
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Browne, Cameron B.
(2016)
A Class Grammar for General Games. In
Advances in Computer Games, July 2016, Leiden.

This file was downloaded from: https://eprints.qut.edu.au/107753/

c© The author

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1007/978-3-319-50935-8_16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/83152975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprints.qut.edu.au/view/person/Browne,_Cameron.html
https://eprints.qut.edu.au/107753/
https://doi.org/10.1007/978-3-319-50935-8_16

A Class Grammar for General Games

Cameron Browne

Queensland University of Technology,
Gardens Point, Brisbane, 4000, Australia

c.browne@qut.edu.au

Abstract. While there exist a variety of game description languages
(GDLs) for modelling various classes of games, these are aimed at game
playing rather than the more particular needs of game design. This paper
describes a new approach to general game modelling that arose from this
need. A class grammar is automatically generated from a given library
of source code, from the constructors and associated parameters found
along its class hierarchy, to give a context-free grammar that provides
access to the underlying code while hiding its implementation details.

Keywords: Class Grammar, Game Description Language (GDL), Gen-
eral Game Playing (GGP), Game Design, Ludii

1 Introduction

There currently exist a number of software systems for modelling and playing
various types of games, including deterministic perfect information games [1],
combinatorial games [2], puzzle games [3], strategy games [4], card games [5],
video games [6], even complete logical game worlds [7], to name but a few.
Each system defines games using a custom game description language (GDL),
primarily for the playing of games. In this paper, we examine such GDLs from
the perspective of designing games, and propose a new approach that might
obviate the need to write a specific GDL for each different type of game.

I introduce the notion of a class grammar, which is a formal grammar de-
rived directly from the class hierarchy of the underlying source code. The class
grammar is the visible tip of the iceberg of code underneath; it provides a clean,
simple interface to the underlying code that offers full functionality, while hiding
the implementation details. This approach is described in the context of a new
general game system called Ludii, and has potential benefits not only for game
design but also for the modelling and playing of games.

The following sections compare some GDLs from a design perspective, de-
scribe the syntax, operation and implementation of the class grammar, and give
some formatting guidelines for programmers for producing a cleaner grammar.

2 Game Description Languages for Game Design

The tasks of game playing and game design, although closely linked, have differ-
ent needs. Game playing focusses primarily on the correctness of the underlying

2 A Class Grammar for General Games

models and the efficiency of their implementation, while game design involves
additional aspects, such as the ease with which game descriptions can be mod-
elled and manipulated by the designer, the expressiveness of the GDL, and how
readily the design process can be automated.

Kernighan and Pike list four principles of good software design: simplicity,
clarity, generality and automation [8]. I propose a similar set of properties that
a GDL should possess, in order to be effective for the purpose of game design:

1. Simplicity: Game descriptions should be simple to write and modify.
2. Clarity: Game descriptions should be readily comprehensible.
3. Generality: The GDL should support a wide range of games.
4. Extensibility: The GDL should be easy to extend to support new concepts.
5. Evolvability: Game descriptions should combine to produce mostly valid (i.e.

playable) children with characteristics of their parents.

The ideal GDL, from a design perspective, would allow the designer to quickly
prototype new ideas for equipment, mechanisms and complete games, be easily
extended as required, and easily automated for the purposes of play-testing, eval-
uation, optimisation of rules and equipment, and even self-guided game design.
Further, the ideal GDL should be hierarchical in nature, with useful game-related
concepts called ludemes [9] chunked into convenient building blocks, to be easily
tried in combination with other rules and equipment in other contexts.

The following subsections briefly examine some individual GDLs, and their
suitability for game design, with these points in mind. Note that the focus here
is on abstract and board game design, rather than video game design.

2.1 Zillions Rules File

Zillions Rules File (ZRF) is the proprietary game description format for Zillions
of Games, a commercial program for modelling and playing Chess-like (and
similar) games and puzzles [10]. Appendix A shows Tic-Tac-Toe described in
ZRF, by way of example.

ZRF is a scripting language, much like a C macro, which utilises a library
of pre-defined keywords for defining equipment, piece movement, and so on.
It is highly structured and excellent for modelling Chess-like games, with an
in-built AI that can provide a surprisingly responsive and tricky opponent for
Chess variants. The syntax is reasonably straightforward and extensible for those
familiar with functional programming languages.

However, games become harder to describe, and the AI less effective, the
further they diverge from a Chess-like basis, e.g. the AI is effectively random for
connection games, and some implementation choices, such as the lack of integer
state variables and 2D-only graphics, further limit the generality of the system.1

Zillions of Games has a strong following among game design hobbyists, but
has had very little academic application [11].

1 The 3D connection game Akron took hundreds of man-hours to model in ZRF.

A Class Grammar for General Games 3

2.2 Stanford GDL

The Stanford Logic Group’s Game Description Language (S-GDL) [12], designed
for their associated General Game Player (GGP) [1], is the standard GDL for
academic research.2 It is a low-level language that describes games in terms of
simple, general instructions that update the game state using first order logic.
This approach allows reasonable generality at the expense of clarity, and tends
to be somewhat verbose. For example, the S-GDL description of Tic-Tac-Toe,
listed in Appendix B, uses 384 tokens, compared to the 89 used by ZRF.

S-GDL is problematic in terms of game design. Game descriptions can be
time consuming to write and debug, and difficult to decipher for those unused to
first order logic. The equipment and rules are typically interconnected to such
an extent that any change to any aspect of the game would require significant
rewriting. For example, one of the simplest choices that a game designer might
want to experiment with is board size, but changing simply the board size from
3×3 to 4×4 in the Tic-Tac-Toe example would require modifying many lines of
code and adding several more.

Extending S-GDL involves defining new versions of the grammar with the
appropriate additions and dedicated implementations to support them. For ex-
ample, GDL-II supports imperfect information games [13], rtGDL supports real-
time play [14], and rtGDL-II supports both [14].

In terms of evolvability, games described in S-GDL lack high-level conceptual
structure, so it is unlikely that ludemes will pass intact from parents to offspring.
In fact, S-GDL descriptions tend to be so finely crafted that any random muta-
tion or crossover is unlikely to yield a playable result. S-GDL, to my knowledge,
has not been used except for playing known games, and in academic circles.

2.3 Ludi GDL

Ludi is a software system written for modelling, playing, evaluating and evolving
combinatorial games [2]. The associated Ludi Game Description Language (L-
GDL) describes games as high-level hierarchical structures of ludemes in a LISP-
like format, and was developed with game design squarely in mind.

Complete games can be written and tested within minutes (sometime sec-
onds), and the format proved ideal for evolving games using a genetic program-
ming (GP) approach [15]. Game descriptions are easy to comprehend even by
lay readers, with the exception of certain pre-defined keywords that require doc-
umentation, and are easily modified. For example, changing the board size in
the L-GDL Tic-Tac-Toe example shown in Appendix C simply involves changing
the board size parameter from (size 3 3) to (size 4 4).

Ludi was successful as a proof-of-concept in producing the world’s first
computer-designed games to be commercially published [16], but only supported
a small range of combinatorial games and suffered from over-specialisation, with

2 The acronym “GDL” in the literature typically refers to this particular language,
but it is disambiguated here as “S-GDL” to avoid confusion.

4 A Class Grammar for General Games

a strong preference for N -in-a-row games. Lack of extensibility meant that any
rule or equipment outside the scope of the language would require both the lan-
guage and the program to be modified, highlighting a drawback of the standard
approach of separating the language from the implementation. Ludi has not
been publicly released or used outside the study for which it was developed.

2.4 Ludii Class Grammar

Ludii3 is a complete general game system (GGS) [17] that builds on the princi-
ples pioneered in Ludi, but extends them to improve the key issues of generality
and extensibility. This is achieved primarily through the class grammar that con-
stitutes its GDL. The class grammar is automatically generated from the Ludii
source code library, and game descriptions expressed in the grammar are auto-
matically instantiated back into the corresponding library code for compilation,
giving a guaranteed 1:1 mapping between the source code and the grammar.

Schaul et al. point out that: any programming language constitutes a game
description language, as would a universal Turing machine [18, p.12]. Ludii
achieves this, to some extent, by effectively making the programming language
(Java) the game description language; it can theoretically support any game
that can be programmed in Java to implement its minimal API (described in
Section 4.3). The programmer is free to implement whatever rule, equipment or
behaviour they want, however they want, while the user only sees the simplified
view of the constructor in the grammar and not the implementation details.

Ludii has been designed with game design in mind. It is currently under
development, but the aim is to provide a solid, general framework that supports
as wide a range of games as possible, allowing scope for ever increasing func-
tionality as classes in its source code library are subclassed and extended over
time.

2.5 Comparison

Figure 1 shows a graphical comparison between these four GDLs, based on the
five key design properties. The values shown are subjective estimates only, and
are intended to highlight the relevant strengths and weaknesses of each GDL for
the purpose of game design.

Simplicity is estimated by the number of tokens required to define games, on
average, and the ease with which game descriptions can be modified. Clarity is
estimated by the degree to which game descriptions would be self-explanatory
to lay readers. Generality is based on the estimated percentage of games listed
in the BoardGameGeek (BGG) online database4 that it would be feasible to
describe. Extensibility is estimated as the ease with which the language can be
extended to incorporate new rules, behaviours, equipment, etc. Evolvability is
estimated as the likelihood with which randomly mutating and crossing-over
game descriptions will produce playable children that resemble their parents.

3 Ludii is named after its predecessor Ludi but improves on it in most respects.
4 The BGG database now lists over 80,000 games: https://www.boardgamegeek.com

A Class Grammar for General Games 5

Simplicity Clarity Generality Extensibility Evolvability

Z ZRFILLIONS

Stanford GDL
L GDLUDI

L CGUDII

Fig. 1. Comparison of key aspects of GDLs from a design perspective.

ZRF is characterised by reasonable simplicity, clarity and extensibility. S-
GDL has reasonable generality and extensibility, but poor evolvability. L-GDL
has excellent simplicity, clarity and evolvability, but poor generality and extensi-
bility. The class grammar mechanism devised for Ludii was designed to address
the relative shortcomings of existing methods, and produce an approach for
computer-assisted and fully automated game design that performs well across
all five key design criteria. The following sections describe this approach in detail.

3 Class Grammar

The class grammar is set of production rules in which sequences of symbols on
the RHS are assigned to a nonterminal symbol on the LHS, very much like an
Extended Backus-Naur Form (EBNF) grammar. It is intrinsically bound to the
underlying code library, but is a context-free grammar that is self-contained and
can be used without knowledge of the underlying code.

3.1 Context

The class grammar involves two main automated parsing steps:

1. Forwards: From source code to grammar.
2. Backwards: From grammar expressions back to specified source code.

The backwards step is similar in principle to existing approaches for using
grammars to generate code. These include C++ code generators [19, 20], Java
code generators [21], parser generators such as ANTLR [23], and Translational
BNF (TBNF) [22], in which code actions are embedded in the grammar.

The difference is that these approaches all involve a grammar maintained sep-
arately by the user or system, whereas the class grammar’s forwards step makes

6 A Class Grammar for General Games

it self-generating. The resulting grammar could be described as a domain-specific
language (DSL) [23, 24], although the potential generality and extensibility of the
approach would make this something of a misnomer.

3.2 Syntax

The basic syntax of the class grammar is as follows:

<class> ::= { (class [{<arg>}]) | <subClass> | terminal }

where:

<class> denotes a LHS symbol that maps to a class in the code library.
(class [{<arg>}]) denotes a class constructor and its arguments.
<subClass> denotes a subclass derived from class.
terminal denotes a terminal symbol (fundamental data type or enum).
[...] denotes an optional item.
{...} denotes a collection of one or more items.
| denotes a choice between options in the RHS sequence.

Class names typically start with an uppercase character, but are converted
to lowercase in the grammar for readability, convenience, and in keeping with
the traditional form of EBNF style grammars. Appendix E shows a sample of
the grammar generated from the Ludii code library.

3.3 Forward Mechanism (Generation)

The forward step of converting source code to grammar involves recursively pars-
ing the code library from a specified root class (Game in this case) downwards,
storing a new symbol for each new class encountered. A chain of dependency is
then created from the root class, linking the arguments of each visited construc-
tor by data type, until terminal symbols are reached. Fundamental data types
and enums constitute terminals, while all other user-defined classes constitute
non-terminals.

The grammar is then generated with each class name forming the LHS symbol
of a production rule, whose RHS is a sequence of constructors that instantiate
that class (or subclasses derived from it) and their parameters. For example, the
following abstract base class with no constructors:

public abstract class Start { ... }

and its two derived subclasses:

public class Place extends Start

{

A Class Grammar for General Games 7

public Place(final String what, final int where)

}

public class Store extends Start

{
public Store(final int who, final String what, final int count)

}

generate the following production rules:

<start> ::= <place> | <store>

<place> ::= (place (what String) (where int))

<store> ::= (store (who int) (what String) (count int))

The result is a summary of the class hierarchy, based on constructors and
parameters, that offers full functionality while hiding the implementation details.

3.4 Backward Mechanism (Instantiation)

Each individual game is described as a symbolic expression (s-expression) com-
patible with the grammar. For example, Appendix D shows Tic-Tac-Toe de-
scribed in the Ludii class grammar.

Game descriptions are parsed in a top-down manner [24, p. 225], with each
(class ...) instance matched with its generating constructor, and param-
eters recursively instantiated as required. The calling app can then use the
JavaCompiler and associated classes from the javax.tools library to compile
the assembled code and produce an executable version of the game.

To maximise extensibility, the game author can append their own custom
Java code to the end of the game description file, and call its constructors from
within the description as per any other constructor defined in the grammar. This
makes the approach quite extensible without the need to modify or recompile
the underlying code library, with the caveat that the author of such appended
code would need to be familiar with Java and would probably have to develop
it outside a Java development environment.

4 Implementation

This section describes some relevant implementation details.

4.1 Programming Language

Java was chosen for the class grammar code base due to its ease of use, portability
(it runs on any device and operating system with the appropriate Java virtual
machine) and speed (it performs as well as equivalent C++ code, to within a few
percent, using current compilers). Further, Java’s reflection library is ideal for

8 A Class Grammar for General Games

extracting relevant class information from the code base, and its javax.tools

compilation tools are ideal for the run-time compilation of reconstructed classes.

4.2 Algorithm

The algorithm for generating the class grammar is summarised as follows:

public void generate(final String rootPath)

{
setPredefinedSymbols();

findSymbols(rootPath);

scopeSymbols();

expandRHSs();

removeSuperfluousSubclasses();

collapseSimilarConstructors();

prioritiseOrder();

trimRules();

}

Firstly, SetPredefinedSymbols() creates predefined symbols for fundamen-
tal Java data types such as int, float, double, boolean, String, Object, and
so on. findSymbols() then recursively finds additional symbols corresponding to
user-defined classes and enums from the specified root. These are then minimally
scoped to disambiguate symbols with identical names, by prepending superclass
names as required. For example, multiple occurrences of class or might be scoped
to start.or, move.or, end.or, etc.

expandRHSs() then creates a production rule for each symbol, with the sym-
bol name as LHS, and expands the RHS to include the constructor(s) for this
class and derived subclasses. removeSuperfluousSubclasses() removes dupli-
cate occurrences of subclasses in the RHS except for the deepest.

collapseSimilarConstructors() combines similar constructor descriptions
on the RHS where possible, identifying implicit optional parameters (discussed
shortly). prioritiseOrder() prioritises package order in depth-first order, and
rule order within each package so that base classes come first. trimRules()

removes unused and empty rules, which might occur in partially implemented
code under development.

4.3 Interface

The root Game class implements the following minimal API:

public void create(final int viewSize);

public void start(final Episode episode);

public List<Turn> actions(final Episode episode);

public Status apply(final Episode episode, final Turn turn);

A Class Grammar for General Games 9

public Status playout(final Episode episode);

Every game defined in the grammar, when compiled, must implement this
basic functionality for play. The user therefore defines games in the grammar but
executes them through the API. This decouples the grammar from its implemen-
tation, from the user’s perspective, and makes it context-free. The playout()

function is for performing optimised playouts, avoiding complete legal move enu-
merations, for AI implementations such as Monte Carlo tree search (MCTS) [25].

Details regarding the internal game state representation are beyond the scope
of this paper, which focusses on the class grammar itself. Suffice it to say that
this representation is designed to be general and efficient, but can be subclassed
and overridden for the optimisation of individual cases as desired.

4.4 Formatting Guidelines

While the class grammar is conceptually decoupled from its generating code, the
programmer can make the grammar cleaner and clearer by following some basic
formatting guidelines.

Named Parameters Constructor parameters that are simple (terminal) data
types are explicitly labelled in the grammar by their parameter name. This makes
the grammar self-documenting to some extent, easier to interpret and reduces
ambiguity. For example, this:

<what> ::= (what (who int) (where int))

is more meaningful to the reader than:

<what> ::= (what int int)

It is sometimes desirable to anonymise named parameters, where this simpli-
fies the grammar and does not create ambiguity; for example, the two parameters
in (add int int) do not need naming. Such parameters can be explicitly de-
noted using the custom annotation @Anon to override the default behaviour.

Conversely, parameters representing complex (non-terminal) data types are
not named in the grammar by default, as the data type itself usually gives enough
information to infer the parameter’s purpose. However, this behaviour can also
be overridden to explicitly name such parameters using the custom annotation
@Name. Note that parameter naming requires the use of Java version 8 for the
relevant reflection call, but warrants the move to this version.

Optional Parameters Constructor arguments can be explicitly specified as
[optional] items in the grammar using the custom annotation @Opt. For exam-
ple, the following code:

10 A Class Grammar for General Games

public Board(final Basis basis, @Opt final Modify[] modify)

will generate the following rule with an optional parameter:

<board> ::= (board <basis> [{<modify>}])

Parameters can also be implicitly made [optional] by providing multiple
constructors for a class, such that parameters that occur in one constructor
but not another are interpreted as optional. For example, the following pair of
constructors would produce the same rule shown above:

public Board(final Basis basis)

public Board(final Basis basis, final Modify[] modify)

The explicit approach is recommended as it is simpler and less error prone.
The implicit approach, although more conceptually elegant, requires care to
avoid ambiguous cases, and complicates the initialisation of default values.

Default Values It is useful to set default values for member variables of all
classes described in the grammar, in case their corresponding constructor pa-
rameters are made optional. However, this is complicated by the fact that we
also want to declare them as final and make the instantiated objects immutable
if possible, as per good object oriented design practice [26, pp.73–80].

Java only allows final member variables to be initialised once in the class’s
execution flow. This is handled in the class grammar by passing parameter values
up the super(...) constructor chain as appropriate, and instantiating missing
values due to optional parameters with their default values in the appropriate
constructors. Care must be taken to instantiate the same default values across
all constructors for each class, for consistency.

Library Structure The Ludii code library is organised to reflect the underly-
ing class structure, with each Java package containing the base class of the same
name and immediate subclasses that will create items in the RHS sequence for
the corresponding grammar rule. This makes it easier to navigate and maintain
the code library using the class grammar as a reference.

Abstract Classes The programmer can influence the format of the generated
grammar through judicious use of abstract classes. Constructors for abstract
classes are not shown in the grammar as they cannot be instantiated by the user.

Inner Classes The programmer is free to use inner classes, but these are private
to their defining class and so will not appear in the grammar (except for enums).

A Class Grammar for General Games 11

Collections Constructor parameters denoting arrays and Java collections, such
as Lists, are all represented in the grammar as {. . . }, for the sake of brevity.
The appropriate data type is reconstructed and populated with the specified
items in the backwards (instantiation) step, during code compilation.

4.5 Version Control

As the Ludii code library is a work in progress, and could continue to expand for
years to come, regression testing is important to guarantee that future additions
to the library do not unduly affect existing code.

This will be achieved by maintaining a database of N deterministic playouts
for each game described in the grammar, seeding the RNG with a hash code
based on the game’s (unique) name, and storing the moves thus generated. Any
change to the library that makes any known game diverge from its stored playout
record will be flagged for investigation.

5 Conclusion

While the class grammar described in this paper is based on the Ludii gen-
eral game system’s source code library, the basic approach – of automatically
generating a context-free grammar from a class hierarchy’s constructors, then
instantiating expressions in that grammar by compiling the appropriately pa-
rameterised constructor calls – has general application to any domain for which
such a class hierarchy can be defined.

Benefits of the approach for computer-assisted and fully automated game
design include: 1) the generality implicit in effectively using the programming
language (Java) as the game description language; 2) the extensibility afforded
by the ease with which code can be added to the source code library and au-
tomatically incorporated into the grammar; and 3) the evolvability of games
described in this high-level hierarchical manner. The class grammar is the ideal
GDL for Ludii as it develops and expands over the upcoming years.

Acknowledgements. This work was funded by a QUT Vice-Chancellor’s Re-
search Fellowship as part of the project Games Without Frontiers. Thanks to
Stephen Tavener for nudging me towards Java, which proved ideal for this task.

References

1. Genesereth, M., Love, N. and Pell, B.: General Game Playing: Overview of the
AAAI Competition. AI Magazine, 26, 62–72 (2005)

2. Browne, C.: Automatic Generation and Evaluation of Recombination Games. Ph.D.
Thesis, Faculty of Information Technology, QUT, Brisbane (2008)

3. Shaker, M., Sarhan, M. H., Naameh, O. A., Shaker, N. and Togelius, J.: Generation
and Analysis of Physics-Based Puzzle Games. In IEEE Conference on Computa-
tional Intelligence in Games (CIG’13), Niagara Falls, 1–8 (2013)

12 A Class Grammar for General Games

4. Mahlmann, T., Togelius, J. and Yannakakis, G.N.: Modelling and Evaluation of
Complex Scenarios with the Strategy Game Description Language. In IEEE Con-
ference on Computational Intelligence in Games (CIG’11), Seoul, 174–181 (2011)

5. Font, J., Mahlmann, T., Manrique, D. and Togelius, J.: A Card Game Description
Language. In European Conference on Applications of Evolutionary Computation,
Vienna, 254–263 (2013)

6. Schaul, T.: An Extensible Description Language for Video Games. IEEE Transac-
tions on Computational Intelligence and AI in Games, 6 (4) 325–331 (2014)

7. Kulick, J.: World Description Language - A Logical Language for Agent-Based Sys-
tems and Games. Bachelors thesis, Freie Universität Berlin, Fachbereich fü Mathe-
matik und Informatik (2009)

8. Kernighan, B. W. and Pike, R.: The Practice of Programming. Addison-Wesley,
Boston (1999)

9. Borvo, A.: Anatomie D’un Jeu de Cartes: L’Aluette ou le Jeu de Vache. Librarie
Nantaise Yves Vachon, Nantes (1977)

10. Mallett, J. and Lefler, M.: Zillions of Games: Unlimited Board Games & Puzzles.
Online: http://www.zillions-of-games.com (1998)

11. Hom, V. and Marks, J.: Automatic Design of Balanced Board Games. In Arti-
ficial Intelligence and Interactive Digital Entertainment Conference (AAIDE’07),
Stanford, 25–30 (2007)

12. Love, N., Hinrichs, T. and Genesereth, M.: General Game Playing: Game Descrip-
tion Language Specification. Report LG-2006-01, Stanford Logic Group (2006)

13. Thielscher, M.: A General Game Description Language for Incomplete Information
Games. In AAAI Conference on Artificial Intelligence, Atlanta, 994–999 (2010)

14. Kowalski, J. and Kisielewicz, A.: Game Description Language for Real-time Games.
In General Intelligence in Game-Playing Agents (GIGA’15), B. Aires, 23–30 (2015)

15. Koza, J. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Massachussetts (1992)

16. Browne, C.: Evolutionary Game Design. Springer, Berlin (2011)
17. Browne, C., Togelius, J. and Sturtevant, N.: Guest Editorial: General Games. IEEE

Transactions on Computational Intelligence and AI in Games, 6 (4) 1–3 (2014)
18. Schaul, T., Togelius, J. and Schmidhuber, J.: Measuring Intelligence through

Games. Technical Report, arXiv:1109.1314v1 (2011)
19. Hall, P. W.: Parsing with C++ Constructors. ACM SIGPLAN Notices, 28 (4)

67–69 (1993)
20. Conway, D.: Parsing with C++ Classes. ACM SIGPLAN Notices, 29 (1) 46–52

(1994)
21. Pohjalainen, P.: Object-Oriented Language Processing. Modular Programming

Languages, Lightfoot D. and Szyperski, C. (eds.), LNCS 4228, Springer, Berlin
104–115 (2006)

22. Mann, P.: A Translational BNF Grammar Notation (TBNF). ACM SIGPLAN
Notices, 41 (4) 16–23 (2006)

23. Fowler, M. and Parsons, R.: Domain-Specific Languages. Addison-Wesley, Boston
(2011)

24. Ghosh, D.: DLSs in Action. Manning, Stamford (2011)
25. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P. I., Rohlfshagen,

P., Tavener, S., Perez, D., Samothrakis, S. and Colton, S.: A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in
Games, 4:1 1–43 (2012)

26. Bloch, J.: Effective Java. Second Edition. Addison-Wesley, Boston (2008)

A Class Grammar for General Games 13

Appendix A: Tic-Tac-Toe in ZRF

The following code describes Tic-Tac-Toe in the Zillions of Games Zillions
Rules File (ZRF) format [10] (88 tokens):

(define add-to-empty ((verify empty?) add))

(game

(title "Tic-Tac-Toe")

(players X O)

(turn-order X O)

(board

(grid

(start-rectangle 16 16 112 112)

(dimensions

("top-/middle-/bottom-" (0 112))

("left/middle/right" (112 0))

)

(directions (n -1 0) (e 0 1) (nw -1 -1) (ne -1 1))

)

)

(piece (name man) (drops (add-to-empty)))

(board-setup (X (man off 5)) (O (man off 5)))

(draw-condition (X O) stalemated)

(win-condition (X O)

(or (relative-config man n man n man)

(relative-config man e man e man)

(relative-config man ne man ne man)

(relative-config man nw man nw man)

)

)

)

Appendix B: Tic-Tac-Toe in the Stanford GDL

The following code describes Tic Tac Toe in the Stanford GDL [12] (384 tokens):

(role white)

(role black)

(init (cell 1 1 b))

(init (cell 1 2 b))

(init (cell 1 3 b))

(init (cell 2 1 b))

(init (cell 2 2 b))

(init (cell 2 3 b))

(init (cell 3 1 b))

14 A Class Grammar for General Games

(init (cell 3 2 b))

(init (cell 3 3 b))

(init (control white))

(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))

(true (control ?w)))

(<= (legal white noop) (true (control black)))

(<= (legal black noop) (true (control white)))

(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))

(distinct ?w b))

(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))

(true (cell ?m ?n b)) (or (distinct ?m ?j) (distinct ?n ?k)))

(<= (next (control white)) (true (control black)))

(<= (next (control black)) (true (control white)))

(<= (row ?m ?x) (true (cell ?m 1 ?x))

(true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))

(<= (column ?n ?x) (true (cell 1 ?n ?x))

(true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))

(<= (diagonal ?x) (true (cell 1 1 ?x))

(true (cell 2 2 ?x)) (true (cell 3 3 ?x)))

(<= (diagonal ?x) (true (cell 1 3 ?x))

(true (cell 2 2 ?x)) (true (cell 3 1 ?x)))

(<= (line ?x) (row ?m ?x))

(<= (line ?x) (column ?m ?x))

(<= (line ?x) (diagonal ?x))

(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))

(<= (goal white 50) (not open) (not (line x)) (not (line o)))

(<= (goal white 0) open (not (line x)))

(<= (goal black 100) (line o))

(<= (goal black 50) (not open) (not (line x)) (not (line o)))

(<= (goal black 0) open (not (line o)))

(<= terminal (line x))

(<= terminal (line o))

(<= terminal (not open))

Appendix C: Tic-Tac-Toe in the Ludi GDL

The following code describes Tic-Tac-Toe in the Ludi GDL [2] (29 tokens):

(game Tic-Tac-Toe

(players White Black)

(board (tiling square i-nbors) (shape square) (size 3 3))

A Class Grammar for General Games 15

(pieces (Piece All (moves

(move (pre (empty to)) (action (push))))))

(end (All win (in-a-row 3)))

)

Appendix D: Tic-Tac-Toe in Ludii Class Grammar

The following shows Tic-Tac-Toe in the Ludii class grammar (47 tokens):

(game "Tic-Tac-Toe"

(control (player "P1") (player P2") Discrete)

{
(board Board (square 3))

(disc Disc1 (owner P1))

(disc Disc2 (owner P2))

}
(rules

{
(store P1 Disc1 (count 5))

(store P2 Disc2 (count 4))

}
(play

(move

(from (generate Store Mover))

(to (generate Board empty))

)

)

(end

(line (length 3) (dirn Any) (owner Mover))

(result Mover Win)

)

)

)

The description (game "Tic-Tac-Toe") has the same effect in 2 tokens, due to
default parameter values. A full board without a winning line defaults to a Draw,
after both players are forced to pass in succession.

Appendix E: Sample of the Class Grammar

The following listing shows an incomplete subset of the class grammar generated
from the Ludii code library. Rules are grouped by package.

16 A Class Grammar for General Games

<game> ::= (game (name String) [{<metadata>}]
[<control>] [{<equipment>}] [<rules>]

)

<metadata> ::= (String String)

<control> ::= (control [{<player>}] [<timeType>])

<timeType> ::= Discrete | Real

<player> ::= (player [(index int)] (name String))

<equipment> ::= <component> | <container>

<container> ::= <board> | <store>

<board> ::= (board (label String) <basis> [{<modify>}])
<store> ::= (store (label String) (owner int))

<basis> ::= <hexHex> | <rect> | <square>

<hexHex> ::= (hexHex (dim int))

<rect> ::= (rect (rows int) (cols int))

<square> ::= (square (dim int))

<component> ::= <ball> | <disc>

<ball> ::= (ball (label String) (colour int))

<disc> ::= (disc (label String) (colour int))

<rules> ::= (rules [{<start>}] [<play>] [<end>])

<start> ::= <place> | <store>

<place> ::= (place <equipment> <site>)

<store> ::= (store <equipment> <roleType> (count int))

<play> ::= (play <move.logic>)

<end> ::= (end <bool> <result>)

<result> ::= (result <bool> <roleType> <resultType>)

<roleType> ::= None | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |

Any | All | Mover | NonMover | Opposite |

Next | Prev | Odd | Even

<resultType> ::= Win | Lose | Draw | Tie | Abort

