-average
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Figure 8: Compressive stress-strain curves of 100, 175, 400 nm pillars during the first

loading cycle, and the distribution of martensitic volume fraction along pillar radius when

first loaded to 3% strain.

results. It can be seen that the finite element model has also captured the

feature of increasing residual strain for decreasing pillar size, and the residual

strains predicted are very close to the Voigt-average results. It is also clear in

both the finite element and Voigt-average results, that the apparent elastic

modulus and the yield stress increase for decreasing pillar size. This can be

attributed to the increasing proportion of TiO2, whose Young’s modulus and

yield strength are larger than the Young’s modulus and the critical stress of

the NiTi SMA, respectively. The finite element results also show an enhanced

strain-hardening compared to the Voigt-average results, as expected from the

nonlocal SMA model [22]. In Fig. 8, we also plot the martensitic volume

fraction along the radial direction at the maximum applied strain. It can

be seen that the Voigt model has predicted an identical value about 0.3 for

the three pillar sizes, whereas the martensitic volume fraction predicted by
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Figure 9: Displacement recovery during the first loading cycle extracted from finite element

simulations in comparison with experiments and Voigt-average results.

the finite element model decreases, and the relative area of influence of the

TiO2-NiTi interface expands for decreasing pillar size.

In Fig. 9, we summarize the displacement recovery at the end of the first

loading cycle predicted by the finite element model for a wide range of pillar

diameters, and compare it with the experiments and the predictions of the

Voigt-average model. It can be seen that the displacement recovery predicted

by the finite element model for the two representative values of S0`
2
e is very

close to and sometimes even coincides with the corresponding prediction

of the Voigt-average model. Since the nonlocal energy and the interaction

between the NiTi SMA and TiO2 are not considered in the Voigt-average

model, the match suggests that these two factors have a negligible impact on

the amount of the displacement recovery.

In [14], the experimental stress-strain curves have shown that the strain-

hardening rate during the phase transformation is highest for medium-size
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Figure 10: Strain-hardening rate during the phase transformation extracted from finite

element simulations in comparison with experiments and Voigt-average results.

pillars with diameter between 200 and 400 nm, and the differences in the

strain-hardening rate are attributed to the taper shape of the individual pil-

lar. However, this explanation has not been further quantified. In this study,

we proceed to interpret the experimental observations with our model, which

suggests a pillar-size dependence on the strain-hardening rate. In Fig. 10,

the strain-hardening rate extracted from the finite element simulations with

TiO2 thickness of 15 nm and two representative values of S0`
2
e are compared

with those extracted from the experiments and the Voigt-average results.

For the finite element simulations with S0`
2
e/E

A = 1 nm2, it can be seen that

starting from large pillar sizes, the strain-hardening rate first increases for

decreasing pillar size, and at about 200 nm it starts to decrease with further

decrease in the pillar size, which is consistent with the experimental obser-

vations. It has been shown in [22] that for pure SMA, the hardening effect

increases for decreasing pillar size due to the nonlocal term in the free energy
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and the constraint of phase transformations. However, because of the pres-

ence of the TiO2 layer, in smaller and smaller pillars, the strain-hardening

rate eventually drops as it approaches the perfect plastic response. For the

finite element simulations with much smaller S0`
2
e, the enhancement of the

strain-hardening rate due to the nonlocal energy is negligible, and the result

simply coincides with the prediction from the Voigt-average model, which

decreases monotonically with decreasing pillar size.

4. Conclusions

In this work, we have proposed an approach to model the NiTi nanopillars

subject to cyclic compressive loadings. The NiTi pillars have been treated as

a composite material comprising a NiTi SMA core, and a TiO2 outer layer,

whose thickness is assumed to be fixed regardless of pillar sizes. A nonlo-

cal superelastic material model with the gradient of the martensitic volume

fraction in the free energy has been used for NiTi SMA, and an elastoplastic

material model has been used for TiO2. Composite Voigt-average analysis

and finite element calculations have been performed to study the role of the

TiO2 layer in the cyclic compression tests of NiTi pillars.

Both Voigt-average and finite element simulations have captured the ex-

perimental observation of the loss of superelasticity in the small pillars. It

has been shown that the plastic deformation in the TiO2 layer prevents the

complete strain recovery of the pillar during unloading, an effect that is more

noticeable for smaller pillar sizes, i.e. as the TiO2 layer takes more of the

pillar volume. This results in the increase of both the residual strain and the

residual martensitic volume fraction for decreasing pillar size.
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The finite element simulations have also provided an explanation of the

experimentally observed size dependence on the strain-hardening rate during

the phase transformation, where the strain-hardening rate first increases and

then decreases with decreasing pillar size. In large pillars, where NiTi SMA

occupies most of the volume, the nonlocal energy together with the confine-

ment from the TiO2 layer on the phase transformation causes the increase

of the strain-hardening rate for decreasing pillar size. In very small pillars,

where the TiO2 layer occupies relatively more volume, the response approxi-

mates the perfect plasticity, leading to the drop of the strain-hardening rate.
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