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Abstract

An `-sparse (multivariate) polynomial is a polynomial containing at most `-monomials in its explicit

description. We assume that a polynomial is implicitly represented as a black-box: on an input query

from the domain, the black-box replies with the evaluation of the polynomial at that input. We provide

an efficient, randomized algorithm, that can decide whether a polynomial f : Fnq → Fq given as a black-

box is `-sparse or not, provided that q is large compared to the polynomial’s total degree. The algorithm

makes only O(`) queries, which is independent of the domain size. The running time of our algorithm (in

the bit-complexity model) is poly(n, log d, `), where d is an upper bound on the degree of each variable.

Existing interpolation algorithms for polynomials in the same model run in time poly(n, d, `). We provide

a similar test for polynomials with integer coefficients.
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1 Introduction

When dealing with massive data sets that encode information in a redundant manner, a typical goal

is to efficiently retrieve qualitative properties of the encoded data. This task immediately excludes the

possibility of reading the entire encoding, and brings up questions regarding the type of properties that

can be decided from a very restricted view of the data. It is common to model such setting as a black-

box interaction. Namely, the algorithm sends input-queries to a black-box that computes a function

f : D → R (for some finite or infinite domain D and range R,) and receives back the evaluations of f at

those inputs. An algorithm is called local if the number of queries it makes is independent of the size of

the domain.

In our model, the black-box encodes n-variate polynomials over Fq (where q is a prime power,) or

over Z, and we are interested in deciding whether f is `-sparse, or it is at least (`+1)-sparse in its explicit
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description as a sum of monomials. We propose a randomized, polynomial time algorithm that has the

additional feature of locality, and we call such a test a local decision test.

The model considered in this work is related to the Property Testing model in which a local test

distinguishes between objects satisfying a property from objects that are “far” from that property, under

appropriate notions of distance. (For surveys on the area of Property Testing, see for example [11, 20, 21,

7].) Note that unlike the Property Testing model, we are required to output “fail” even if a non-sparse

polynomial is very “close” to some sparse polynomial (i.e. agrees on almost all inputs). From this point

of view, our model is stronger, and thus certain tasks may require more computation.

1.1 Our results and techniques

We exhibit a local decision test which, on input `, given query-access to a polynomial f : Fnq → Fq, of

known degree d per individual variable, decides whether f is `-sparse. We assume that d and n are small

compared to the field’s size q. Alternately, this can be interpreted as allowing d and n to be large, but also

allowing queries over some extension field of Fq. The locality of the test is 2`+ 1, which is independent

of n or d. We remark that our query complexity is the same as in the interpolation algorithm of Ben-Or

and Tiwari [2]. However, since testing for sparsity is easier a task than interpolation, we achieve a better

dependence on the degree d: the running time of our algorithm is poly(n, log d, `), while the current

interpolation algorithms (in the same black-box model as ours) run in time poly(n, d, `).

Our proof relies on a common criteria for sparsity, based on so-called Wronskian matrices, often

employed in the sparse interpolation literature [2, 12, 15]. We closely follow Ben-Or and Tiwari’s [2]

approach, associating a Wronskian matrix H to the polynomial f . The matrix H exhibits two nice

properties: (1) its entries are evaluation points of f , and (2) for some carefully chosen evaluation points,

its determinant is 0 if f is sparse, and non-zero otherwise. In [2] the matrix H is further manipulated in

order to obtain the explicit monomial degrees of f .

Our main observation is that one can treat detH as a polynomial function which can be evaluated

over the entire field. Using the sparsity criteria based on the value of detH, our test simply chooses uni-

formly random evaluation points from the field and outputs a positive answer only when the determinant

evaluates to 0.

In addition, we show a similar test for f : Zn → Z, when a bound L on the coefficients is known. Its

running time is poly(n, log d, `, logL), and its query complexity is again 2`+ 1.

1.2 Related work

In the algebraic context, a property class is usually a collection of polynomials sharing a common fea-

ture, as for example, linearity, symmetry, homogeneity, or low degree. In these cases a natural test

simply verifies the defining condition of the property, under a uniformly random choice of the evaluation
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points. Consider for instance the class of multivariate polynomials {f : Fnq → Fq | f(x1, x2, x3 . . . , xn) ≡

f(x2, x1, x3, . . . , xn)}, i.e. polynomials that are symmetric in the first two variables. A quick local decision

test simply picks a n-tuple (r1, r2, r3 . . . , rn) ∈ Fnq and checks if f(r1, r2, r3 . . . , rn) = f(r2, r1, r3 . . . , rn).

While the algebraic properties mentioned above have natural explicit tests, in the case of sparsity it

is not a priori clear what a good test might look like. In fact the question has been previously explored

in the Property Testing context by [5] and [6] who employed a heavy Fourier analytic machinery and

ideas drawn from the area of “testing by implicit learning” both to describe the tests and to analyze

them. In contrast, the decision test we propose has the merit of being rather clean and elegant: it simply

computes the determinant of a certain matrix consisting of entries that are evaluations of f . In addition,

while our model seems harder to test than their Property Testing model, the two running times as well

as query complexities are comparable. Note however that in [6] the authors assume that the degree of

f is unknown. Formally, for polynomials f : Fnq → Fq [6] exhibited an algorithm which runs in time

n poly(`, 1
ε
), makes poly(`, 1

ε
) queries and decides if f is an `-sparse polynomial or differs in an ε fraction

of inputs from any `-sparse polynomial. We remark that in their case q is a constant.

The related interpolation problem has been intensely studied under a wide variety of models: deter-

ministic [2, 17] and randomized [19], algebraic (with unit time per operation)[2, 17] and bit-probe [19],

over the integers [19, 2] as well as over fields [2, 13], in the standard polynomial basis or over some

non-standard bases [4, 13, 18, 12]. Depending on the focus of the result, different tradeoffs between the

number of black-box queries and the running time have been achieved. The initial Zippel’s randomized

algorithm over the integers runs in time (bit-probe model) poly(n, d, `, logL) (where L is an upper bound

on the absolute value of the integer coefficients,) and makes nd` queries. Ben-Or and Tiwari’s [2] de-

terministic interpolation algorithm runs also in poly(n, d, `, logL) time, and makes 2` + 1 evaluations.

Mansour [19], and later Alon and Mansour [1] exhibit a deterministic interpolation algorithm, which runs

in time poly(n, log d, `, logL). However, its query complexity depends on d and their black-box model is

different from ours. Namely, even though the polynomial is defined over the integers, the black-box can

be queried over the complexes, with some good accuracy parameter. Grigoriev, Karpinski and Singer

[14] study the interpolation problem for rational functions and they achieve a number of queries linear

in the number of variables, and the usual running time poly(n, d, `, logL). Recently, Garg and Schost

[9], propose an interpolation result in the easier, “straight-line program” model, with time complexity

poly(n, log d, `, T ), where T is the length of the straight-line program.

2 Preliminaries

First, recall a standard definition. A polynomial f(x1, . . . , xn) =
k∑
i=1

aix
di1
1 . . . xdinn , with ai 6= 0 for

i = 1, 2, . . . k is called `-sparse if k ≤ `.

We will also make use of the following well-known result.
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Lemma 1 (Schwartz-Zippel) Let f ∈ F(x1, . . . , xn) have degree d in each variable, and let S ⊆ F be

a finite set. Then

Pr
ri∈S

[f(r1, r2, . . . , rn) = 0] ≤ dn

|S| ,

where the ris are uniformly distributed over S.

Finally, we formally define a local decision test.

Definition 2 (Local decision test) An algorithm T is a (s, ε, T )-local decision test for a class P if,

given black-box access to f ∈ F[x1, . . . , xn] (denoted T f ),

1. T f makes s queries,

2. T f runs in time T (in the bit-complexity model),

3. if f ∈ P Pr[T f accepts ] = 1,

4. if f /∈ P Pr[T f rejects ] ≥ 1− ε.

3 Local Decision Tests for Sparsity

In this section we state and prove our main theorems. We start with the finite field case and then explain

how to modify that test to work over the integers.

Theorem 3 Let 0 < ε < 1, `, n, d be positive integers, and q > `(`+1)dn
ε

be a prime power. Then

there exists a
(

2`+ 1, ε, Õ
(

(`n+ `2) log( `
2dn
ε

)
))

-local decision test1 for the class of `-sparse polynomials

f ∈ Fq[x1, . . . , xn] with degrees at most d in each variable.

Proof

We follow the same initial steps as in [2] and start by introducing some useful notations. For a given

n-tuple u = (u1, u2, . . . , un) ∈ Fnq , and a positive integer i, define the tuple ui = (ui1, u
i
2, . . . , u

i
n).

Moreover, for a polynomial f ∈ Fq[x1, . . . , xn], n-tuple u ∈ Fnq , and integer t > 0, define the Hankel

matrix associated to f at evaluation point u by

Ht(f, u) =



f(u0) f(u1) . . . f(ut−1)

f(u1) f(u2) . . . f(ut)

. . . . . . . . . . . .

f(ut−1) f(ut) . . . f(u2t−2)


.

These objects constitute the main tool in Ben-Or and Tiwari’s algorithm. In the interpolation context,

the problem of determining the individual monomial degrees reduces to inverting such a Hankel matrix

for some very special choice of the initial tuple u. In our case, we observe that most choices of u ∈ Fnq

can be used to describe the sparsity of f , by inspecting the determinant of Ht(f, u).

1Õ(F ) refers to F · poly(logF ).
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Figure 1 describes our test in the finite field case.

(1) Choose u = (u1, u2, . . . , un) ∈ Fnq uniformly at random.

(2) Let

H`+1(f, u) =


f(u0) f(u1) . . . f(u`)
f(u1) f(u2) . . . f(u`+1)
. . . . . . . . . . . .

f(u`) f(u`+1) . . . f(u2`)

 ,

where ui = (ui1, u
i
2, . . . , u

i
n), and compute detH`+1(f, u).

(3) If detH`+1(f, u) = 0 output “f is `-sparse.”

(4) Else output “f is not `-sparse.”

Figure 1: Local decision test for sparsity (over a finite field)

Analysis It is clear that the test makes 2` + 1 queries. The proof of correctness, as well as the test’s

error probability, are based on our main observation that one can treat detH`+1(f, u) as a multivariate

polynomial in the variables u1, u2, . . . , un. Since q is assumed to be large, the Schwartz-Zippel Lemma

will then imply that the test fails with small probability.

The sharp criteria for sparsity from [2] is only stated there for a fixed value of u. However, the result

holds in general, for any value of u ∈ Fnq .

Lemma 4 (See [2]) Let f(x1, . . . , xn) =
∑k
i=1 aiMi(x1, . . . , xn), where ai ∈ Fq, and Mi(x1, . . . , xn)

are the monomials of f . Let u = (u1, . . . , un).

1. If k < `+ 1, then detH`+1(f, u) ≡ 0 (as a polynomial in u1, . . . , un).

2. If k ≥ `+ 1, the following expression holds:

detH`+1(f, u) =
∑

S⊂[k],|S|=`+1

∏
i∈S

ai
∏

i<j,i,j∈S

(Mi(u)−Mj(u))2.

For the sake of intuition, we mention that the proof of Lemma 4 is based on the fact that Ht(f, u)

can be expressed as follows:



1 1 . . . 1

M1(u) M2(u) . . . Mk(u)

M1(u2) M2(u2) . . . Mk(u2)

. . . . . . . . . . . .

M1(ut−1) M2(ut−1) . . . Mk(ut−1)


·



a1 0 . . . 0

0 a2 . . . 0

0 0 . . . 0

. . . . . . . . . . . .

0 0 . . . ak


·



1 M1(u) . . . M1(ut−1)

1 M2(u) . . . M2(ut−1)

1 M3(u) . . . M3(ut−1)

. . . . . . . . . . . .

1 Mk(u) . . . Mk(ut−1)


.

From Lemma 4, if f is `-sparse, then our test always outputs the right answer. Now suppose that f

is at least (`+ 1)-sparse. In that case, detH`+1(f, u) is a polynomial in u1, . . . , un, and each variable has
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degree at most 2
(
`+1
2

)
d. Our test makes an error only when a uniformly random u ∈ Fnq is a root of the

n-variate polynomial detH`+1(f, u). Applying the Schwartz-Zippel Lemma, it follows that this happens

with probability at most ε, since q >
2(`+1

2 )dn
ε

.

We now argue the computation time in the bit-complexity model. Since the evaluations of f are

provided by the black-box, the only operations performed by the testing algorithm are during the com-

putation of detH`+1(f, u). In general, computing the determinant of an ` × ` matrix takes time `ω

(where ω ≈ 2.37 is the exponent of matrix multiplication). However, since H`+1(f, u) is a Hankel ma-

trix, its determinant can be computed in time O(`2) (by [16]). The complexity of our test is then

Õ
(

(`n+ `2) log( `
2dn
ε

)
)

. This follows by taking into account the input size of each black-box call and

the fact that multiplication and addition take O(log q log log q) bit-operations [10] for rings of size q that

support Fast Fourier Transform.

A similar result holds for polynomials over Z.

Theorem 5 Let 0 < ε < 1, and `, n, d, L be positive integers. Then there exists a (2` + 1, ε,Õ((`n +

`2) log(L+ `2dn
ε

)))-local decision test for the class of `-sparse polynomials f ∈ Z[x1, . . . , xn] with degrees

at most d in each variable, and whose coefficients are bounded in absolute value by L.

Proof The proof of Theorem 5 is very similar to the proof of Theorem 3. Here we pick a prime

number p larger than max{ `(`+1)dn
ε

, L} and compute modulo p. Figure 2 describes our local decision test

for sparsity of polynomials f over Z.

(1) Choose a prime number p ≥ max{ `(`+1)dn
ε , L}.

(2) For i = 1, 2, . . . n, choose ui ∈ Zp uniformly at random. Let u = (u1, u2 . . . , un).

(3) Let

H`+1(f, u) =


f(u0) f(u1) . . . f(u`)
f(u1) f(u2) . . . f(u`+1)
. . . . . . . . . . . .

f(u`) f(u`+1) . . . f(u2`)

 mod p,

where ui = (ui1, u
i
2, . . . , u

i
n), and compute detH`+1(f, u) mod p.

(4) If detH`+1(f, u) = 0 mod p, output “f is `-sparse.”

(5) Else output “f is not `-sparse.”

Figure 2: Local decision test for sparsity (over the integers).

First notice that Lemma 4 still holds over Z. Since p > L and p is prime, the coefficient of the highest

degree monomial (in a lexicographic order of the variables) in detH`+1(f, (x1, x2, . . . , xn)) remains non-

zero even after the modulo operation. Hence, if detH`+1(f, (x1, . . . , xn)) is a non-zero polynomial over
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Z, then detH`+1(f, (x1, . . . , xn)) mod p is a non-zero polynomial over Zp. The same argument as before

finishes the proof.

4 Conclusions and Open Problems

A variety of open questions could be interesting in the context of local decision testing for sparsity. First,

our test works in a restrictive setting when the total degree is small, and one could try and remove this

relaxation if possible. Furthermore, showing lower bounds on the number of evaluation points necessary

to test sparsity is a direction we have not explored.

It would also be interesting to exhibit local decision tests for other problems in which the tests are

not obvious from the definition of the property class. In particular, a good such example is the problem

of testing “juntas” (polynomials that only depend on a few variables.) This question has been recently

completely resolved in the Property Testing model [8, 3].
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