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Abstract

A new Monte Carlo code called OpenMC is currently under development at the Massachusetts Institute of Technology as a tool
for simulation on high-performance computing platforms. Given that many legacy codes do not scale well on existing and
future parallel computer architectures, OpenMC has been developed from scratch with a focus on high performance scalable
algorithms as well as modern software design practices. The present work describes the methods used in the OpenMC code
and demonstrates the performance and accuracy of the code on a variety of problems.
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1. Introduction

The introduction of exascale computing in the next decade
will introduce a variety of challenges both for hardware and
software developers. As such, research and development ef-
forts aimed at enabling high-fidelity, large-scale simulations
that will scale on current and future computer architectures
are currently underway. To support these studies, a new
Monte Carlo code has been under development since early
2011 at the Massachusetts Institute of Technology. The pri-
mary motivation for developing a new Monte Carlo code
rather than using a previously developed code is to have a
code that is easily extensible for research purposes in addi-
tion to being high performance, freely available, and written
in a programming language conforming to a contemporary
standard rather than an obsolete language like FORTRAN 77.

2. Methods

2.1. Physics

The initial work on OpenMC has focused on criticality cal-
culations as applied to the simulation of nuclear reactors. The
solution of the eigenvalue problem proceeds by the method of
successive generations (Lieberoth, 1968) wherein a constant
number of neutron histories are tracked from birth to death.
The data governing the interaction of neutrons with various
nuclei are represented using the ACE format (X-5 Monte Carlo
Team, 2008b) which is used by MCNP (X-5 Monte Carlo Team,
2008a) and Serpent (Leppänen, 2007). ACE-format data can
be generated with the NJOY nuclear data processing system
which converts raw ENDF/B data into linearly-interpolatable
data as required by most Monte Carlo codes. The use of a
standard cross section format allows for a direct comparison
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of OpenMC with other codes since the same cross section
libraries can be used.

The ACE-format contains continuous-energy cross sec-
tions for the following types of reactions: elastic scattering,
fission (or first-chance fission, second-chance fission, etc.),
inelastic scattering, (n, xn), (n,γ), and various other absorp-
tion reactions. For those reactions with one or more neutrons
in the exit channel, secondary angle and energy distributions
may be provided. In addition, fissionable nuclides have total,
prompt, and/or delayed ν as a function of energy and neutron
precursor distributions. Many nuclides also have probabil-
ity tables to be used for accurate treatment of self-shielding
in the unresolved resonance range. For bound scatterers,
separate tables with S(α,β) scattering law data can be used.

One important aspect of a Monte Carlo code is the man-
ner in which macroscopic cross sections are calculated during
a simulation. In general, cross sections are represented as
tabulated functions of energy that are linearly interpolated
between successive values. However, the energy values at
which cross sections are tabulated are different from one
nuclide to another. Thus, in order to determine the total
cross section of a material, it may be necessary to do a binary
search on the energy grid of each nuclide within the mate-
rial. In the Serpent Monte Carlo code, a unionized energy
grid is constructed and used for all nuclides as described
in a recent work by Leppänen (2009). The downside of a
unionized energy grid is that the memory requirement may
be prohibitively high for problems with many nuclides.

OpenMC uses an indexing technique to give the same
algorithmic benefit of a unionized grid while requiring much
less memory. First, an array of energy values is constructed
that is the union of all points on each nuclide energy grid.
Then, an array of pointers is stored for each nuclide that
gives the corresponding index on the nuclide energy grid for
each value on the union energy grid. This technique does not
require that the array of cross sections for each nuclide be
modified in any way; instead, the extra array of pointers for
each nuclide provides a quick means of determining what in-
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dices to interpolate between when calculating a cross section
given the index on the union energy grid.

For neutrons at higher energies, it can be safely assumed
that the motion of the target nucleus is negligible relative to
the velocity of the neutron itself. However, in the thermal and
intermediate energy ranges, the target velocity will alter both
the cross sections and the secondary energy and angle distri-
butions of scattered neutrons. To account for this effect on
cross sections, Doppler broadening is typically performed in
the cross section generation stage. For the angle and energy
distributions, OpenMC uses a free gas approximation (Gel-
bard, 1979) wherein the velocities of the target nuclei have
a Maxwellian distribution. For thermal neutrons scattering
from bound molecules such as hydrogen or deuterium in wa-
ter, graphite, and beryllium, the free gas approximation will
not accurately capture the scattering kinematics and S(α,β)
scattering law data must be used.

In the unresolved resonance energy range, resonances
may be so closely spaced that it is not possible for experi-
mental measurements to resolve all resonances. To properly
account for self-shielding in this energy range, OpenMC uses
the probability table method (Levitt, 1972). For most thermal
reactors, the use of probability tables will not significantly
affect problem results. However, for some fast reactors and
other problems with an appreciable flux spectrum in the un-
resolved resonance range, not using probability tables may
lead to incorrect results (Weinman, 1998).

While extensive variance reduction techniques are not
currently available in OpenMC at the time of this writing,
a survival biasing method has been implemented that can,
under certain circumstances, help increase the figure-of-merit
in a Monte Carlo simulation. When survival biasing is used,
absorption never occurs explicitly and instead, a particle’s
weight is reduced by the probability that it would have been
absorbed at each collision. Weight cutoffs and Russian roulet-
ting also must be employed to ensure that neutrons of very
low weight are not tracked indefinitely.

2.2. Geometry
In order to model arbitrarily complex geometric objects,

OpenMC uses a constructive solid geometry representation.
In such a representation, any closed volume can be repre-
sented as the union, intersection, and/or difference of mul-
tiple half-spaces. Each half-space is in turn defined as the
positive or negative side of a plane or quadratic surface. This
allows curved surfaces such as spheres and cylinders to be
modeled exactly with no error due to mesh discretization.
Almost all geometries of interest in particle transport can be
modeled with first and second-order surfaces with the excep-
tion of some fusion geometries where a fourth-order torus is
required.

As is typical in most Monte Carlo codes, OpenMC pro-
vides constructs that allow the user to model a two or three-
dimensional structured mesh consisting of quadrilaterals or
hexagons. These constructs are useful for modeling the core
and assembly layout in a variety of commercial and research
reactor designs. As in MCNP and Serpent, these repeated

structures are handled through the use of universes. Trans-
mitting, vacuum, or reflective boundary conditions can be
applied to any surface giving the user full flexibility in the
treatment of boundaries.

To debug geometry and tracking errors, a rudimentary
plotting capability is also available in OpenMC that relies on
the actual geometry tracking routines rather than an external
code. As OpenMC continues to mature, it is likely that more
geometric constructs and advanced plotting/post-processing
capabilities will become available that give the user more
flexibility and aid model generation and analysis.

2.3. Tallies
The MC21 code currently under joint development by the

Bettis and Knolls Atomic Power Laboratories (Sutton et al.,
2007) has demonstrated the ability to handle very large num-
bers of tallies efficiently. The tally capability in OpenMC
takes a similar philosophy to ensure scalability. The user
can specify one or more filters which identify which regions
of phase space should score to a given tally as well as the
scoring function. For example, if the desired tally was the
(n,γ) reaction rate in a fuel pin, the filter would specify the
cell which contains the fuel pin and the scoring function
would be the radiative capture reaction rate. The following
scoring functions are currently available: flux, total reaction
rate, scattering reaction rate, neutron production from scat-
tering (Herman, 2011), higher scattering moments, (n, xn)
reaction rates, absorption reaction rate, fission reaction rate,
neutron production rate from fission, and surface currents.
The following variables can be used as filters: universe, mate-
rial, cell, birth cell, surface, mesh, pre-collision energy, and
post-collision energy.

With filters for pre- and post-collision energy and scoring
functions for scattering and fission production, it is possible
to use OpenMC to generate cross sections with user-defined
group structures. These multigroup cross sections can subse-
quently be used in deterministic solvers such as coarse-mesh
finite difference (CMFD) diffusion.

As has been demonstrated (Veen and Hoogenboom, 2011),
some Monte Carlo codes suffer severe performance penalties
when tallying a large number of quantities. Care must be
taken to ensure that a tally system scales well with the total
number of tally bins. In OpenMC, a mapping technique is
used that allows for a fast determination of what tally/bin
combinations need to be scored to a given particle’s phase
space coordinates. For each discrete filter variable, a list is
stored that contains the tally/bin combinations that could
be scored to for each value of the filter variable. If a parti-
cle is in cell n, the mapping would identify what tally/bin
combinations specify cell n for the cell filter variable. In this
manner, it is not necessary to check the phase space variables
against each tally. Note that this technique only applies to
discrete filter variables and cannot be applied to energy bins.
For energy filters, it is necessary to perform a binary search
on the specified grid.

Lastly, two special types of tallies should be mentioned.
One is a global tally for the effective multiplication factor.
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There are three estimators for k-effective available in OpenMC:
analog, collision, and track-length. The analog estimator is
simply the number of fission sites that were actually produced
during a cycle. This estimator will be strongly correlated with
the collision estimator. In addition to the k-effective global
tally, the user can also define a mesh over which the Shannon
entropy should be calculated in order to assess convergence
of the source distribution (Brown, 2006).

2.4. File formats

2.4.1. User input
Given that many Monte Carlo particle transport codes

have been in production use for decades, it is perhaps not
surprising that their user input formats are reminiscent of the
days when decks of punch cards had to be used to perform
a simulation. Each code generally has its own arbitrary for-
mat for specifying input and, unfortunately, these formats are
generally not “user-friendly”. To a new user of some Monte
Carlo codes, an input file may appear as merely a conglomer-
ation of numbers in an ASCII file with no apparent meaning.
Thus, when OpenMC was designed, it was decided that the
user input should be standardized to a format which would
be easy-to-use as well as convenient for code developers to
modify and extend.

Rather than use an arbitrary text format, OpenMC uses
Extensible Markup Language (XML) for all user input files.
The XML format makes it easy for a user to visually inspect an
input file and determine its contents as well as for the code
developer who must write a routine that reads the input. All
the input for a simulation is specified in multiple files that are
logically grouped instead of one long input file. In the present
version of OpenMC, separate XML input files are created
for the geometry, the materials, miscellaneous settings, and
tallies. Further extensions to the code may add additional
input files such as input parameters for OpenMC accelerated
by coarse-mesh finite difference methods.

To demonstrate the salient features of the user input for-
mat, let us look at an example of a set of input files from a
real model, in this case the U233-MET-FAST-002 benchmark
problem from the International Handbook of Evaluated Criti-
cality Safety Benchmark Experiments (NEA Nuclear Science
Committee, 2009). This benchmark has a single spherical
region with enriched U-233 metal surrounded by a spherical
shell of U-235. Fig. 1 shows the geometry.xml file which de-
scribes the constructive solid geometry model. A few points
should be made regarding this file. Firstly, the order in which
the <cell> and <surface> elements appear is not of any
consequence. Secondly, the attributes on the <cell> and
<surface> elements could have appeared as sub-elements
defining the same parameters. This gives extra flexibility to
the user in how they choose to define their input. Fig. 2
shows the materials.xml file describing the materials that fill
the two regions in the solid geometry model. The units for
the density of the material are written explicitly and can be
given in other formats such as atoms per barn-cm. On the

<nuclide> elements, “ao” stands for atom fraction1. Weight
fractions can alternatively be specified with the “wo” attribute.
Fig. 3 shows the settings.xml file that describes all simulation
parameters and other options that the code should or should
not use. Lastly, Fig. 4 shows the tallies.xml that specifies what
quantities the user wants to determine from the simulation.
In this case, the code will give the nu-fission reaction rate,
νΣ fφ, in the U-233 sphere and the U-235 shell, each over
two energy groups.

2.4.2. Simulation output
With many simulation codes, the output from the sim-

ulation is either written directly to the standard output or
to an ASCII file with some arbitrary format. This can make
post-processing and analysis of results considerably more
difficult than if the results had been written in a standard
format. OpenMC can provide simulation results, such as
k-effective and tally results, in both a traditional ASCII file
as well as a binary file using the Hierarchical Data Format
(HDF5) (Koranne, 2011). By providing an HDF5 output, it be-
comes trivial to view output using programs such as HDFView
or analyze results through PyTables (Alted et al., 2012), a
third-party Python package that enables easy manipulation
of HDF5 data. Additionally, large tally outputs can be written
to disk efficiently, even using compression if necessary. HDF5
also makes performing parallel I/O much easier than would
be otherwise since the API provides standard calls for this
purpose.

Fig. 5 shows typical information2 that is printed to screen
at the end of a simulation, in this particular case results
from the U233-MET-FAST-002 benchmark. This case was run
with 50 inactive and 4000 active batches, each with 100,000
particles, on a desktop with a quad-core processor. All the
information printed to standard output would also be written
to the HDF5 output file.

2.5. Parallelism

One weakness in many Monte Carlo codes is the ability to
run a simulation with more than a few dozen processors and
attain good parallel scalability. In criticality calculations, this
sub-optimal performance is largely related to the implemen-
tation of the fission bank, an array in memory where fission
sites are stored during one generation of neutrons and sam-
pled to select sites for a subsequent generation of neutrons.
A typical parallel implementation of the fission bank relies on
all processes sending their fission sites to one master process
who then sorts and broadcasts the source sites for the next
generation.

In OpenMC, a new algorithm has been adopted that over-
comes the poor scalability of typical parallel fission bank al-
gorithms (Romano and Forget, 2012). Since the source sites
for each generation are sampled from the fission sites banked

1If the atom fractions do not sum to unity, they are automatically renor-
malized.

2Note that the format of the standard output is subject to change.
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<?xml version="1.0"?>
<geometry>

<cell id="1" material="1" surfaces="-1"/>
<cell id="2" material="2" surfaces="1 -2"/>

<surface id="1" type="sphere" coeffs="0. 0. 0. 4.5999"/>
<surface id="2" type="sphere" coeffs="0. 0. 0. 6.5887" boundary="vacuum"/>

</geometry>

Fig. 1. Geometry XML file for benchmark model U233-MET-FAST-002.

<?xml version="1.0"?>
<materials>

<default_xs>70c</default_xs>

<material id="1">
<density value="18.644" units="g/cm3" />
<nuclide name="U-233" ao="4.7312e-2" />
<nuclide name="U-234" ao="5.2770e-4" />
<nuclide name="U-238" ao="3.3015e-4" />

</material>

<material id="2">
<density value="18.80" units="g/cm3" />
<nuclide name="U-235" ao="4.4892e-2" />
<nuclide name="U-238" ao="3.2340e-3" />

</material>

</materials>

Fig. 2. Material XML file for benchmark model U233-MET-FAST-002.

<?xml version="1.0"?>
<settings>

<criticality>
<batches>4050</batches>
<inactive>50</inactive>
<particles>100000</particles>

</criticality>

<source>
<type>box</type>
<coeffs>-1 -1 -1 1 1 1</coeffs>

</source>

</settings>

Fig. 3. Settings XML file for benchmark model U233-MET-FAST-002.
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<?xml version="1.0"?>
<tallies>

<tally id="1">
<filters>
<cell>1 2</cell>
<energy>0.0 0.653e-6 20.0</energy>

</filters>
<scores>nu-fission</scores>

</tally>

</tallies>

Fig. 4. Tallies XML file for benchmark model U233-MET-FAST-002.

from the previous generation, it is a common occurrence for a
fission site to be banked on one process and sent back to the
master only to get sent back to the same process as a source
site. As a result, much of the communication inherent in the
typical fission bank algorithm is entirely unnecessary. By keep-
ing the fission sites local, having each process sample fission
sites, and sending sites between processes only as needed,
one can cut down on most of the communication while still
maintaining reproducibility. The algorithm in OpenMC works
as follows:

1. An exclusive scan is performed on the number of sites
banked, and the total number of fission bank sites is
broadcast to all processes. By picturing the fission bank
as one large array distributed across multiple processes,
one can see that this step enables each process to de-
termine the starting index of fission bank sites in this
array. Let us call the starting and ending indices on the

ith process ai and bi , respectively;
2. Each process samples sites at random from the fission

bank using the same starting seed. A separate array on
each process is created that consists of sites that were
sampled local to that process, i.e. if the index of the
sampled site is between ai and bi , it is set aside;

3. If ai is less than iN/p where N is the total number of
particles per generation and p is the number of pro-
cessors, then send iN/p− ai sites to the left adjacent
process. Similarly, if ai is greater than iN/p, then re-
ceive ai− iN/p from the left adjacent process. This idea
is applied to the fission bank sites at the end of each
process’ array as well. If bi is less than (i+1)N/p, then
receive (i + 1)N/p − bi sites from the right adjacent
process. If bi is greater than (i + 1)N/p, then send
bi−(i+1)N/p sites to the right adjacent process. Thus,
each process sends/receives only two messages under
normal circumstances.

=============> TIMING STATISTICS <=============

Total time for initialization = 1.2780E+00 seconds
Reading cross sections = 3.0480E-01 seconds
Unionizing energy grid = 1.1100E-01 seconds

Total time in simulation = 5.7508E+02 seconds
Time in transport only = 5.2355E+02 seconds
Time in inactive batches = 6.6701E+00 seconds
Time in active batches = 5.6841E+02 seconds
Time between generations = 5.0492E+01 seconds
Accumulating tallies = 3.3550E-01 seconds
Sampling source sites = 1.6729E+01 seconds
SEND/RECV source sites = 1.6777E+01 seconds

Total time for finalization = 6.0000E-04 seconds
Total time elapsed = 5.7636E+02 seconds
Calculation Rate = 7.04250E+05 neutrons/second

=================> RESULTS <==================

k-effective (Analog) = 1.00046 +/- 0.00007
k-effective (Collision) = 1.00040 +/- 0.00005
k-effective (Track-length) = 1.00045 +/- 0.00005
Leakage Fraction = 0.60068 +/- 0.00003

Fig. 5. Selected standard output for the U233-MET-FAST-002
benchmark.
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It was shown (Romano and Forget, 2012) that the max-
imum expected communication cost from this algorithm is
independent of the number of processes and instead is pro-
portional to the square root of the number of particles per
generation. In other words, this algorithm is O(

p
N) where a

traditional algorithm would be O(N).

2.6. Code development
One of the substantial benefits of writing a code from

scratch is that it is natural to take advantage of modern
software practices. This applies to every aspect of code de-
velopment including the choice of programming language,
compilers used, version control system, and documentation.
It is instructive to briefly discuss the software development
methodology and key decisions made that affect future devel-
opment.

OpenMC is written in standard Fortran 2008. While C
and C++ were considered as other possible languages for
development, ultimately Fortran 2008 was chosen due to
MIT’s research focus on parallel algorithms coupled with the
availability of co-array features in the Fortran 2008 standard.
For input processing, OpenMC relies on a modified version of
the xml-fortran (Markus, 2008) parser. Almost all important
data are encapsulated in derived types. While object-oriented
features are available in Fortran 2008, they have not yet
been employed in OpenMC due to limited compiler support.
OpenMC has been successfully compiled with the gfortran,
Intel, PGI, Cray, and IBM compilers with various platforms
including several Linux distributions and Mac OS X.

Rather than use cvs or svn for version control as is com-
mon for older software, we chose to use the git distributed
revision control system. The advantages of a modern version
control system like git or mercurial over cvs and svn are nu-
merous and will not be listed here. In addition to git, the
web-based hosting service GitHub is used to provide a central
host, issue tracking, a wiki, and documentation hosting. The
combination of git and GitHub greatly enables developers to
maintain high productivity in collaborating with one another,
testing out new ideas, and documenting their work.

3. Results

3.1. Benchmarks
In order to validate and verify the geometry and physics

models implemented in OpenMC, a number of benchmark
models have been constructed for OpenMC, and key results
were compared with those from MCNP5 (X-5 Monte Carlo
Team, 2008a). The MCNP code was chosen for compari-
son since it has been extensively validated, has thousands of
world-wide users, and is relatively stable. Since OpenMC is
also capable of using the same ACE format cross sections as
MCNP5, any differences in results between the two codes will
be limited to those arising from the geometry and physics
algorithms. The benchmark problems here were specifically
chosen to test extreme cases that would lead to large differ-
ences in results if the underlying algorithms were not im-
plemented correctly. All of the benchmark model inputs for

OpenMC and MCNP referenced in this paper can be found
online (Romano, 2012).

3.1.1. Thermal scattering
For problems that have a thermal spectrum such as a

commercial light-water reactor, it is essential to accurately
treat the scattering of neutrons from bound scatterers such as
hydrogen in water. One model that highlights differences in
the bound-scattering treatment is a very simple pin-cell model
proposed by Cullen et al. (2004). This problem consists of
an infinite lattice of fuel pins with a 2 in. pitch and varying
fuel pin radii. The fuel consists of only two nuclides, U-235
and U-238, and furthermore there is no fuel cladding or gap.
The water is not borated, i.e. it consists only of hydrogen and
oxygen. By having a very simple model, the problem achieves
two goals:

1. There is no “correct” answer to the problem, and thus
those participating in the benchmark did not have a
preconceived notion of whether their own results were
correct.

2. Since the materials are very simple, any differences in
answers can be almost solely attributed to the bound-
scattering treatment.

The paper on this benchmark suggested six cases to run
corresponding to each combination of three different fuel
pin radii and two different scattering treatments. The fuel
pin radii specified were 1/2, 1/4, and 1/8th of an inch, and
each of those models was to be run with and without the
S(α,β) scattering law data. The report showed that between
the 10 different Monte Carlo codes used, there were dif-
ferences in k-effective of up to 2% even for such a simple
model. Of course, there are numerous reasons for the vast
spread of results between codes including different cross sec-
tion libraries (ENDF/B-VI, ENDF/B-V, JEFF), cross section
treatments (continuous-energy vs. multigroup), user input
definitions, and physics algorithms.

For the purposes of validating the S(α,β) treatment in
OpenMC, we compare the results of OpenMC on this simple
“benchmark” to those from MCNP5 using the same ENDF/B-
VII.0 cross section libraries. With the same cross section
libraries and similar physics treatments, it would be expected
that the results between OpenMC and MCNP5 should be very
close. Each MCNP run had 50 inactive batches and 1000
active batches, each with 100,000 particles. It was necessary
to run OpenMC longer to get a comparable variance on k-
effective since OpenMC does not yet use a combined estimator
for k-effective like MCNP does. Thus, the OpenMC runs
had 50 inactive batches and 4000 active batches, each with
100,000 particles. Table 1 shows k-effective and its standard
deviation for the six cases described above. It should be noted
that the uncertainties reported here were calculated assuming
no correlation between successive batches and therefore may
be underpredicted.
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3.1.2. Unresolved resonance treatment
Besides thermal scattering, the other energy range that

requires special treatment is the unresolved resonance range.
For many nuclides, resonances in the 1-100 keV energy range
are so narrow and closely spaced that is not possible to exper-
imentally resolve the details of all resonances. In the absence
of any special techniques, one would have to use the dilute-
average cross section in the unresolved range. This may be
an acceptable approximation for problems that are not sen-
sitive to the unresolved resonance range (notably LWRs and
other thermal reactors), but for other problems it can result
in serious errors in reported answers.

Several benchmark problems are particularly sensitive
to the unresolved resonance treatment. We have chosen to
compare results on a model of the Big Ten critical assem-
bly (IEU-MET-FAST-007 from the International Handbook of
Evaluated Criticality Safety Benchmark Experiments (NEA Nu-
clear Science Committee, 2009)) as a means of validating the
implementation of the probability table method in OpenMC.
This assembly is a large, mixed uranium metal cylindrical
core of 10% enrichment surrounded by a U-238 reflector. The
version of the benchmark from the MCNP expanded criticality
validation suite (Mosteller, 2010) is used. This version has
been submitted for inclusion in the Handbook but has not yet
been approved.

The Big Ten benchmark was run in MCNP5 and OpenMC
using the same ENDF/B-VII.0 cross section libraries. Again,
each MCNP run had 50 inactive 1000 active batches, each
consisting of 10,000 particles, whereas the OpenMC run had
4000 active batches. Table 2 shows k-effective and its stan-
dard deviation for all runs. The results clearly show that the
unresolved resonance probability table treatment in OpenMC
has been implemented correctly, with results from MCNP
agreeing within a few pcm in reactivity.

3.1.3. Full-core problems
While the previous two benchmark problems are ideal

for identifying differences in the physics treatments, both
have relatively simple geometries and a limited number of
nuclides. Thus, it is desirable to also compare results on a
benchmark with complicated geometry and materials. One
such benchmark problem is the Monte Carlo Performance

Table 2
Effective Multiplication Factor for Big Ten benchmark from
MCNP expanded criticality validation suite.

Case MCNP5-1.51 OpenMC

Probability tables off 1.00085± 0.00005 1.00095± 0.00007
Probability tables on 1.00480± 0.00005 1.00485± 0.00007

Benchmark originally proposed by Hoogenboom et al. (2011).
The specific aim of this benchmark is to monitor the increase
in performance of Monte Carlo calculations of full-core re-
actor problems. The model consists of a typical PWR core
layout with 241 fuel assemblies, each with a 17 by 17 lat-
tice of fuel pins including 24 control rod guide tubes and an
instrumentation tube. The fuel is composed of 34 different
nuclides: a mix of actinides, minor actinides, and key fission
products. Fig. 6 shows the layout of the assemblies within a
core and the fuel pins and guide tubes within an assembly.

A model of the Monte Carlo Performance Benchmark was
built for both OpenMC and MCNP5 based on Revision 1.2
of the benchmark specification. To get an estimate of the
effective multiplication factor, the MCNP model was run with
100,000 particles per cycle for 150 inactive and 1000 active
batches. OpenMC was then run with 100,000 particles per
cycle, 150 inactive batches, and 4000 active batches using the
same ENDF/B-VII.0 libraries. Table 3 shows the effective mul-
tiplication factors and their standard deviations as reported by
the two codes. Once again, there is good agreement between
OpenMC and MCNP since the same cross section libraries
were used.

3.2. Tally performance

The tally mapping technique described in Section 2.3
can help to substantially reduce the overhead for scoring
tallies when there are very large numbers of scoring bins. To
demonstrate this, we present some results concerning tally
overhead on the Monte Carlo Performance Benchmark model.
This model has been analyzed previously by Kelly et al. (2010)

Table 1
Effective Multiplication Factor for INDC(USA)-107 pin-cell
problem.

Case MCNP5-1.51 OpenMC

1/2" pin, no S(α,β) 1.01649± 0.00004 1.01656± 0.00006
1/2" pin, S(α,β) 0.96812± 0.00004 0.96814± 0.00006
1/4" pin, no S(α,β) 1.01330± 0.00005 1.01328± 0.00006
1/4" pin, S(α,β) 0.92226± 0.00005 0.92219± 0.00006
1/8" pin, no S(α,β) 1.01327± 0.00007 1.01309± 0.00006
1/8" pin, S(α,β) 0.90921± 0.00007 0.90938± 0.00006
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Assembly

Core

Fig. 6. Geometry layout of the Monte Carlo Performance
Benchmark.

who showed a modest overhead for large numbers of tallies
when using techniques similar to those discussed here.

The Monte Carlo Performance Benchmark was run on an
Intel Core i5 processor with 20,000 neutrons per cycle, 150
inactive batches, and 150 active batches. A mesh tally was set
up to score the neutron production rate over the entire core
with a single mesh cell covering every fuel pin divided into
100 axial segments. For this model, such a mesh is 289 × 289
× 100 which in turn means there are a total of 8,352,100
tally bins. The effective calculation rate was 4957 neutrons
per second. Fig. 7 shows the amount of time spent in cycle

during the simulation. One can see that each inactive cycle
took on average 3.79 s and each active cycle took on average
4.28 s, meaning that the overhead due to tallies is about half a
second per cycle. It is interesting to note that almost all of the
overhead is due to accumulating the sum and sum-of-squares
at the end of the cycle and not actually from the subroutines
in which individual particle histories score to the tally bins.
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Fig. 7. Elapsed cycle times with 8 million tally bins on Monte
Carlo Performance Benchmark.

In general, the tally overhead will depend on many factors
including the amount of work per cycle, the total number
of tally bins, the number of different user-specified tallies,
and how tallies are implemented in parallel runs. Thus, the
reader is cautioned from drawing any conclusions on a single
study. The example here was chosen merely to illustrate that
OpenMC is indeed capable of tallying millions of quantities
with minimal overhead if properly constructed. In this ex-
ample, a single mesh had been used to cover all fissionable
regions. Had a separate mesh been used for each assembly in
core, the overhead may have been considerably higher. Simi-
larly, had the run been performed in parallel over hundreds of
processors, there would be an additional source of overhead
from collecting the tallies onto one processor.

Table 3
Effective Multiplication Factor for the Monte Carlo Perfor-
mance Benchmark Test.

Code k-effective

MCNP5-1.51 1.00023± 0.00006
OpenMC 1.00002± 0.00006
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3.3. Parallel scaling

To test the parallel fission bank algorithm originally pro-
posed by Romano and Forget (2012) and described further in
Section 2.5, a series of runs were performed on several differ-
ent computer architectures to test the scalability of OpenMC.
Of most interest is the ability to scale on large supercomputers
with tens or hundreds of thousands of processors. Thus, the
Cray XK6 (Jaguar) supercomputer at Oak Ridge National Lab-
oratory (Bland et al., 2009) was chosen as the target system
system for scaling studies.

The Monte Carlo Performance Benchmark was simulated
using the Jaguar Cray XK6 system starting with 32 processors
and increasing the processor count by a factor of two up
to 131,072 processors. For this study, the total work per
processor was kept constant (weak scaling) rather than the
total amount of work over all processors (strong scaling). For
the 131,072 processor case, the total number of particles per
cycle was 2,621,440,000, equivalent to 20,000 particles per
processor per cycle.

Fig. 8 shows the effective number of particles simulated
per second as a function of the number of processors in com-
parison to the ideal calculation rate (assuming no communi-
cation between fission source iterations). Excellent parallel
efficiency is achieved even above 100,000 processors.

One should note that the effective number of particles per
second reported in Fig. 8 does not take into account the ini-
tialization of the run wherein the input files and cross sections
must be read from disk or the finalization of the run wherein
tally statistics need to be computed and subsequently written
to disk. For a simulation on few processors, the initializa-
tion and finalization time is generally insignificant compared
to the actual calculation time. However, with thousands of
processors, the overhead from initialization and finalization
can become dominant if no changes are made in the I/O
algorithms. Future work at MIT will focus on implementing
parallel I/O techniques to mitigate this overhead.

4. Conclusions

A new Monte Carlo particle transport code called OpenMC
has been developed to study and help advance the state of par-
ticle simulations on high-performance computing platforms.
By choosing to adopt the ACE format for continuous-energy
neutron cross sections, the collision physics are faithful and
contain very few approximations. To appropriately model
interactions in the thermal and unresolved resonance energy
ranges, one can use S(α,β) scattering law data and unre-
solved resonance probability tables. All geometric objects
are represented using constructive solid geometry consisting
of first- and second-order surfaces. Together, the geometry
and physics models make possible high fidelity simulations of
nuclear reactors.

Since OpenMC has been developed from scratch, the de-
sign and use of the code is based on modern software design
practices. This includes the use of an XML format for user
input that can be validated against a schema as well as HDF5

25 26 27 28 29 210 211 212 213 214 215 216 217

Number of Processors

104

105

106

107

108

109

Pa
rt

ic
le

s
pe

r
se

co
nd

Observed

Ideal

Fig. 8. Parallel scaling for the Monte Carlo Performance
Benchmark on the Cray XK6 (Jaguar) supercomputer.

output that significantly simplifies post-processing and analy-
sis of results from the code. These design choices will help to
lessen the learning-curve for new developers and users.

Several benchmark results were presented comparing
the effective multiplication factor from OpenMC to that of
MCNP5. These results show remarkable agreement and
demonstrate that the physics implementation can be con-
sidered validated for the problem domains covered. In partic-
ular, the results on the pin-cell problem (Cullen et al., 2004)
and the Big Ten benchmark (NEA Nuclear Science Commit-
tee, 2009) demonstrate that the implementation of S(α,β)
thermal scattering models and the unresolved resonance prob-
ability table method do not exhibit any obvious deficiencies.
Results on the Monte Carlo Performance Benchmark (Hoogen-
boom et al., 2011) were presented to demonstrate the ability
to model large models with considerable geometric and ma-
terial complexity.

The implementation of tallies in OpenMC was shown to be
efficient with respect to tallying large numbers of quantities
thanks to a mapping technique that allows for fast determina-
tion of scoring bin combinations. A test on the Monte Carlo
Performance Benchmark demonstrated that even with over
8 million tally bins, the overhead was minimal. In addition
to the excellent tally performance, the parallel fission bank
algorithm in OpenMC allows for parallel scaling up to tens of
thousands of processors.

The OpenMC Monte Carlo code has already become a
central component of research and development within MIT’s
Computational Reactor Physics Group and is being used to
actively support studies under the Center for Exascale Sim-
ulation and Research. By releasing the code under an open
source license, it is the authors’ hope that other members of
the nuclear engineering community will become involved and
take advantage of the code for their own studies.
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