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ABSTRACT 
Supramolecular protein assemblies including molecular motors, cytoskeletal filaments, 
chaperones, and ribosomes play a central role in a broad array of cellular functions ranging from 
cell division and motility to RNA and protein synthesis and folding. Single-particle 
reconstructions of such assemblies have been growing rapidly in recent years, providing 
increasingly high resolution structural information under native conditions. While the static 
structure of these assemblies provides essential insight into their mechanism of biological 
function, their dynamical motions provide additional important information that cannot be 
inferred from structure alone. Here we present an unsupervised computational framework for the 
analysis of high molecular weight assemblies and use it to analyze the conformational dynamics 
of structures deposited in the Electron Microscopy Data Bank. Protein assemblies are modeled 
using a recently introduced coarse-grained modeling framework based on the finite element 
method, which is used to compute equilibrium thermal fluctuations, elastic strain energy 
distributions associated with specific conformational transitions, and dynamical correlations in 
distant molecular domains. Results are presented in detail for the ribosome-bound termination 
factor RF2 from Escherichia coli, the nuclear pore complex from Dictyostelium discoideum, and 
the chaperonin GroEL from E. coli. Elastic strain energy distributions reveal hinge-regions 
associated with specific conformational change pathways, and correlations in collective 
molecular motions reveal dynamical coupling between distant molecular domains that suggest 
new, as well as confirm existing, allosteric mechanisms. Results are publically available for use 
in further investigation and interpretation of biological function including cooperative transitions, 
allosteric communication, and molecular mechanics, as well as in further classification and 
refinement of electron microscopy based structures. 
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INTRODUCTION 

Single-particle reconstructions of supramolecular protein assemblies deposited in the 

publically accessible Electron Microscopy Data Bank (EMDB, http://www.emdatabank.org/) 

have been growing rapidly in recent years, representing a total of approximately 250 distinct 

structures in 2009 [1, 2]. The EMDB covers a range of supramolecular assemblies including 

viruses as the dominant class, and RNA binding proteins and protein kinases as major subclasses 

(Figure 1). Recent growth of the EMDB parallels early growth of the Protein Data Bank (PDB), 

which has developed to include tens of thousands of protein crystal structures since its inception 

in 1971 [3, 4]. While the static structure of proteins provides invaluable insight into their 

biological function, their conformational dynamics often play an additional important role in 

understanding their function mechanistically [5-7]. 

Normal mode analysis (NMA) has proven to be an effective computational approach to 

investigate biologically relevant collective motions about a representative ground-state structure, 

or ensemble thereof [8]. The primary advantage of NMA over molecular or Brownian dynamics 

is its relative computational efficiency, which is a result of the harmonic approximation of 

atomic motions about the ground-state conformation, as well as the neglect of explicit solvent 

degrees of freedom. Computational efficiency is further enhanced in NMA by using coarse-

grained modeling approaches that reduce the number of protein degrees of freedom, which has 

been essential to facilitating the analysis of high molecular weight supramolecular assemblies. 

Popular approaches include the Rotational Translational Blocks (RTB) procedure [9], which 

requires atomic coordinates for the underlying protein structure, the Gaussian [10-13] and Elastic 

Network Model (ENM) [14], the Rigid-Cluster Model [15-17], and more recently the Finite 

Element Method (FEM) [18]. The FEM is a well established numerical procedure with solid 
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theoretical foundations that has been developed over several decades to be applied to a broad 

range of continuum and molecular-level dynamical phenomena [19-21]. The FEM provides a 

natural framework for the computation of conformational dynamics and mechanics of high 

molecular weight proteins and their assemblies based on EM reconstructions because the model 

is defined using a closed molecular surface, which is naturally provided by single-particle EM 

reconstructions. In the FE framework employed here, proteins are modeled as homogeneous 

isotropic elastic bodies characterized by a mean mass density and elastic stiffness, which has 

been shown to reproduce quantitatively atomic-level protein fluctuations and correlations 

computed using all-atom NMA [18]. Accurate prediction of atomic motions using the FEM is 

attributed to its preservation of detailed molecular shape, even for high molecular weight protein 

assemblies. 

 While several data banks and servers [22-27] exist to disseminate publically the 

conformational dynamics of protein structures deposited in the PDB, similar data banks do not 

exist at present for the EMDB. Such a data bank would support both further computational 

analyses to gain insight into the biological function of high molecular weight protein assemblies 

lacking atomic structure, as well as potentially serve as a basis set for classification in single-

particle reconstruction [28]. Toward this end, here we establish an unsupervised computational 

framework to analyze the conformational dynamics of structures deposited in the EMDB and 

store them in a publically accessible online data bank*. In this framework, the molecular surface 

of EMDB entries are computed and validated for computation of normal modes using the FEM 

[18]. Normal modes may be used to calculate conformational properties including root-mean-

square fluctuations of the molecules in thermal equilibrium, elastic strain energy densities 

                                                 
* Results are available at http://www.cdyn.org 
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corresponding to biologically relevant conformational changes, and correlations in collective 

dynamical motions that may relate to cooperative or allosteric mechanisms. Individual normal 

mode shapes and frequencies are provided together with the molecular models used to perform 

the analyses, which may be used in further FE-based analyses of dynamical and mechanical 

response (Figure 2). Results for the ribosome-bound termination factor RF2 from Escherichia 

coli, the nuclear pore complex from Dictyostelium discoideum, and the bacterial chaperonin 

GroEL from E. coli are presented in detail here to illustrate the utility of the foregoing results. 

 

 

MATERIAL AND METHODS 

 Structures in the EMDB are analyzed using an automated procedure that consists of 

several distinct computational steps (Figure 3A): (1) retrieval of the EM density map; (2) 

molecular surface computation and discretization; (3) discretized molecular surface evaluation 

and repair; (4) FE model generation and normal mode analysis; and (5) results processing. The 

EMDB is monitored regularly to determine when new structures suitable for conformational 

dynamics analysis are deposited. To date, the preceding analysis approach has been applied to 

681 EMDB entries with 453 entries solved successfully. The remaining entries are excluded 

from the analysis because 55 entries are on hold by the EMDB, 31 entries are tomograms, 10 

entries do not provide contour levels or molecular weights from which to determine the 

molecular surface, 87 entries consist of disconnected multiple bodies, and 45 entries had surface 

meshes that could not be repaired using the current approach (Figure 3B and Table S1). Proteins 

are classified according to their biological function by title and sample name key words provided 

by the EMDB (Figure 1). 
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Molecular surface computation and discretization 

 For computation of the molecular surface in step 2, the suggested contour level provided 

in the EMDB is used unless no such contour level is provided. In this case, the molecular weight 

is used instead (four entries), where the contour level corresponding to the given molecular 

volume assuming a protein mass density of 1.35 g/cm3 is employed [29]. If neither the contour 

level nor the molecular weight of the complex is provided, the EMDB entry is classified as 

“molecular surface indeterminable” and no analysis is performed (ten entries, Table S1). An 

alternative to using a simple molecular-volume-based contour level is to use one of the surface 

determination algorithms employed previously in NM studies of EM maps [30-33]. Additionally, 

in several cases structures consisting of disconnected multiple bodies are obtained using the 

suggested contour level, in which case the entry is flagged as having “disconnected multiple 

bodies” and no analysis is performed (87 entries, Table S1). Several examples of such maps are 

presented in Supplementary Material (Figure S1). Discretization of the molecular surface is 

performed using the marching cubes algorithm [34] implemented in Chimera [35]. The 

triangulated surface is subsequently exported in OBJ format, a geometry definition file format 

originally developed by Wavefront Technologies, Inc., Santa Barbara, CA.  

In general, the triangulated molecular surface generated using Chimera contains small 

isolated fragments where an “isolated fragment” is defined to be a closed surface that consists of 

fewer than 10% of the number of triangular faces that forms the largest structure in the map. It 

additionally often contains intersecting, overlapping, degenerate, and/or non-manifold surface 

triangles. Because the FEM requires unique, closed surfaces for the generation of a volumetric 

mesh, surface mesh repair is required in step 3 prior to performing FE-based NMA (Figure S2). 
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Surface mesh filters available in Meshlab [36] are used for this purpose. Meshlab reads the OBJ 

file format exported from Chimera and exports the filtered molecular surface in STL file format, 

which is native to the stereolithography CAD software created by 3D Systems, Inc., Rock Hill, 

SC. The resulting STL file from Meshlab is imported to the commercially available Finite 

Element Analysis program ADINA (ADINA R&D, Inc., Watertown, MA), which is used to 

generate the 3D FE volume mesh consisting of 4-node tetrahedral finite elements [37]. If mesh 

repair is impossible using Meshlab, then the EMDB entry is classified as “failed in molecular 

surface repair” and no further analysis is performed (45 entries, Table S1). 

The mesh filtering and repair scheme employs several filters available in Meshlab. The 

original surface mesh obtained from Chimera is first processed using basic filters with default 

parameters that remove duplicate faces, unreferenced vertices, zero-area faces, self-intersecting 

faces, isolated fragments, and non-manifold faces. Default parameters are additionally used to 

close holes that are in the original surface mesh and are created by removing defective faces. In 

cases where closing holes keep re-introducing problems with the surface, the surface mesh is 

refined successively, smoothened, and coarsened, where “Midpoint subdivision” [38], 

“Laplacian smooth” [39] and “Quadratic edge collapse decimation” [40] are employed for these 

procedures, respectively. The surface mesh is processed again using basic filters to remove 

defective faces that may be re-introduced during the mesh coarsening. 

 

Finite element model generation and normal mode analysis 

In step 3, the FEM is used to calculate normal modes based on the three-dimensional 

volume mesh. While twenty normal modes are chosen for the initial database because they 

generally describe approximately 60–90% of the total magnitude of equilibrium thermal 
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fluctuations (Figure S3), the database is currently being expanded to include results from 100 

normal modes. Additional normal modes may easily be calculated using the provided FE model 

when desired, in addition to FE-based simulation of mechanical response properties such as viral 

capsids [41, 42]. Proteins are modeled as homogeneous linear isotropic materials characterized 

by three independent effective material parameters: the Young’s modulus ( E ), the mass density 

(  ), and Poisson’s ratio ( ), where proteins are assumed to have mass density 1.35 g/cm3 and 

Poisson’s ratio 0.3 [43], which is typical of crystalline solids. While the effective Young’s 

modulus is generally unknown for proteins, it can be obtained by fitting thermal fluctuations of 

α-carbon atoms in the FE model to those obtained using either the all-atom normal mode 

analysis or the RTB procedure when atomic coordinates are available, which generally ranges 

from two to five GPa [18, 44]. Because most structures in the EMDB lack atomic coordinates, 

normal mode amplitudes and dependent properties are computed using a Young’s modulus of 2 

GPa, representing an approximate lower bound on protein stiffness, and correspondingly an 

upper bound on molecular RMSFs [18]. The precise value of the Young’s modulus affects 

linearly the magnitude of thermal fluctuations, and therefore all results presented may be scaled 

linearly to calculate their value corresponding to higher or lower Young’s moduli. 

The subspace iteration procedure [44, 45] is used to solve the eigenvalue problem using 

2 mN  starting iteration vectors, where mN  denotes the number of eigenmodes to be calculated. 

Analyses are performed on a 2.0 GHz Intel Xeon E5405 processor with 8 GB RAM. The 

computed number of rigid body modes is compared with the number of isolated molecular 

volumes calculated in the surface discretization step by successively removing the largest 

components from the molecular surface until no component remains and counting the number of 

those steps, where each isolated fragment has six rigid body modes. 
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Root-mean-square fluctuations and elastic strain energy densities 

 RMSFs in molecular motions are computed using the equipartition theorem of statistical 

thermodynamics [46], which requires that the equilibrium mean elastic strain energy associated 

with each normal mode equals 1
2 Bk T , where Bk  is the Boltzmann constant and T  is temperature, 

assumed to be 298 K. The equilibrium mean elastic strain energy associated with each mode k is 

given by    1 1 1
2

2
2 2

T

k k k k k k k Bk T     Kx x  where kx  denotes the mass normalized 

eigenvector satisfying 1T
k k Mx x  with the mass matrix M , k  is its equilibrium amplitude, K  

is the stiffness matrix and k  is the eigenvalue associated with mode k. The RMSF for FE node 

i  is calculated using    1/
2 2

2 1/221/2 2
i ik ikk k k    r r x  where ikx  is the displacement 

vector of node i due to mode k.  

Elastic strain energy densities corresponding to each mode are also computed at FE nodes. 

The elastic strain energy density corresponding to mode k is defined as 
3 3

1
2

1 1

k k

ij ijk
i j

v  
 
   where 

k
ij  and k

ij  denote the components of the strain and stress tensor for mode k, respectively. The 

strain energy is first evaluated for each element and then averaged at each FE node because 

strains are discontinuous at element boundaries. Residues with high elastic strain energy density 

associated with experimentally observed conformational changes are structurally important to 

the stability of corresponding functional motions. It has been shown for some polymerases that 

those residues, termed hot spots by Zheng et al. [47], are also conserved evolutionarily, where 

hot spots are identified using the structural perturbation method, which measures for each 

residue the sensitivity of the total elastic energy corresponding to a specific mode that 
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maximally overlaps with the conformational change to the perturbation in the stiffness of springs 

connected to the residue using the ENM [47]. The elastic strain energy density is physically 

correlated to the structural perturbation method because the perturbation in the stiffness of a 

residue with high elastic strain energy density will yield high perturbation to the total elastic 

energy as well (Figure S4). The similarity between the modes and the conformational change is 

measured by the overlap coefficient defined as k d k d kC  r x r x  where kx  is the 

displacement vector of mode k and dr  is the difference vector between two conformations. 

When atomic structures of two or multiple conformations are available, the elastic strain 

energy densities corresponding to the conformational change are calculated by displacing FE 

nodes of the open conformer to their corresponding positions in the closed state. The 

displacements of FE nodes are obtained by superposing the lowest 100 normal modes with 

appropriate weights. The weight of each normal mode is computed using   C
k

C C
d k kW    r x x  

where C
d

r  is the difference vector between α-carbon positions of the conformers and C
k
x  is the 

displacement vector at α-carbon positions due to mode k calculated by a linear projection from 

FE nodes [44] (Figure S5). 

All FE nodal results are stored in ASCII format including eigenvectors, their magnitudes, 

corresponding elastic strain energy densities for each normal mode, and total RMSF amplitudes. 

Results at FE nodes are also interpolated to each voxel of the original density map and stored in 

the MRC density map format so that both the original density map and result maps may be 

viewed simultaneously using, for example, Chimera (Figure S6). In addition, initial and 

deformed molecular surfaces for each mode are stored in STL file format for use in programs 

such as Maya (Autodesk, Inc., San Rafael, CA). Distributions of modal magnitudes and strain 
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energy densities on the initial molecular surface are stored in PLY file format, known as the 

Polygon File Format or the Stanford Triangle Format, where relative values are used as colors of 

vertices comprising the discretized molecular surface. Molecular animations in high (640×480 

pixels) and low (320×240 pixels) resolutions are provided for four sub-frames in orthogonal 

views: ISO-3D, XY-plane, XZ-plane and YZ-plane to illustrate the dynamical motions 

associated with each mode. 

 

Correlations in molecular motions 

Linearized Mutual Information (LMI) is used to calculate correlations in molecular 

motions [48, 49]. The Mutual Information (MI) in atomic displacements is defined as 

 1 2

1

, , ( ) ln
( )

(
,

)i

N N

ii

p
p

p
d




     

 


r
r r r r r

r
 where ir  denotes the positional fluctuation 

vector of node i, and ( )i ip r  and )(p r  are their marginal and joint probability distributions, 

respectively. The LMI can be written in terms of equilibrium conformational properties as 

 ( ) ( ) ( )

1
, ln det ln det ln det

2lin i j ii jj       C C C r r  where    ( ) , ,
T

i j i jij     C r r r r  and 

( ) i
T

i i  C r r . The generalized correlation coefficient, 

  1/2

, 1 exp 2 ,jLMI i lin i jr d            r r r r , is employed, where d is dimensionality (d 

=1,2,3) [48]. Accordingly, LMI components are computed in the standard way using the normal 

modes and    
1

TT
i k ik k

nm

j
k

jk 


   x xr r  where nm is the number of normal modes, taken here 

to be 100 by default which is generally sufficient to obtain converged correlation coefficients 

(Figure S7, Figure S8, and Figure S9), and ikx  is the displacement vector of node i due to mode 
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k [50, 51]. The MI metric is employed due to its higher sensitivity in detecting correlations in 

molecular motions than the more commonly used Pearson correlation coefficient, which does not 

account for non-collinear correlated motions [48, 51]. In general, correlation coefficients are 

computed between FE nodes because EM-based structures typically lack atomic coordinates, 

although correlations in molecular motions may easily be computed at alpha carbon positions, 

for example, if a reference atomic structure is known using a linear projection from FE nodes 

(Figure S5). 

 To identify molecular regions that are highly correlated in their dynamical motion, 

hierarchical clustering is performed using 1 LMIr  as a distance metric and by defining the inter-

cluster distance as the mean pair-wise distance between all elements (FE nodes) in any two 

clusters. In general, the density of FE nodes is uniform in the molecule and clusters identified are 

considerably larger than the inter-node spacing. While this process naturally forms clusters of 

nodes with respect to their magnitude of MI, in most cases clusters with high MI consist of nodes 

that are spatially near one another because direct geometric/packing interactions introduce highly 

correlated motions that are trivial and not of interest. Instead, we seek to identify clusters that are 

both highly correlated and spatially distant, which could not be identified from molecular 

structure or geometry alone. To achieve this, N clusters are formed by choosing the number of 

clusters (N) at the knee point of a clustering performance curve that shows compactness (intra-

cluster variance) and separation (inter-cluster partitioning) of resulting clusters as a function of 

the number of clusters [52]. Compactness is computed as the mean cluster size, where cluster 

size is defined as the mean pair-wise distance between all elements (FE nodes) in the cluster. 

Separation is defined as the mean inter-cluster distance, where the distance between clusters is 

the same as that used in hierarchical clustering. Spatially distant cluster pairs are determined 
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using the criterion  , ,ij dist g i g jD C R R  , where ijD  is the distance between the mean positions 

of clusters i and j, 1
1,

2i

i

L

ig i kL k
R d


   is the radius of gyration of cluster i, which is the root-

mean-squared distance ( ikd ) between FE node k and the mean position of cluster i over the 

number of nodes in cluster i ( iL ), and distC  is an empirical parameter that is used to define 

“distant,” which is taken here to be 1.2. In general, , ,ij g i g jD R R   means that clusters are 

physically overlapping whereas , ,ij g i g jD R R   means that they are non-overlapping. Distant 

cluster pairs with the highest mean correlation are selected for evaluation. 

This approach is tested for T4 lysozyme (PDB ID 3LZM) and adenylate kinase (PDB ID 

4AKE, open conformer). Residue clusters obtained for T4 lysozyme correspond to residues 

correlated due to hinge-bending [18, 48] and those for adenylate kinase are active residues in the 

conformational change from its open (PDB ID 4AKE) to its closed states (PDB ID 1AKE) [44, 

53] (Figure S10 and Figure S11). Note that the generalized correlation coefficients from LMI 

generally give more information compared with the Pearson correlation metric (Figure S12). 

 

 

RESULTS 

Ribosome-bound termination factor RF2 

Class I release factors (RFs), RF1 and RF2 in prokaryotes, or eRF1 in eukaryotes, 

recognize mRNA stop codons via tripeptide motifs that result in termination of protein synthesis 

by the ribosome via peptidyl-tRNA hydrolysis and subsequent peptide chain release [54]. The 

cryo-EM structure of the ribosome-bound E. coli RF2 (EMDB ID 1010) consists of four domains 

in its native open, tri-lobed conformation (Figure 4A), which is in contrast to the closed 
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conformation that it exhibits in its unbound crystal structure [55-58]. The conserved GGQ 

amino-acid motif that is essential to peptidyl-tRNA hydrolysis is located at the distal end of 

domain 3 [59, 60], whereas the SPF loop that is essential to stop codon recognition is located in 

domains 2 and 4, which form a compact super-domain [54]. Overall, NMA reveals that domain 3 

exhibits the highest conformational flexibility relative to the remainder of the molecule, as 

measured by root-mean-square fluctuations (RMSFs) (Figure 2). This is in contrast with domains 

2 and 4, as well as the central region of domain 1, which exhibit relatively low flexibility (Figure 

2). 

Residues that are structurally important to the stability of specific functional motions are 

associated with regions of high elastic strain energy, termed hot spots by Zheng et al. [47]. The 

biological relevance of such residues has been established in several cases using sequence 

analysis [47], which shows that they are conserved evolutionarily. Regions of highest elastic 

strain energy associated with the open-to-closed transition of RF2 are predominantly at the 

interface between domains 3 and the super-domain 2 & 4, as well as secondarily in the neck 

region of domain 1 (Figure 2). Both of these regions act as hinges in the open-to-closed 

transition (Figure S13). Sequence analysis would be of interest to test whether residues in these 

regions are under evolutionary pressure to be conserved. 

Analysis of the correlations in RF2 collective motions identifies five distinct molecular 

regions with domain 3 and the proximal region of domain 1 exhibiting the highest mean 

correlation despite their large spatial separation (Figure 4). The mean correlation of these regions 

corresponds to the 88th percentile of correlation coefficients in the molecule. While this result is 

unaffected by increasing the number of normal modes employed from 100 to 400 (Figure S14), 

molecular dynamics simulations would be of interest to test potential effects of anharmonic 
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dynamics on this correlation analysis [48]. The fact that these domains correspond to regions of 

the molecule that undergo a significant conformational change between its open and closed 

conformers [55] suggests that this correlation analysis might be useful to identify molecular 

domains involved in conformational transitions. Further analyses to test this hypothesis are 

beyond the scope of the present work. 

 

Nuclear pore complex 

Nuclear pore complexes (NPCs) are high molecular weight (50 to 120 MDa from yeast to 

vertebrates) supramolecular assemblies that confer eukaryotes the ability to transport selectively 

macromolecules between the nucleus and cytoplasm [61-63]. NPCs are highly conserved from 

yeast to humans, consisting of approximately 30 different nucleoporin proteins that form a 

central pore of approximately 30 to 60 nm through which small molecules (< 40 kDa) may 

diffuse freely, but larger molecules may only be transported with the assistance of karyopherin 

(Kap) receptor proteins [64, 65]. In order to transport cargo selectively, Kaps interact with the 

phenylalanine-glycine-rich domain repeats present within the channel of the NPC, which are 

thought to act either as an entropic or a physical barrier, with a detailed molecular mechanism 

that remains unclear [66-72]. Beyond their role in transport, NPCs are recently implicated in 

playing important additional roles in nuclear organization and gene regulation [73]. 

Cryo-electron tomography (Cryo-ET) applied to the NPC from D. discoideum nuclei 

(EMDB ID 1097, Figure 5A) reveals eight-fold symmetry of the complex that is composed of a 

125 nm diameter central framework consisting of cytoplasmic, luminal spoke, and nuclear rings 

that form a central pore of 60 nm [74]. The nuclear basket consists of a distal ring plus nuclear 
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filaments and eight cytoplasmic filaments, each approximately 35 nm in length, are seen clearly 

to be oriented towards the central plug/transporter (CP/T) in the reconstruction [74]. 

NMA of this NPC reveals that the cytoplasmic filaments are conformationally most 

flexible relative to the rest of the molecule (Figure 2 and Figure S15). The nuclear basket also 

exhibits conformational mobility relative to the nearly rigid central framework, which may be 

attributed to the porous structure of the former compared with the solid hub-like structure of the 

latter. 

Analysis of the correlations in molecular motions of the NPC demonstrates that the large 

amplitude fluctuations of the cytoplasmic filaments are not correlated with one another: the mean 

inter-cluster correlation between cytoplasmic filaments is 0.13, which corresponds to the 5th 

percentile of correlation coefficients for all nodal pairs in the molecule (Figure 5B). This is in 

contrast to the nuclear basket and central framework, in which nodal pairs have relatively high 

mean correlation coefficients of 0.67 (90th percentile) and 0.41 (75th percentile), respectively, 

exhibiting structural integrity that is manifest in their individually highly correlated collective 

motions. The lack of correlation in the collective motions of the cytoplasmic filaments might 

explain the inability of single-particle reconstructions to reach high resolution in the absence of 

interacting cargo molecules, which tend to stabilize the filaments in specific conformations [74, 

75]. 

Bending transverse to the plane of the nuclear envelope, elliptical distortion, and 

homogeneous dilatational motions dominate the lowest normal modes of the central framework 

(Figure 5C and Figure S16), thereby representing the most significant large-scale, collective 

motions of the complex as measured by their relative contributions to total RMSFs (Figure S15). 

Regions of elevated elastic strain energy corresponding to elliptical distortion that has been 
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observed experimentally using cryo-ET [76] include the inner region of the cytoplasmic ring 

(Figure 2), suggesting that this region might be important to the structural stability of this motion. 

Other regions of elevated elastic strain energy include the roots of cytoplasmic filaments, the 

boundaries between the central framework and the nuclear basket, and the luminal spoke ring, 

which acts as a plane of transverse pseudo-symmetry for the hub-like central framework. 

Homogeneous dilatation of the central pore, which has also been observed to occur 

experimentally in response to the presence of calcium ions [77], ATP [78], and steroids [79-81], 

first appears at the considerably higher mode number 27, whose frequency is approximately 

twice that of the elliptical normal modes. This significant difference in harmonic frequency 

suggests that this latter mode of deformation is considerably less favorable mechanically. Thus, 

either small-molecule-induced structural transitions should occur to render homogeneous dilation 

energetically on par with elliptical distortion, or this difference operates to separate energetically 

these functional motions, with potential implications on selective transport of macromolecular 

cargo. 

The lowest normal modes reported here for the cryo-ET-based NPC structure from D. 

discoideum are similar to the lowest normal modes reported for the yeast and Xenopous oocyte 

NPCs, which were analyzed using the ENM [82] and a FE representation [83], respectively, 

using simplified models based on idealized geometries. Notwithstanding, the similarity of the 

lowest normal modes reported across these studies indicates that the collective motions of the 

NPC central framework are robust to significant variations in overall structure as long as the 

hub-like structure of the central framework is preserved. 

 



18 
 

GroEL 

 GroEL is an extensively studied bacterial chaperonin that assists polypeptide chains in 

folding to form their native structure [84-89]. The assembly consists of two co-axial rings that 

are each composed of seven identical subunits of 60 kDa each. Each subunit consists of three 

domains: an equatorial domain that contains an ATP binding site and connects the coaxial rings, 

an apical domain that contains the co-chaperonin GroES binding site, and an intermediate 

domain that connects the equatorial and apical domains (Figure 6A). 

 NMA of GroEL (EMDB ID 1080) [90] reveals that the apical subunit domain, which 

exhibits significant conformational polymorphism between the bound and unbound states of 

GroES, also exhibits the highest conformational flexibility in the molecule (Figure 2). The elastic 

strain energy associated with the functional transition from the native T-state to the ATP-bound 

R-state (for the upper ring) is elevated at the interfaces of the different subunits, the upper and 

lower rings, and the equatorial and intermediate domains within the same subunit (Figure 2), 

suggesting that residues at these interfaces may play important roles in the structural stability of 

this functional motion. 

Analysis of the correlations in the dynamical motions of GroEL identifies 28 molecular 

regions that are highly correlated in the collective motions of the complex (Figure 6B): each 

structural subunit consists of two clusters, one that contains the equatorial domain and another 

that contains the intermediate and apical domains†. Nearest-neighbor clusters in different 

subunits within the same ring (Figure 6C, i) exhibit maximally correlated dynamics amongst all 

nearest-neighbor clusters in the molecule (horizontal shaded region in Figure 6C), whereas other 

                                                 
† Correlation analysis performed using the alpha carbon positions of the reference atomic structure (PDB ID 1OEL) 
yields identical results to correlation analysis performed using FE nodes. 
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nearest-neighbor clusters are relatively less correlated (Figure 6C, ii). These high inter-subunit 

correlations may be important for the cooperative ATP binding and hydrolysis reactions that 

occur in seven subunits within each ring with the heptameric symmetry of GroEL being 

maintained [84, 86, 89]. In contrast, all non-neighboring cluster pairs exhibit relatively low 

correlations. The same correlation analysis results are consistently obtained for other GroEL 

models based on the molecular surfaces at different resolutions (Figure S17). 

 

 

CONCLUSIONS 

An unsupervised approach to computing the conformational dynamics of supramolecular 

protein assemblies based on single-particle cryo-EM based reconstructions is proposed. 

Conformational flexibility, spatial distributions of elastic strain energy, and correlation analysis 

highlight molecular regions that are important to functional motions, elucidated here for RF2, the 

NPC, and GroEL. A novel, objective approach to identifying highly correlated molecular 

domains identifies domains that are known to be functionally involved in cooperative or 

allosteric transitions, as well conformational change pathways. This suggests that the foregoing 

procedure might prove useful in the discovery of such domains that are not known a priori and 

that cannot be deduced from structure alone. Application of this procedure to large classes of 

molecules with known allosteric or functional coupling is needed to test this hypothesis. 

While the present procedure is applied to single-particle reconstructions in the EMDB, 

the approach is generally applicable to atom-based structures in the PDB [18] and VIPERdb [91] 

as well, for related functional analyses to those presented here. Analysis of the conformational 

flexibility, elastic strain energy density, and correlations in dynamical motions of the ribosome, 
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viral capsid, and bacterial flagellar motor shown in Figure 2 may be the subject of future work. 

Together with the remaining several hundred structures analyzed, these results should prove 

broadly useful to understanding the molecular-basis of the biological function of supramolecular 

protein assemblies [92]. 
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FIGURE LEGENDS 
 
 
Figure 1 Classification of EMDB entries according to biological function. Numbers in 
parentheses denote successfully analyzed structures deposited at http://www.cdyn.org. 

Figure 2 Representative results of conformational dynamics analysis. Discretized molecular 
surface, equilibrium RMSF at room temperature (298 K), and elastic strain energy densities for 
ribosome-bound termination factor RF2 from E. coli (EMDB ID 1010); nuclear pore complex 
from D. discoideum (EMDB ID 1097); GroEL from E. coli (EMDB ID 1080); 70S ribosome 
from E. coli in the pretranslocation state (EMDB ID 1554); human hepatitis B viral capsid 
(EMDB ID 1402); and connector of bacteriophage T7 (EMDB ID 1231). Elastic strain energy 
densities correspond for RF2 to its open-to-closed transition (PDB ID 1MI6 and 1GQE)  
represented using the lowest 100 normal modes, for GroEL to the functional transition from the 
native T-state (PDB ID 1OEL) to the ATP-bound R-state prior to co-chaperonin GroES binding 
(PDB ID 2C7E) represented by the lowest 100 normal modes, for the NPC to normal mode 3 that 
represents its experimentally observed elliptical distortion [76], and for the remaining structures 
to their lowest normal modes. RMSFs and elastic strain energy densities are normalized to range 
from zero to one, where blue and red denote low and high relative values, respectively. 

Figure 3 Automatic procedure for conformational dynamics analysis. (A) Flowchart of the 
procedure consisting of map retrieval from the EMDB, surface discretization and repair, finite 
element mesh generation, normal mode analysis, and results processing. (B) Decomposition of 
the EMDB into solved (453) and remaining unsolved (228) entries. 

Figure 4 Ribosome-bound termination factor RF2. (A) Structure of E. coli RF2 in the open 
conformation (EMDB ID 1010) [55]. (B) Generalized inter-nodal correlations and hierarchical 
clustering dendrogram, clustering performance curve, and identified regions with highly 
correlated molecular motions. Regions g1 and g2 of the molecule remain in a single cluster in 
neighboring clustering partitions consisting of 3, 4, or 6 clusters. (C) The cluster (g1-g2) with 
highest correlation is composed of two spatially distant structural regions: domain 3 (g1) and the 
proximal region of domain 1 (g2). Scatter plots of (far left) pair-wise spatial distance versus 
generalized correlation for (top) all nodal pairs in the molecule and (bottom) only nodal pairs in 
g1 & g2 show that (middle) nodal pairs in g1 & g2 constitute amongst the most highly correlated 
regions in the molecule. (Far right) Scatter plot of the mean generalized correlation versus spatial 
cluster separation of the five clusters identified in (B). See text for details. 

Figure 5 Nuclear pore complex. (A) Structure of the NPC from D. discoideum (EMDB ID 
1097) [74]. (B) Generalized inter-nodal correlations and hierarchical clustering dendrogram, 
clustering performance curve, and identified regions with highly correlated molecular motions. 
(C) Normal modes corresponding to elliptical distortion (mode 3 and 4) and homogeneous 
dilatation of the central pore (mode 27), which are implicated in NPC transport. 

Figure 6 GroEL. (A) Structure of the bacterial chaperonin GroEL (EMDB ID 1080 & PDB ID 
1OEL) [90]. (B) Generalized inter-residue correlations and hierarchical clustering dendrogram, 
clustering performance curve, and identified regions with highly correlated molecular motions. 
(C) The generalized correlations and separation of clusters identified in (B) indicate that adjacent 
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subunits in the same ring are more highly correlated than adjacent subunits in distinct rings, and 
that all adjacent subunits are considerably more correlated than other (nonadjacent) subunits in 
the collective motions of the complex. 
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SUPPLEMENTARY MATERIAL 

 
Table S1. EMDB entries excluded from NMA. 

 
Number 
of entries 

EMDB ID 

Molecular surface 
indeterminable1 

10 
1087, 1151, 1233, 1259, 1533, 1596, 1599, 1601, 1609, 
5037 

Disconnected 
multiple bodies2 

87 

1015, 1018, 1021, 1025, 1036, 1042, 1052, 1061, 1073, 
1079, 1088, 1101, 1106, 1111, 1112, 1118, 1123, 1134, 
1137, 1145, 1165, 1176, 1177, 1203, 1207, 1221, 1226, 
1229, 1234, 1236, 1237, 1238, 1244, 1254, 1256, 1267, 
1268, 1299, 1314, 1320, 1331, 1333, 1334, 1335, 1340, 
1341, 1343, 1353, 1374, 1375, 1377, 1379, 1383, 1385, 
1387, 1389, 1401, 1415, 1425, 1427, 1428, 1431, 1437, 
1442, 1443, 1447, 1458, 1462, 1469, 1471, 1529, 1531, 
1532, 1557, 1579, 1580, 1582, 1591, 1617, 5003, 5010, 
5012, 5021, 5022, 5023, 5100, 5104 

Failed in molecular 
surface repair3 

45 

1016, 1026, 1060, 1075, 1083, 1113, 1115, 1130, 1133, 
1152, 1164, 1179, 1181, 1201, 1206, 1235, 1239, 1264, 
1265, 1285, 1309, 1316, 1321, 1354, 1371, 1381, 1392, 
1412, 1420, 1441, 1444, 1461, 1480, 1489, 1490, 1503, 
1509, 1511, 1544, 1549, 1552, 1581, 1593, 5001, 5038 

1Molecular surface indeterminable: Neither the contour level nor the molecular weight is 
provided. 
2Disconnected multiple bodies: Structure consists of disconnected multiple bodies when the 
suggested contour level is used (Figure S1). 
3Failed in molecular surface repair: The automatic procedure fails to repair the molecular surface. 
Molecular surfaces may be repaired by applying filters manually or in a supervised manner, 
neither of which is pursued in the present work. 
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Figure S1 Examples of EMDB entries classified as disconnected multiple bodies that are 
excluded from NMA. Colors highlight all or parts of disconnected fragments. (A) Microtubule 
(EMDB ID 1428). (B) ATPases (EMDB ID 5104). (C) Viral capsid (EMDB ID 1111). (D) 
GroEL (EMDB ID 1458). (E) Ribosome (EMDB ID 1073). (F) Acrosomal actin bundle (EMDB 
ID 1088). (G) Inositol 1,4,5-triphosphate receptor (EMDB ID 1061). (H) Tail of bacteriophage 
K1-5 (EMDB ID 1335). (I) Anaphase promoting complex (EMDB ID 1591). 

Figure S2 Discretized molecular surfaces. Molecular surfaces for kinesin dimers bound to a 
microtubule (EMDB ID 1030) generated by Chimera at the suggested contour level (A) prior to 
surface mesh repair and (B) after surface mesh repair using Meshlab. Molecular surfaces for 
GroEL (EMDB ID 1081) (C) prior to surface mesh repair and (D) after surface mesh repair. 
Isolated fragments and intersecting triangles are highlighted in red in (A) and (C), respectively. 

Figure S3 Convergence of RMSFs. Mean relative RMSFs as a function of the number of modes 
used for RMSF calculations are shown for RF2 (cyan), NPC (blue), and GroEL (red). RMSFs 
computed using 400 normal modes is chosen as the reference. The dashed line corresponds to 20 
normal modes. 

Figure S4 Elastic strain energy densities corresponding to the normal mode that maximally 
overlaps with the conformational change. (A) Taq DNA polymerase I; and (B) bacteriophage 
T7 RNA polymerase I. Numbers 1–8 denote residues with high elastic strain energy densities. 
Results are similar to those obtained using the structural perturbation method [47]. 

Figure S5 Linear projection of normal modes at FE nodes onto alpha carbon positions. 
Normal modes at alpha carbon positions can be computed by linear projection of normal modes 
computed at FE nodes. First, local coordinates of an alpha carbon atom inside a tetrahedral 
element are computed by solving a set of linear equations with given global coordinates of the 
FE nodes and the alpha carbon atom. Then, components of each normal mode at the alpha carbon 
position are computed by interpolating normal modes at FE nodes in the same way. Positions and 
eigenvector components in the global coordinate system are denoted by (x, y, z) and (u, v, w), 
respectively, and positions in the local coordinate system are denoted by (r, s, t). Subscripts 
indicate either local FE node numbers or an alpha carbon atom. 

Figure S6 Sample EM-NMDB structures. Mobile regions of the lowest normal mode are 
highlighted in red whose mode magnitudes are larger than the 80th percentile. Figures are created 
using Chimera by importing the original density map (transparent) and the lowest mode 
magnitude map (red) together. (A) Kinesin dimers bound to a microtubule (EMDB ID 1030). (B) 
A GroEL (EMDB ID 1080). (C) Bacteriophage P22 tail machine (EMDB ID 1119). (D) 
Connector of bacteriophage T7 (EMDB ID 1231). (E) Human RNA polymerase II (EMDB ID 
1283). (F) Nitrilase from Rhodococcus rhodochrous J1 (EMDB ID 1313). (G) A chaperonin, 
cpn60 (EMDB ID 1397). (H) Parvovirus capsid (EMDB ID 5105). 

Figure S7 Convergence of RMSFs and generalized correlation coefficients for RF2. (A) 
RMSFs for a subset of FE nodes. (B–F) Distributions of the generalized correlation coefficients. 
Colors represent the density of pairs within a certain range of correlation coefficients and spatial 
distances. 



36 
 

Figure S8 Convergence of RMSFs and generalized correlation coefficients for the NPC. (A) 
RMSFs for FE nodes in the cytoplasmic filaments, the nuclear basket, and the central framework. 
(B–F) Distributions of the generalized correlation coefficients. Colors represent the density of 
pairs within a certain range of correlation coefficients and spatial distances. 

Figure S9 Convergence of RMSFs and generalized correlation coefficients for GroEL. (A) 
RMSFs for residues in a single subunit. (B–F) Distributions of the generalized correlation 
coefficients. Colors represent the density of pairs within a certain range of correlation 
coefficients and spatial distances. 

Figure S10 T4 lysozyme (PDB ID 3LZM) correlation analysis. (A) Clustering performance 
curve. (B) Six clusters correlated in molecular motions where the largest cluster (colored in 
orange) contains residues correlated due to hinge-bending (residues 13–90 and 108–122). (C) 13 
clusters correlated in molecular motions. The most highly correlated distant clusters (inset) 
consist of residues 33–53 and residues 81–90 that are colored in red. Pearson correlation captures 
a subset of residues correlated due to hinge-bending (residues 30–50, 70–90, and 100–120; 
Figure S12). 

Figure S11 Adenylate kinase (PDB ID 4AKE) correlation analysis.  (A) Clustering 
performance curve. (B) Corresponding clusters correlated in molecular motions. The most highly 
correlated distant clusters (inset) consist of residues 30–73 and residues 113–175 that are colored 
in red and correspond to residues active in the conformational change from its open (PDB ID 
4AKE) to its closed conformation (PDB ID 1AKE). 

Figure S12 Comparisons of mutual information and Pearson correlation coefficients. 
Correlation coefficients of (A–B) T4 lysozyme (PDB ID 3LZM) and (C–D) adenylate kinase 
(PDB ID 4AKE) with linearized mutual information in upper triangle matrix and Pearson 
coefficients in lower triangle matrix. 

Figure S13 Lowest normal modes of RF2. (A–C) Lowest three normal modes. (D) Normal 
mode 9, which coincides maximally with the conformational change associated with the open-to-
closed transition (overlap coefficient 0.53kC  ). The initial molecular surface is colored in gray 

and two deformed molecular surfaces are colored in yellow and cyan for each mode. 
Corresponding elastic strain energy densities are shown on the initial molecular surface as inset 
figures. Animated molecular motions for each mode are available at http://www.cdyn.org. 

Figure S14 Distributions of the generalized correlation coefficients of RF2. The scatter plot 
represents the fraction of the number of pairs belonging to the cluster with the highest correlation 
(g1 & g2 in Figure 4) to the total number of pairs with respect to the generalized correlation 
coefficient and the spatial distance. The generalized correlation coefficients are computed using 
(A) 10 modes; (B) 20 modes; (C) 50 modes; (D) 100 modes; (E) 200 modes; and (F) 400 modes. 

Figure S15 Nuclear pore complex. (A) Relative RMSFs of NPC domains with respect to the 
number of modes used in RMSF computation with absolute RMSFs as an inset and (B) 
eigenvalues. RMSF of each domain is defined as the mean of RMSFs at FE nodes within each 
domain. 
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Figure S16 Lowest normal modes of the NPC. (A) Normal mode 1 is a shear-like motion 
between the nuclear basket and the remaining structure. (B) Normal mode 3 is an elliptical 
distortion of the central framework consisting of transverse bending and stretching. (C) Normal 
mode 5 is axial stretching of the central framework. (D) Normal mode 6 is torsional motion 
between the nuclear basket and the remaining structure. (E) Normal mode 7 is elliptical 
distortion of the central framework consisting of transverse bending and stretching. (F) Normal 
mode 27 is homogeneous dilatation of the pore. A large set of modes (9–26) consists largely of 
fluctuations of the cytoplasmic filaments alone, with closely spaced frequencies that indicate the 
existence of multiple, nearly degenerate motions associated with these regions (Figure S15). 
Normal modes 2, 4, and 8 are not shown because they are degenerate to normal modes 1, 3, and 
7, respectively. 

Figure S17 Correlation analysis of GroEL. The generalized correlations and separation of 
identified clusters are shown for GroEL models based on the molecular surfaces obtained from 
(A) the reference atomic crystal structure (PDB ID 1OEL, 2.8 Å) and (B-D) EM density maps at 
three resolutions: (B) 6 Å (EMDB ID 1081), (C) 11.5 Å (EMDB ID 1080), and (D) 25 Å 
(EMDB ID 1095). Insets represent the cross-sectional area at the interface between two rings. 
High correlations between neighboring clusters are consistently obtained for all models while a 
slightly wider range of low correlations between non-neighboring clusters is observed in (B) due 
to weaker connections between two rings (inset) when the suggested contour level is used. 
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