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Abstract

To help constrain the algorithms used in reconstructing high-energy muon events incident on
the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system
consisted of four planes of wire chambers, which were triggered by scintillator panels. The
system was integrated with SNO’s main data acquisition system and took data for a total of 95
live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO’s water
Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on
the muon direction to better than 0.6◦.
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1. Introduction1

The Sudbury Neutrino Observatory (SNO) was a large water Cherenkov detector optimized2

for detecting solar neutrinos created from the 8B reaction in the main pp fusion chain. In addition3

to solar neutrinos, the Sudbury Neutrino Observatory was also sensitive to high-energy muons4

that traverse the volume of the detector. A small fraction of these events are neutrino-induced5

muons from atmospheric neutrinos, while the large remaining fraction come from cosmic rays6

created in the upper atmosphere. It is possible to discriminate between these muon sources by7

looking at the angular distribution of incoming muons. The combination of large depth and the8

relatively flat topography in the vicinity of the detector attenuates almost all cosmic ray muons9

entering the detector at zenith angle cos (θz) > 0.4. The study of muon events in the SNO detec-10

tor provides measurements of the absolute flux of atmospheric neutrinos and constraints on the11

atmospheric neutrino mixing parameters ∆m2
23 and θ23 [1]. While the latter measurement is more12

strongly constrained by other experiments [2, 3], the former is unique to the SNO experiment.13

To facilitate a clean measurement of the zenith distribution of muons entering the SNO fidu-14

cial volume, an accurate understanding of the muon reconstruction algorithm is necessary. This15

includes both the angular and spatial resolution of high-energy muons which enter the detector.16

Determining the accuracy of the muon tracking reconstruction algorithm, however, relies almost17

entirely on Monte Carlo simulations. Although the detector response to muons was benchmarked18

against selected cosmic-ray data, there is not an external calibration source that can provide a19

consistency-check to the accuracy of the reconstruction algorithm. This is in sharp contrast to20

the case for SNO’s response to neutrons and low energy electrons, which was calibrated with21

multiple sources to a precision of ∼ 1% [4].22

We present in this paper a means by which the SNO experiment was able to calibrate its23

muon tracking algorithm via the use of an external muon tracking system. The External Muon24

System (EMuS) allowed SNO to simultaneously reconstruct selected cosmic-ray events in two25

independent systems, thereby providing a cross-check on the tracking algorithm. The EMuS26

experiment ran for a total of 94.6 live days during the last phase of the SNO experiment.27

This paper is divided as follows: Section 2 describes the main SNO experiment, Section 328

describes the SNO muon reconstruction algorithm, Section 4 describes the characteristics of the29

EMuS apparatus, Section 5 describes the criterion for accepting events, and finally Section 630

discusses the analysis used to calibrate the SNO tracking algorithm against data taken with the31

EMuS system.32

2. The Sudbury Neutrino Observatory33

The SNO detector consisted of a 12-meter-diameter acrylic sphere filled with 1 kiloton of34

D2O. The 5.5-cm-thick acrylic vessel was surrounded by 7.4 kilotons of ultra-pure H2O encased35

within a barrel-shaped cavity, 34 m in height and 22 m in diameter. A 17.8-meter-diameter36

geodesic structure surrounded the acrylic vessel and supported 9456 20-cm-diameter photomul-37

tiplier tubes (PMTs) pointed toward the center of the detector. A non-imaging light concentrator38

was mounted on each PMT to increase the effective photocathode coverage to 54% [5]. The39

detector is described in detail elsewhere [6].40

SNO was located in the Vale Creighton mine in Ontario, Canada at a depth of 2.092 km41

(5890± 94 meters water equivalent) with a flat overburden. At this depth, the muon rate incident42

over the geodesic sphere and integrated over the seasonal variation is 62.9 ± 0.2 µ/day across43

an impact area of 216 m2[1]. Muons entering the detector produce Cherenkov light at an angle44
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of 42◦ with respect to the propagation direction of the muon. Cherenkov light and light from45

delta rays produced by the muon illuminate an average of 5500 PMTs, whose charge and timing46

information are recorded. The amplitude and timing response of the PMTs were calibrated in47

situ using a light diffusing sphere illuminated by a laser at six distinct wavelengths [4]. This laser48

ball calibration was of particular relevance to the muon fitter because it provides a timing and49

charge calibration for multiple photon hits on a single PMT. Other calibration sources used in50

SNO are described elsewhere [6, 7].51

Data taking in the SNO experiment was subdivided into three distinct phases for measure-52

ment of the solar neutrino flux. In the first phase, the experiment ran with pure D2O only. The53

solar neutral current reaction was observed by detecting the 6.25 MeV γ-ray following the cap-54

ture of the neutron by a deuteron. For the second phase of data taking, approximately 0.2% by55

weight of purified NaCl was added to the D2O volume to enhance the sensitivity to neutrons56

via their capture on 35Cl. In the third and final phase of the experiment, 40 discrete 3He and57

4He proportional tubes were inserted within the fiducial volume of the detector. This enhanced58

the neutron capture cross-section to make an independent measurement of the neutron flux, by59

observing neutron capture on 3He in the proportional counters. Results from the measurements60

of the solar neutrino flux for these phases have been reported elsewhere [8, 9, 10, 11, 12, 13, 14].61

3. Muon Reconstruction with the SNO Detector62

The SNO muon reconstruction algorithm fits for a through-going muon track based on the63

charge, timing, and spatial distribution of triggered PMTs. Using a maximum likelihood method,64

the fitter is able to determine a variety of muon tracking parameters, including the muon’s propa-65

gation direction, impact parameter with respect to the center of SNO, the total deposited energy,66

and a timing offset. The likelihood is defined as:67

L =

PMT s∏
i

 ∞∑
n=1

PN(n|λi)PQ(Qi|n)PT (ti|n)

 (1)

where n is the number of detected photons, PN(n|λi) is the probability of n photoelectrons being68

detected for λi expected number of detected photoelectrons, PQ(Qi|n) is the probability of seeing69

charge Qi given n photon hits, and PT (ti|n) is the probability of observing a PMT trigger at time70

t given n photon hits.71

The heart of the fitter lies in the first probability term, which is calculated based on Monte72

Carlo simulations. Muons were simulated at discrete impact parameter values with random di-73

rections through the detector. These simulations were used to create lookup tables for how many74

photoelectrons are expected to be detected by a PMT at a given position with respect to a muon75

track with a given impact parameter.76

The second term further refines the fit by including the charge information from the PMTs,77

and allows an estimate of the total energy deposited by the muon, correcting for offline PMTs78

and the neck of the detector. This probability was calculated by simulating multiple photon hits79

on all of the PMTs in SNO. For a given number of photon hits, the resulting charge distribution is80

modeled as an asymmetric Gaussian with the widths extracted from simulations. This fit model81

agrees well with the simulations for many photon hits, and acceptably for few photon hits (see82

Figure 1).83
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Figure 1: The normalized PMT charge distribution measured in (scaled) pedestal-subtracted ADC charge for the case
of 7 and 20 photoelectrons striking a single PMT. The smooth curve (red) indicates the prediction from the charge
parameterization model used in the reconstruction.
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µ σ 1 − f mσ
Angular 0◦ (fixed) 0.4◦ 0.01 1.6◦Difference

Impact Parameter -0.08 cm 3.0 cm 0.012 21 cmDifference

Table 1: Accuracy of the muon fitter based on Monte Carlo simulations. Fit parameters for mean (µ), widths (σ and mσ),
and relative weight (1 − f ) are given in Equations 4 and 5.

The third term in the likelihood refines the fit by including the PMT timing. For each PMT,84

the time residual can be calculated as:85

tres = tPMT,i − t0 −
d1

c
−

d2

cD
(2)

where tPMT,i is the recorded time on a given PMT, t0 is the time offset term in the likelihood fit,86

d1 is the distance the muon travels within the detector before emitting the Cherenkov photon, c87

is the speed of light in vacuum, d2 is the distance the Cherenkov photon traveled, and cD is the88

average speed of light in D2O/H2O medium (21.8 cm/ns). The Cherenkov photon is assumed89

to have an angle of 42◦ with respect to the muon track, making d1 and d2 well-defined. The90

probability of the time residual is modeled as a Gaussian centered at zero with corrections to91

include estimates of prepulsing and late light as a function of the number of photon hits.92

The SNO muon fitter maximizes the likelihood function for the impact parameter, direction,93

deposited energy, and timing offset using the method of simulated annealing with downhill sim-94

plex [16]. After determining the parameters that maximize the likelihood, a set of data quality95

measurements are used for background rejection.96

The muon fitter is found to have good reconstruction accuracy for simulated muons. Fig-97

ure 2 shows the angle (θmr) between the Monte Carlo generated muon direction (~ug) and the98

reconstructed muon direction (~ur):99

θmr = cos−1(~ug · ~ur) (3)

This is fit to a weighted double Gaussian function:100

p(θ) = Aθ
[

f e−
θ2

2σ2 + (1 − f )e−
θ2

2(mσ)2

]
(4)

The additional θ-dependence is introduced in order to account for the phase space available.101

The fit parameters are summarized in Table 1. Although the tails are non-Gaussian, this fit102

gives a reasonable estimate for the uncertainty in the angular resolution. Figure 3 shows the103

impact parameter reconstruction accuracy. The distribution is fit to the sum of two Gaussians:104

p(x) = A
[

f e−
(x−µ)2

2σ2 + (1 − f )e−
(x−µ)2

2(mσ)2

]
(5)

with the fit parameters also summarized in Table 1. Monte Carlo studies show that the recon-105

struction accuracy of the muon direction and impact parameter are uncorrelated.106
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Figure 2: The angular difference (as defined in Eq. 3) of Monte-Carlo muon tracks through the SNO detector (solid
histogram). The angular distribution is fit to the function outlined in Eq. 4 (solid line). The results from the fit are given
in Table 1.
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Figure 3: The impact parameter difference of Monte-Carlo muon tracks through the SNO detector (solid histogram). The
distribution is fit to the function outlined in Eq. 5 (solid line). The results from the fit are given in Table 1.
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Figure 4: Diagram of the EMuS detector. See the text for more details.
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Figure 5: Diagram of the EMuS electronics system. See the text for more details.
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4. The External Muon System107

The External Muon System consists of a series of 128 single-wire chambers arranged into108

four planes and triggered by three large scintillator panels (see Figure 4). The wire chamber cells109

and electronics were provided by Indiana University. Each cell is 7.5 cm wide and has a square110

cross-section with the corners trimmed into a near-octagonal shape. The cells are 2.564 m in111

length and possess a single 50 µm diameter tungsten wire running through the center. The wire112

is held at a positive potential of 2500 V (2700 V) while running on the surface (underground)113

for electron drift and collection. A gas mixture of 90%Ar-10%CO2 was used in order to achieve114

high efficiency and stability, and to meet safety regulations for underground operations.115

When a muon passes through the system, it deposits energy in the scintillator and ionizes116

atoms in each of the wire chambers it passes through. The scintillator converts the energy into117

light that is then detected by PMTs in a fast process (∼ns). In the wire chambers, the high voltage118

draws the ionization electrons to the wire in a slow drift process (∼ µs). The drift time is propor-119

tional to the closest distance between the muon track and the wire, allowing track reconstruction120

using timing and position. The measured drift time for each wire is the time difference between121

when the scintillator fired and when the drift electrons reached the wire.122

The scintillator consists of three large rectangular panels (350 × 70 × 5 cm3) which cover123

the active region of the EMuS detector. The panels were acquired from the KARMEN neutrino124

experiment [17], and consisted of Bicron BC412 scintillator read out at each end by four Photo-125

nis XP2262 PMTs. The signals from the PMTs were sent to a LeCroy 2249A Analog to Digital126

Converter (ADC) and a discriminator. If both ends of a panel fire in coincidence, a start signal127

was sent to the wire readout modules, and the ADC modules recorded the pulse-height of each128

PMT.129

Each wire chamber was monitored by an individual Front-End Electronics (FEE) card which130

output an ECL signal if a pulse is detected on the wire. The ECL signal was sent to a LeCroy 3377131

Time to Digital Converter (TDC) with a readout window of 4.1 µs. In order to mitigate high levels132

of electronic noise in the pre-amplifiers, the readout cables were sent through an additional ECL-133

NIM-ECL converter (see Figure 5).134

The EMuS system was deployed on the deck of the SNO experiment, 12 m above and 3 m135

west of the center of the detector. Due to space and solid-angle considerations, the planes were136

inclined at a 55◦ from horizontal. A survey was performed to determine the position of each of the137

wires with respect to the SNO detector. The dominant sources of uncertainty associated with the138

wire positions relative to the SNO detector are summarized in Table 2. The largest uncertainty139

stems from determining X-Y coordinates of the EMuS detector. By comparing survey results140

with other known location markers at the detector, the X-Y coordinate was determined to better141

than ±0.53 cm. The reference point used for the Z-coordinate of the detector was only known142

to ±0.32 cm, and thus added as an uncertainty to the EMuS location. Other uncertainties on the143

locations of the wires included uncertainties on the floor level, the placement of the wires within144

the modules, the spacing between wires, and the gaps between the modules. These additional145

uncertainties do not apply equally to all wires, and have a maximum combined value of ±0.30 cm.146

The final uncertainty on the SNO-EMuS coordinate translation based on this survey was ±0.68147

cm.148

4.1. Time to Radius Conversion149

Well-determined models of electron drift and diffusion in a gas [18] predict that the timing of150

a wire chamber hit with respect to the scintillator trigger can be used to measure the distance of151
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Figure 6: The drift time for simulated electrons inside the EMuS wire chambers plotted as a function of starting radius.
The plot shows drift times for both circular (boxes) and octagonal (circles) cross-sectional geometries. The quadratic fit
(solid line) is accurate to within 5% at the maximum simulated radius.

closest approach of the muon. This time-to-radius conversion function, r(t), has been simulated152

and measured for the EMuS system.153

The Garfield gas simulation [19] was used to generate expected r(t) curves as a function of154

gas pressure and applied voltage. The code was not able to perfectly model the shape of the wire155

chambers so two similar geometries were used to check the effects of this imperfect modeling:156

a circle with radius 3.75 cm, and a regular octagon with a longest radius of 4.06 cm. Simulated157

electrons were generated at 10 points along the longest radius, and the mean drift time for each158

point was calculated. Figure 6 shows that the two r(t) curves agree to within 2%. A parabolic fit159

to this data is accurate to 5%.160

In order to directly measure the r(t) curve, the EMuS system was run on the surface at the161

SNO X-Y Coordinate 0.53 cm
SNO Z Coordinate 0.32 cm
Floor Level* 0.17 cm
Wire Placement 0.08 cm
Wire Spacing* 0.18 cm
Gaps Between Modules* 0.14 cm
Time to Radius Conversion 0.28 cm
Overall 0.74 cm

Table 2: Uncertainties associated with wire positioning. Uncertainties marked by an * do not apply to all wires.
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MIT-Bates Linear Accelerator Center in Middleton, MA. Candidate muon tracks are selected if162

they pass through two adjacent chambers on two parallel planes. A series of data cleaning cuts163

are applied to remove hit pairs created by noise and accidental triggers. Since the positions of164

the wire chambers that fire are known, an estimate of the angle of the muon trajectory (θ) can be165

calculated. Once the angle is known, the radii of closest approach are related as:166

R1 + R2 = D cos θ (6)

where D is the distance between each wire. A trial r(t) function (ρ(t) = at2 +b) is used to estimate167

R2 as a function of the time from the other chamber:168

R′2 = D cos θ − ρ(t1) (7)

A least-squared parameter B is constructed169

B = (ρ(t2) − R′2)2 (8)

and then minimized. The resulting r(t) curve is shown in Figure 7. Slices in time show a Gaussian170

shape, where the maximum width of these slices is 0.24 cm, which is taken as the uncertainty on171

the time-to-radius conversion. The fit also extracts a negative time offset of 70 ns, which is caused172

by delays introduced by the electronic signal chain. This time offset slightly decreases the effi-173

ciency for reconstructing events, but does not significantly change the reconstruction accuracy.174

Running conditions varied slightly between Bates lab and underground at SNO (mainly due to175

ambient pressure and operating voltage) and simulations were used to correct for these changes.176

The extrapolation provides an additional uncertainty of ±0.14 cm, yielding a total uncertainty of177

±0.28 cm on the time-to-radius conversion model.178

5. Data Selection179

A number of data quality checks were made to find candidate muons that went through both180

SNO and the EMuS system. Six of the EMuS wires were removed from the analysis because of181

their abnormally low or high trigger rates. A small number of channels had multiple recorded182

hits in a single event. For such events, only the first hit in time was considered part of the muon183

track reconstruction algorithm.184

EMuS event level cuts were defined to select muon events throughout the run of the experi-185

ment. A minimum of three wire planes had to fire in order to ensure proper reconstruction. The186

event also had to have fewer than 30 wires fired so as to reduce contamination from electrical187

pickup. Finally, runs with increased human activity above the detector, due to calibrations or188

source manipulation runs, were removed from the data analysis. A total of 62 EMuS events189

passed all run selection criteria.190

To correlate these candidate events with the SNO detector, all of the relevant SNO runs were191

examined with an event viewer. Of the 62 EMuS events, 32 corresponded to a muon track passing192

within the volume of the detector confined by the PSUP structure, while 16 corresponded to an193

event where a muon passed external to SNO’s PMT support structure and was therefore seen194

only by the outward looking PMT tubes. The remaining 14 EMuS events did not traverse the195

cavity. Of the 32 muon tracks within the SNO detector volume, 30 were properly reconstructed196

by SNO’s muon fitter. The EMuS system ran for 94.6 days of livetime, giving a rate of 0.32197

reconstructed coincident events per day.198
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Figure 7: Drift time as a function of radius for data taken at Bates Laboratory (surface measurement). The color axis
indicates the number of events that reconstruct with the given radius and time. The vertical error bars are Garfield
simulations of the drift time.
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6. EMUs Reconstruction199

By utilizing tracks that reconstruct in both SNO and the EMuS system, one can determine200

the final muon track reconstruction accuracy. A Monte Carlo-based method is used to determine201

such reconstruction characteristics. For each real data event that is reconstructed in both the SNO202

and EMuS detector, a series of random test tracks are generated. These Monte Carlo generated203

random tracks use the muon track as reconstructed by the SNO detector alone as a seed track, but204

its vertex and direction are allowed to vary; with up to δθ ≤ 10◦ variations in reconstruction angle205

and up to δbµ ≤ 100 cm variations in impact parameter. Subsequently, these generated Monte206

Carlo tracks are then compared to the hit pattern as recorded in the EMuS tracking chamber. The207

negative log likelihood value (hereafter referred to as the likelihood) for each generated track is208

calculated to determine the overall compatibility of the SNO muon reconstruction algorithm with209

tracks reconstructed in the EMuS system. The likelihood is given by the following functional210

form:211

L =
∑

wires i

[bi − ρ(ti)]2

σ2
i

(9)

where bi is the impact parameter between the simulated track and the ith wire, ρ(ti) is the expected212

radius given the TDC time recorded for the wire and σi is the wire position uncertainty. Wire213

hits that reconstruct at greater than 5σ from the main track are essentially removed to avoid214

reconstruction bias.215

Figure 8 shows the most likely tracks for a single event based on this method. The distribution216

is the projection of a cone, and indicates that there is a degeneracy between the angle and track217
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distributions directly from SNOMAN Monte Carlo simulation package without taking into account correlations between
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these correlations.
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Figure 10: Gaussian fit to the data jointly reconstructed by the EMuS-SNO systems. Figure shows both angular (left)
and impact parameter (right) difference.

reconstructed by the EMuS system. This is expected because if the track direction is changed218

(raising the angular difference) the placement of the track can be changed (raising the impact219

parameter difference) without significantly altering the hit pattern recorded by the EMuS system.220

Since this ambiguity exists only in the EMuS system and not in SNO’s muon tracking algo-221

rithm, we can compare tracks reconstructed in the two systems by assuming either (a) the impact222

parameter is fixed or (b) the reconstructed track direction is fixed. To test the validity of these223

assumptions, an ensemble of fake data sets is generated both with and without accounting for224

track correlations in the EMuS system. The results from these Monte Carlo tests are shown in225

Figure 9. Correlations have no effect on the angular mis-reconstruction or the means of the distri-226

butions, but they do broaden the impact parameter mis-reconstruction by as much as 10 cm. We227

conclude that the EMuS-SNO tracks are sensitive enough to constrain the angular reconstruc-228

tion and impact parameter bias of the SNO muon fitting algorithm, but not the resolution of the229

impact parameter reconstruction.230

Figure 10 shows the results of applying the two assumptions to the 30 reconstructed EMuS-231

SNO events. The data are fitted to the functional forms of Equations 4 and 5. Due to the small232

number of events, the weights and relative widths of the secondary gaussians are fixed to their233

values from the earlier simulations. We find that the angular width is 0.61◦ ± 0.06◦. The impact234

parameter bias is 4.2 ± 3.7 cm, while fit impact parameter width is 18 ± 11 cm.235

7. Conclusions236

The combined data from the SNO detector and the External Muon System have demonstrated237

that the SNO muon reconstruction algorithm is accurate to the level needed by the neutrino-238

induced atmospheric flux analysis. The EMuS analysis places a constraint on the angular recon-239

struction to better than 0.61◦±0.06◦ and on the impact parameter bias to better than 4.2±3.7 cm.240

The latter constraint is in good agreement with other methods using cosmic-ray data in SNO [1].241

We believe the method employed here is a unique, low-cost way to explicitly verify the validity242

of muon track reconstruction for deep underground experiments.243
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