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Exome-wide study of ankylosing spondylitis demonstrates
additional shared genetic background with inflammatory
bowel disease
Philip C Robinson1,2,3, Paul J Leo4, Jennifer J Pointon5, Jessica Harris4, Katie Cremin2, Linda A Bradbury4, Simon Stebbings6,
Andrew A Harrison7, Australian Osteoporosis Genetics Consortium10, Wellcome Trust Case Control Consortium10,
Emma L Duncan4,8,9, David M Evans2, Paul B Wordsworth3 and Matthew A Brown4

Ankylosing spondylitis (AS) is a common chronic immune-mediated arthropathy affecting primarily the spine and pelvis. The
condition is strongly associated with HLA-B*27 as well as other human leukocyte antigen variants and at least 47 individual non-
MHC-associated variants. However, substantial additional heritability remains as yet unexplained. To identify further genetic
variants associated with the disease, we undertook an association study of AS in 5,040 patients and 21,133 healthy controls using
the Illumina Exomechip microarray. A novel association achieving genome-wide significance was noted at CDKAL1. Suggestive
associations were demonstrated with common variants in FAM118A, C7orf72 and FAM114A1 and with a low-frequency variant in
PNPLA1. Two of the variants have been previously associated with inflammatory bowel disease (IBD; CDKAL1 and C7orf72). These
findings further increase the evidence for the marked similarity of genetic risk factors for IBD and AS, consistent with the two
diseases having similar aetiopathogenesis.
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INTRODUCTION
Ankylosing spondylitis (AS) is an inflammatory arthropathy with a
prevalence of 0.1–0.5% in populations of European or Asian
descent. The condition primarily affects the sacroiliac joints
and the spine, initially causing pain and reversible stiffness.
Subsequent ankylosis of these leads to fixed spinal deformity
and increasing disability. The condition also has extra-articular
manifestations, most commonly in the eye (acute anterior uveitis),
and rarely in the aorta, kidneys and lungs. Inflammatory bowel
disease (IBD; either Crohn’s disease or ulcerative colitis) is found in
5–10% of AS patients, and ~ 60% of AS patients have subclinical
ileal inflammation. The disease is known to be highly heritable,
and to date at least 47 independent genetic variants have been
shown to be associated with AS susceptibility.1 These findings
have contributed greatly to increased understanding of the
pathogenesis of the disease, and also to the development of new
treatments.2 The genetic variants associated with AS have been
discovered using coding variant scans,3 genome-wide association
studies,4,5 candidate gene studies6–10 and studies targeting
immunologically important regions.11 Generally these associations
have been with common variants. For example, in the
International Genetics of AS Consortium Immunochip study,
which identified 37 AS-associated variants, the mean minor

allele frequency (MAF) of the key-associated single-nucleotide
polymorphism (SNP) was 32%, and only two low-frequency
(MAF 1–5%) AS-associated alleles were identified and one rare
allele (MAFo1%).11 As with many common heritable diseases,
a large proportion of the heritability of AS remains unexplained.
The vast majority of human genetic variation consists of low-
frequency and rare variants with MAFo5%.12 Studies performed
to date have not addressed such variants extensively due to the
design of genome-wide association study SNP microarrays and
the sample sizes of the studies not having power to detect
association with low-frequency or rare variants.13 It is likely that
there is a substantial numbers of additional variants in the low-
frequency or rare variant range that remain undiscovered.
Exomes are proposed to carry a disproportionately high number

of clinically important variants because of their potentially
profound effects on the protein function.14 Much of the variation
found in exomes is also rare.15,16 Recent exome-sequencing
analyses have demonstrated the huge number of rare and
potentially damaging variants present in human exomes, with
~ 313 genes per person predicted to be adversely affected by
exonic variants.14

In this study, we sought to identify further AS-associated
genetic variants focusing on exons using the Illumina Human-
Exome Beadchip microarray. In addition to covering common
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coding variants, this chip has extensive low-frequency and rare
variant content, enabling us to perform a relatively low cost survey
of the role of such variants in AS (compared with studies utilising
whole-exome or -genome sequencing).

RESULTS
Participants and SNPs
After participant quality control (QC) there were 4,602 AS cases
and 20,164 healthy controls. After SNP QC there were 207,193
SNPs. Principal components analysis was performed with 0–10
eigenvectors; the scree plot of genomic control-1000 statistics for
different numbers of eigenvectors is shown in Supplementary
Figure 1. Use of one eigenvector produced a genomic
control-1000 statistic of 1.045, and use of additional eigenvectors
did not reduce the genomic control-1000 statistic further.
Therefore, all further analyses used a single eigenvector to control
for population stratification. The quantile–quantile plot for the
experiment is shown in Supplementary Figure 2.

Single variant analysis
Assays for 10 non-MHC SNPs previously associated with AS were
included on the HumanExome Beadchip, and each one showed at
least suggestive association (Po5 × 10− 6) with AS in the current
study (Table 1 and Supplementary Figures 3–13). The associations
with SNPs in ERAP1, IL23R, the intergenic regions chromosomes
2p15 and 21q22, GPR35 and IL6R were confirmed at genome-wide
significance level (Po5 × 10− 8). SNP associations within ANTXR2,
FCGR2A, IL1R1 and NOS2 were confirmed at suggestive levels of
significance. At nine of the confirmed loci, association was seen
with the primary associated SNP. At NOS2 the association was with
rs2297518, which has been reported previously as a secondary
signal at the NOS2 locus, the primary associated SNP rs253187511

not being included on the HumanExome Beadchip.
Novel common variant association was identified in CDKAL1

(MAF= 0.22, P= 1.8 × 10− 8, OR = 1.2) at a genome-wide level of
significance (Table 2 and Supplementary Figure 14). The CDKAL1
SNP rs6908425 has previously been associated with Crohn’s
disease,17,18 psoriasis19 and ulcerative colitis20 again with the C
allele being the risk variant. rs6908425 is in strong linkage
disequilibrium with variants associated with diabetes and body
mass index (Supplementary Table 1).21

Suggestive associations were seen with common variants
in FAM118A (P= 5.9 × 10− 8, odds ratio (OR) = 1.2), C7orf72
(P= 1.9 × 10− 7, OR = 1.1) and FAM114A1 (P= 1.4 × 10− 6, OR = 1.1),
and with a rare variant in patatin-like phospholipase domain
containing 1 (PNPLA1) (MAF= 0.0017, P= 1.5 × 10− 6, OR = 2.6).
SNPs in C7orf72, including the same SNP we have identified as
being associated with AS (rs1456896), have been associated
with Crohn’s disease.18 FAM118A variants have previously been
associated with bone mineral density.22 Strong linkage dis-
equilibrium exists between the bone mineral density-associated
SNP (rs136564) and the AS-associated SNP, rs6007594 (r2 = 0.03,
Dʹ= 0.92). Functional annotation for the variants is shown in
Supplementary Table 2.
After conditioning on the primary association signals there were

second, independent signals observed in ERAP1 and IL23R (Table 3
and Supplementary Figure 19). The pattern of association at ERAP1
is consistent with previous work that describes two independent
haplotypes at ERAP1, tagged by the functional variants rs30187-T
(primary signal) and rs10050860-C (primary unconditioned signal,
P= 3.1 × 10− 24, allele C, OR= 1.4, 95% confidence interval (CI)
1.27–1.43 and conditioned on rs30187 P= 9.7 × 10− 10, allele C,
OR= 1.2, 95% CI 1.14–1.30). Moderate linkage disequilibrium was
observed between rs30187 and rs10050860 (r2 = 0.156 and
Dʹ= 1.00). As previously reported, after conditioning on rs30187,
association was confirmed with the neighbouring ERAP2 gene
(rs2549794, P= 2.8 × 10− 14, allele C, OR= 1.2, 95% CI 1.16–1.28).
This association remains after controlling for both the rs30187 and
rs10050860 ERAP1 variants (rs2549794, P= 4.7 × 10− 14, allele C,
OR= 1.2, 95% CI 1.16–1.28). No additional associated variants were
evident.
At IL23R, the intronic variant rs11465804 was slightly more

significantly associated than the previously reported rs11209026
nonsynonymous SNP (P= 1.3 × 10− 25 and P= 4.55 × 10− 25, respec-
tively). These two SNPs are in high linkage disequilibrium
(r2 = 0.89, Dʹ= 0.97), and conditioning for either SNP controlled
for the association at the other SNP, suggesting that the
rs11465804 variant tags this previously demonstrated functional
SNP.23,24 As previously reported, a secondary association is seen at
the IL23R locus, evident after conditioning on rs11465804
(rs10889677, P= 9.8 × 10− 9, allele A, OR= 1.2, 95% CI 1.10–1.20).3

No additional associated variants were evident.
An independent signal supported by multiple SNPs was

demonstrated after conditioning on the main SNP at the
FAM114A1 locus; these SNPs sit in the TLR10 gene (Table 3 and

Table 1. Existing AS genetic associations and new associations in previously associated loci

Gene/locus Cs Posa Current SNP P-value Risk/Prot OR, 95% CI RAF case/Con Previously
reported SNP

r2 Dʹ Discovery Study

ERAP1 5 96,244,549 rs30187 3.0 × 10− 34 T/C 1.3 (1.28–1.41) 0.40/0.34 rs31087 1.00 1.00 Burton et al.3

IL23R 1 67,702,526 rs11465804 1.3 × 10− 25 T/G 1.9 (1.65–2.01) 0.96/0.93 rs11209026 0.89b 0.97b Burton et al.3

IL23R 1 67,702,526 rs11465804 1.3 × 10− 25 T/G 1.9 (1.65–2.01) 0.96/0.93 rs11209032 0.03 1.00 Evans et al.4

2p15 2 62,551,472 rs10865331 1.2 × 10− 22 A/G 1.3 (1.20–1.32) 0.43/0.38 rs10865331 1.00 1.00 Reveille et al.5

21q22 21 40,465,534 rs2836878 1.1 × 10− 16 G/A 1.3 (1.19–1.32) 0.77/0.73 rs2836878 1.00 1.00 Reveille et al.5

KIF21B-GPR25 1 200,877,562 rs7554511 3.8 × 10− 16 C/A 1.2 (1.18–1.30) 0.75/0.71 rs2297909 0.89 0.96 Evans et al.4

GPR35 2 241,569,692 rs3749171 5.0 × 10− 12 T/C 1.2 (1.15–1.29) 0.21/0.18 rs4676410 0.86 1.00 Cortes et al.11

IL6R 1 154,426,970 rs2228145 1.9 × 10− 8 A/C 1.1 (1.09–1.20) 0.62/0.59 rs4129267 0.97 1.00 Cortes et al.11

ANTXR2 4 80,949,829 rs4333130 5.3 × 10− 8 T/C 1.1 (1.09–1.20) 0.66/0.63 rs4333130 1.00 1.00 Evans et al.4

IL1R1 2 102,663,628 rs2310173 2.3 × 10− 7 T/G 1.1 (1.08–1.18) 0.50/0.47 rs4851529 0.48 0.89 Cortes et al.11

IL1R1 2 102,663,628 rs2310173 2.3 × 10− 7 T/G 1.1 (1.08–1.18) 0.50/0.47 rs2192752 0.02 0.23 Cortes et al.11

FCGR2A 1 161,479,745 rs1801274 4.9 × 10− 6 A/G 1.1 (1.06–1.16) 0.50/0.47 rs1801274 1.00 1.00 Cortes et al.11

NOS2 17 26,096,597 rs2297518 2.7 × 10− 6 A/G 1.1 (1.08–1.21) 0.21/0.19 rs2297518 1.00 1.00 Cortes et al.11

Abbreviations: AS, ankylosing spondylitis; CI, confidence interval; Cs, chromosome; OR, odds ratio; Prot, protective; Pos, position; RAF, risk allele frequency;
SNP, single-nucleotide polymorphism.
Linkage disequilibrium calculated from 1000 Genomes data via the SNAP Browser from the Broad Institute.
aHuman Genome Build 19.
bCalculated from this data set.
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Supplementary Figure 22). SNPs in TLR10 have previously been
associated with Crohn’s disease,25,26 and the peak-associated SNP
in our study, rs1109695, is in strong linkage disequilibrium with
the most strongly associated, previously reported, Crohn’s disease
TLR10 SNPs, rs7658893 (r2 = 0.64, Dʹ= 1.0) and rs6841698 (r2 = 0.64,
Dʹ= 0.83).

Rare variant burden tests
Using the SKAT-O test, no genes were significantly associated with
AS at either a genome-wide or suggestive level of significance.
This was the case for all the sets of variants incorporated into the
burden equation including the following: (a) ‘Damaging set’,
(b) ‘Polyphen set’ and (c) all variants. No association was identified
even after removing the restrictive minor allele filter of 0.05 and
including SNPs of all frequencies.
With sample sizes of 4,602 AS cases and 20,164 controls used in

this study, the power to detect the association was good for low
MAF variants, but low for rare variants (Supplementary Figure 23).
Assuming a prevalence of 0.55%, allele risk of 1.5 and alpha of
5 × 10− 8, and equal MAF for the disease-causative and genotyped
markers, the study had 100% power for MAF = 0.05, but only 9%
power for MAF= 0.01 and close to zero (6.1 × 10− 5%) power for
the median MAF in this study (2.0 × 10− 4).

DISCUSSION
This study re-demonstrates a number of known AS genetic
associations both within and outside the MHC (ERAP1, IL23R,
chromosome 2p15, chromosome 21q22, KIF21B-GPR25, GPR35,
IL6R, ANTXR2, IL1R1, FCGR2A and NOS2). It also describes a
common novel AS-associated non-MHC variant that achieved
genome-wide significance (CDKAL1), and three novel common
variants that achieved a suggestive level of significance (FAM118A,
C7orf72, FAM114A1). One new suggestive rare variant association
in PNPLA1 was identified in single marker analyses, in addition to
low-frequency associations observed with rs11465804 in IL23R
and rs4349859 in HLA-B*27. However, no rare variant associations
were noted using burden tests.
In the current study, we identify three AS-associated variants

that have previously been associated with IBD, namely variants in

or near CDKAL1, C7orf72 and TLR10. There is a high prevalence of
IBD in patients with AS;27,28 around 10% of AS patients have
clinical IBD and up to 70% have subclinical bowel inflammation
demonstrated histologically.29 In addition, reactive arthritis, which
is a type of spondyloarthritis that can progress to AS, can be
triggered by enteric infections such as Campylobacter, Salmonella
and Shigella. Strong co-familiality between AS and IBD exists, the
sibling recurrence risk ratio for IBD in first-degree relatives of AS
probands being 3.0,30 not dissimilar to the overall familiality of
rheumatoid arthritis.31 There is extremely strong correlation
between AS and IBD genetic associations, with a 2013 analysis
indicating that the two diseases shared at that point 22 SNP
associations, of which 21 were concordant (same SNP, same
direction of association).32,33 Nonetheless, major differences exist
between genetic associations of the two diseases pointing to
differences in disease-specific aetiopathogenesis; for example,
the absence of association of IBD with HLA-B*27, and the absence
of association of AS with the major IBD loci NOD2/CARD15
and ATG16L1. The finding of three more concordant genetic
associations further strengthens the evidence of shared
aetiopathogenesis between these diseases.
Little is known about FAM114A1. It may be responsible for the

described association, but the corresponding protein NOXP20
contains a predicted caspase recruitment (CARD) domain suggest-
ing that it may be involved in apoptosis.34 CARD9 has previously
been associated with AS and NOXP20 may have a similar role. In
addition, neighbouring genes include the Toll-like receptors TLR1
and TLR6 that are intimately involved in innate immunity and so
are strong biological candidates for involvement in AS. The second
independent signal at the FAM114A1 locus was in the toll-like
receptor 10 gene (TLR10). This missense variant (rs11096955) is
predicted by Polyphen-2 to cause a benign change (isoleucine to
leucine), but it may tag other more functional variants. This
association implicates this important component of the innate
immune system in AS aetiology. Toll-like receptors recognise
evolutionary conserved sequences on pathogens and trigger
immune responses. TLR10 has been recently identified to induce
pro-inflammatory cytokine production and interferon in response
to influenza infection.35 It has recently been suggested that
immunodeficiency to gut organisms may trigger AS; if the

Table 2. Novel AS associations

Chr SNP Positiona Risk allele Prot allele Cases RAF Cont RAF OR (95% CI) P-value Gene/nearby gene

Genome-wide-significant association
6 rs6908425 20,728,731 C T 0.81 0.78 1.2 (1.11–1.25) 1.8 × 10− 8 CDKAL1

Suggestive association
22 rs6007594 45,728,370 G A 0.77 0.74 1.2 (1.10–1.22) 5.9 × 10− 8 FAM118A
7 rs1456896 50,304,461 T C 0.69 0.66 1.1 (1.08–1.20) 1.9 × 10− 7 C7orf72
4 rs11555334 38,880,046 T C 0.75 0.72 1.1 (1.08–1.20) 1.4 × 10− 6 FAM114A1
6 rs141744967 36,270,205 T C 0.0044 0.0017 2.6 (1.77–3.89) 1.5 × 10− 6 PNPLA1

Abbreviations: AS, ankylosing spondylitis; Chr, chromosome; CI, confidence interval; Cont, control; OR, odds ratio; Prot, protective; RAF, risk allele frequency.
aHuman Genome build 19.

Table 3. Secondary associations observed at loci associated with AS at genome-wide significance in the current study

Chr SNP Positiona Gene P-value Risk/non-risk RAF case/Con OR (95% CI) Conditional SNP

5 rs2549794 96,244,549 ERAP2 2.9 × 10− 14 C/T 0.44/0.43 1.22 (1.16–1.28) rs30187
5 rs10050860 96,122,210 ERAP1 1.6 × 10− 9 C/T 0.82/0.77 1.21 (1.14–1.29) rs30187/rs2549794
1 rs10889677 67,725,120 IL23R 9.7 × 10− 9 A/C 0.69/0.65 1.15 (1.10–1.21) rs11465804
4 rs11096955 38,776,107 TLR10 3.5 × 10− 4 G/T 0.32/0.30 1.09 (1.04–1.15) rs11555334

Abbreviations: OR, odds ratio; Chr, chromosome; CI, confidence interval; RAF, risk allele frequency; SNP, single-nucleotide polymorphism.
aHuman Genome build 19.
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association with TLR10 impairs innate immune responses, this
would be consistent with this theory.36

FAM118A is a protein-coding gene of unknown function that
encodes a single-pass transmembrane protein (www.uniprot.org).
The AS-associated SNP (rs6007594) is a missense mutation causing
an arginine to be replaced by a histidine. This missense change is
predicted to be probably damaging with a Polyphen-2 score
of 0.999 (sensitivity: 0.14; specificity: 0.99).37 Kwan et al.22 demon-
strated that FAM118A is expressed in lymphoblastoid cell lines as
well as human osteoblasts, and in both cell types showed major SNP
effects on FAM118A expression levels. How this impacts on AS
aetiology is not immediately evident and larger studies studying
SNPs across this locus will be required to determine the genetic
variant(s) responsible for the association observed here.
The PNPLA1 gene belongs to a family of genes, the members of

which have diverse lipolytic and acyltransferase activities. The
function of PNPLA1 itself is not well understood. It is expressed in
epidermal keratinocytes, and has a role in glycerophospholipid
metabolism in the cutaneous barrier. Variants in PNPLA1 are
associated with the skin disorder ichthyosis.38 The rs141744967
variant is a missense polymorphism that causes a change from
alanine to valine. The functional effect is not available from the
Polyphen-2 server; both amino acids are non-polar but differ in
size by 28 Da. Further larger studies will be required to determine
whether this gene is definitively associated with AS.
This study has several potential limitations; the major limitation is

power. The power to detect rare variants is a function of their allele
frequency and their effect size along with the population frequency
of disease and the required statistical significance threshold. While
the study had excellent power to detect common variant associa-
tions, the power to detect rare variants was low. Considering variants
with a frequency of 0.01 (1%), population disease frequency of 0.005
(0.5%) at a significance threshold of P=5×10−8 using the participant
numbers in this study, the study only had 80% power to detect
variants with an additive relative risk of 41.8; other than human
leukocyte antigen (HLA) associations, few such variants have been
reported in common diseases. This demonstrates poor power to
detect individual associations, and increasing the number of cases
would improve this power. Nonetheless, if there are large numbers of
rare variant associations contributing to AS, the study should have
had good power to detect some of these, assuming its coverage of
rare variants was good.
The coverage of the Exomechip microarray of rare variants is far

from comprehensive, and this impacts both on the coverage of
the study, and its ability to pinpoint genetic associations. Further
fine-mapping and functional studies will be required to confirm
whether the genes we have implicated at each locus are
themselves directly involved in AS, or if the SNP associations
observed operate by influences on other genes. Sequencing of
whole genomes has demonstrated millions of low frequency and
rare variants that are not covered on the chip, for example, in the
low-coverage analysis of 1000 genomes 15.5 million variants were
identified.12 This suggests that comprehensive rare variant
microarray studies may not be feasible, although improvements
in imputation methods raise the possibility that many rare but not
unique variants may be addressable by this approach.39

Finally, rare variants do not share linkage disequilibrium with
many other surrounding variants to the extent that common
variants do. Therefore if identified in a study such as this, a good
check of association is manual inspection of the genotype
intensity clustering, and, in addition, considering the biological
plausibility. However, probes can map to other areas of the
genome without our knowledge giving well-clustered intensity
plots. Biological plausibility is not necessarily a good measure of a
true association as the association may be the first association in a
pathway not previously known to be involved in disease aetiology.
This makes independent replication studies essential, although it

is particularly challenging for low-frequency or rare variants
because of the sample size requirements.
This study has re-demonstrated many known AS risk loci, and

also identified a novel common variant at a genome-wide level of
significance, and four suggestive associations, including one rare
variant association. The finding of further concordant associations
with IBD genes increases the evidence of shared aetiopatho-
genesis between the diseases and the potentially important role
of intestinal dysbiosis in AS.40,41 The major overlap between AS
and IBD is also supported by another study showing similar
genetic variants but differing effect sizes between variants
associated with AS and anterior uveitis.42 Whether low-
frequency and rare genetic variants are major contributors to
the aetiopathogenesis of AS remains unclear and will likely require
much larger studies with more comprehensive coverage of these
variant types to resolve.

MATERIALS AND METHODS
Patient cohorts
AS patients of European descent who met the modified New York criteria43

from the United Kingdom, Australia and New Zealand were recruited
(n=5,040). Healthy controls were provided by the following groups
(1) 1958 British Birth Cohort (n= 5,964); (2) GoDarts type 2 diabetes cohort
(n=1,793); (3) Oxford Biobank (n=4,522); (4) Twins UK cohort (n=1,189);
(5) Anglo-Australasian Osteoporosis Genetics Consortium (n= 7,665).
All patients gave written informed consent and ethical approval was
provided by all appropriate institutional review boards.

Genotyping and quality control
Each cohort was genotyped using the Illumina Infinium HumanExome
BeadChip version 1.2. This Illumina microarray has ~240,000 markers, made
up of exonic variants, splice variants, stop altering variants, ancestry
informative markers and MHC tag SNPs. Genotype calling was completed
with zCall.44 Each cohort had QC completed separately, assessing
missingness by individual (threshold o3%), missingness by genotype
(thresholdo3%), Hardy-Weinberg equilibrium in controls (Chi-square test
threshold P=0.01), extreme heterozygosity (threshold43 standard devia-
tions from mean) and identity by descent threshold of PI_HAT 0.20 was
used. After laboratory QC that excluded ~3,000–5,000 SNPs per cohort,
20,714–22,864 SNPs were removed from each set to form a common SNP
basis, 1,033 SNPs were removed due to excess missingness, 526 SNPs were
removed from control sets due to not being in Hardy–Weinberg equilibrium
and 11,711 SNPs were removed due to allele and frequency inconsistencies
between the cohorts. 979 subjects were removed due to excess relatedness,
207 were excluded due to extreme heterozygosity and 2 were excluded due
to excessive missingness (after SNP QC).
Shared genotyped SNPs between cohorts with MAF40.05 were then

used to perform principal component analysis for ethnicity identification
using SHELLFISH (http://www.stats.ox.ac.uk/ ~ davison/software/shellfish/
shellfish.php). Unsupervised model-based clustering implemented in R
with MCLUST was used to exclude patients deemed to be non-European
after plotting with HapMap controls. This model assigns a cluster to each
individual based on their principal component analysis values and in
consideration to the weighted centre of each cluster and therefore assigns
non membership status to those who don’t cluster with core HapMap
groups. This analysis identified 219 subjects who were removed due to
non-European ethnicity. Supplementary Figures 24 and 25 show the
principle component analysis after quality control both with and without
the addition of Hapmap Samples.
The genomic control measure (GC or λ) was calculated using

the designer suggested random set of 5,000 synonymous variants
(http://genome.sph.umich.edu/wiki/Exome_Chip_Design#Random_set_of_
synonymous_variants_.28as_comparator.29).

Association analysis
For single variant and low-frequency variant analysis, we followed the
procedure used by Peloso et al.45 For single-variant analysis, we restricted
analysis to variants where the frequency was 40.08%, meaning that 20 or
more copies of the minor allele were present. We used Plink to perform
association analyses with one eigenvector as a covariate for population
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stratification control. Significance levels used were, genome-wide
Po5 × 10− 8, and suggestive 5 × 10− 84Po5× 10− 6.
For low-frequency variant analysis we used the sequence kernel

association test–Optimal (SKAT-O) test that computes the SKAT test46

and a burden test47–50 and then selects the test with the best power.51 This
was implemented with the ‘skatMeta’ R package. For the low-frequency
variant analysis, we used variants with a frequency of o5%. We also only
included gene-based tests where there were at least two variants
contributing each with MAF 40.08%, thus ensuring there were at least
40 copies of the minor alleles in the test. Three sets of variants were
sequentially used as inputs into the SKAT-O test. This is because
non-damaging variants can reduce the power to detect associations in
burden tests. The sets used were (a) All variants, (b) ‘Polyphen2 set’:
Polyphen-237 predicted possibly damaging or probably damaging, and
(c) ‘Damaging Set’: Variants causing the following consequences:
frameshift substitution, nonframeshift substitution, nonframeshift
deletion, nonframeshift insertion, frameshift deletion, frameshift insertion,
nonsynonymous single-nucleotide variant, stop-gain single-nucleotide
variant, stoploss single-nucleotide variant, missense variant, splice acceptor
variant, splice donor variant, splice region variant, initiator codon variant,
stop retained variant and incomplete terminal codon variant.
Cluster plots for reported SNPs were checked manually in the case

cohort and the 1958 British Birth Cohort. Association of classical alleles was
completed with imputed SNP2HLA classical alleles and one principal
component by logistic regression in R. The level of significance for this
analysis was 1.2 × 10− 4, reflecting Bonferroni correction for the 424 HLA
alleles that were tested for association. Conditional analyses were
completed by adding the allele being conditioned as a covariate to the
logistic regression model. Power calculations were performed with the
online Genetic Power Calculator.

LIST OF WEBSITES
Genetic Power Calculator: (http://pngu.mgh.harvard.edu/ ~ pur
cell/gpc/)
SNAP browser: (http://www.broadinstitute.org/mpg/snap/)
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