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Abstract 

 

The regulation of growth factor localization, availability and activity is critical during 

embryogenesis to ensure appropriate organogenesis. This process is regulated through the 

coordinated expression of growth factors and their cognate receptors, as well as via proteins 

that can bind, sequester or localize growth factors to distinct locations. One such protein is 

the transmembrane protein Crim1. This protein has been shown to be expressed broadly 

within the developing embryo, and to regulate organogenesis within the eye, kidney and 

placenta. Mechanistically, Crim1 has been revealed to mediate organogenesis via its 

interaction with growth factors including TGFβs, BMPs, VEGFs and PDFGs. More recently, 

Crim1 has been shown to influence cardiac development, providing further insights into the 

function of this protein. This review will provide an overview of the role of Crim1 in 

organogenesis, largely focusing on how this protein regulates growth factor signaling in the 

nascent heart. Moreover, we will address the challenges ahead relating to further elucidating 

how Crim1 functions during development. 
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List of Abbreviations 

BMP – Bone Morphogenetic Protein 

Crim1 – Cysteine-Rich Transmembrane BMP Regulator-1 

CRR – Cysteine-rich Repeat 

EMT – Epithelial-to-Mesenchymal Transition 

EndoMT – Endothelial-to-Mesenchymal Transition 

EPDC – Epicardium-Derived Cells 

ERK – Extracellular signal-Regulated Kinase 

FAK – Focal Adhesion Kinase 

Gbb – Glass bottom boat 

HUVEC – Human Umbilical Vein Endothelial Cell 

IGF – Insulin-like Growth Factor 

IGFBP – Insulin-like Growth Factor Binding Protein 

NMJ – Neuromuscular Junction  

PDGF – Platelet-Derived Growth Factor 

PE – Proepicardium 

RGD – Arginyl-glycyl-aspartic acid motif  

TGFβ – Transforming Growth Factor β 

VEGF – Vascular Endothelial Growth Factor 
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Introduction  

 

Cysteine-Rich Transmembrane BMP Regulator-1 (Crim1) is a novel, N-glycosylated 

transmembrane protein encoded by the Crim1 gene (Kolle et al., 2000; Glienke et al., 2002). 

Crim1 genes are evolutionarily conserved in vertebrates including rodents and humans (Kolle 

et al., 2000), as well as zebrafish (Kinna et al., 2006), the chicken (Kolle et al., 2003) and 

Xenopus (Ponferrada et al., 2012). Interestingly, a Crim1 homolog called crm-1 has been 

described in Caenorhabditis elegans as well, although the role of this factor in the nematode 

has only received limited attention (Fung et al., 2007). Crim1 is expressed in various organs 

during embryogenesis, including the spinal cord, lens, kidney, vasculature and placenta 

(Kolle et al., 2000; Lovicu et al., 2000; Glienke et al., 2002; Kolle et al., 2003; Pennisi et al., 

2007; Pennisi et al., 2012; Phua et al., 2012; Fan et al., 2014), indicative of a role in their 

development. Structurally, the presence of six cysteine-rich repeat (CRR) motifs, an Insulin-

like Growth Factor (IGF) Binding Protein (IGFBP) like domain and an Arginyl-glycyl-

aspartic acid motif (RGD) (Kolle et al., 2000) suggests that Crim1 can bind a variety of 

different proteins. In support of this, the CRRs have been shown to mediate the binding of 

CRIM1 to TGFβ, BMP, VEGF and PDGF when Crim1 is co-expressed in the same cell as 

the growth factor (Wilkinson et al., 2003; Wilkinson et al., 2007). Recently, Crim1 has also 

been shown to interact with β1 Integrin via its RGD domain (Zhang et al., 2016). However, 

the functional significance of the IGFBP motif remains unknown. Interestingly, Crim1 has 

been demonstrated to localize in the endoplasmic reticulum and golgi, where post 

translational modification of proteins are known to occur, and also the cell surface, where 

ligand-receptor interactions occur (Glienke et al., 2002; Wilkinson et al., 2003), Pennisi lab, 

unpublished data). 

 

The importance of proteins that regulate growth factor signalling has been highlighted by 

recent findings that implicate molecules containing multiple cysteine-rich regions, such as 

chordin and noggin, during development. For example, BMP signal transduction is regulated 

by various proteins that exert either a pro- or anti-BMP effect. Mediation of this pathway can 

occur at multiple levels, such as by sequestering BMPs and either facilitating or inhibiting 

BMP-receptor interactions, hindering BMP transport across cells and thus disturbing the 

BMP gradient required for downstream signaling, or by maintaining some BMPs in inactive 

form by preventing the cleavage of pre-BMPs and reducing the amount of mature, secreted 
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BMPs (Wilkinson et al., 2003; Umulis et al., 2009). Chordin is an antagonist that directly 

binds BMPs (Larraín et al., 2000), and noggin, a cysteine-knot protein that binds BMPs and 

prevents them from binding to type I and type II cell surface BMPRs via masking of receptor 

binding sites (Zimmerman et al., 1996; Groppe et al., 2002). On the other hand, 

crossveinless-2 potentiates BMP signaling by forming a ternary complex with both chordin 

and BMP, and reduces the affinity of chordin for BMP, thus allowing BMPs to activate their 

downstream effectors via the BMPRs (Zhang et al., 2010). Importantly, the action of these 

proteins is dependent of the developmental context in which they, and the molecules they 

interact with, are expressed. This has been highlighted by Crim1-deficient mice, which 

exhibit phenotypes that indicate Crim1 can perform both agonistic and antagonistic functions 

on growth factor signaling during organogenesis.  

 

To explore the role of Crim1 in development, a number of transgenic mice have been 

generated. Firstly, a genetrap line was created by random insertion of a β-geo cassette into 

intron 1 of the Crim1 gene (called Crim1KST264) (Leighton et al., 2001; Pennisi et al., 2007). 

Secondly, a conditional loss-of-function allele was generated (Crim1FLOX), by flanking exons 

3 and 4 of the Crim1 gene with LoxP sites (Chiu et al., 2012). The Crim1FLOX line, when 

crossed with the CMV-Cre deletor line, generated Crim1Δflox mice, intercrosses from which 

produced mice lacking a functional Crim1 gene (called Crim1Δflox/Δflox) (Chiu et al., 2012). 

We have previously described perinatal lethality in mice homozygous for the Crim1KST264 

genetrap and in Crim1∆flox/∆flox mice (Pennisi et al., 2007; Chiu et al., 2012). Both strains 

display defects in multiple organ systems including the kidney, eye and placenta (Lovicu et 

al., 2000; Glienke et al., 2002; Pennisi et al., 2007; Pennisi et al., 2012; Phua et al., 2012; 

Fan et al., 2014), highlighting the importance of Crim1 during development. In this review 

we discuss the role of Crim1 in organogenesis, with a specific focus on the developing heart, 

as well as providing mechanistic insight into how it can regulate the activity of growth 

factors. 

 

The role of Crim1 in organogenesis 

In the past 15 years a number of studies have begun to map the expression of Crim1 within 

the developing embryo, and have used the different transgenic mouse lines described above 

to decipher the role for Crim1 in organogenesis. A summary of these findings is detailed 

below. 
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Kidney 

Perhaps the most widely studied organ in the context of Crim1 function is the kidney. In the 

embryonic murine kidney, Crim1 is expressed in pericytes lining the endothelium and within 

the parietal epithelial cells, mesangial cells and podocytes of the glomeruli from 15.5 days 

post coitum (dpc) (Georgas et al., 2000; Pennisi et al., 2007; Wilkinson et al., 2007). Studies 

of transgenic animals have provided significant insights into the role of Crim1 during kidney 

development. Kidneys from Crim1KST264/KST264 mice at 15.5 dpc were significantly smaller 

than their wild type littermates, indicating a role for Crim1 in nephrogenesis (Pennisi et al., 

2007). Further analysis revealed multiple lesions in the glomerulus and glomerular capillary 

defects, and podocyte effacement (Wilkinson et al., 2007). In their elegant study, Wilkinson 

et al. showed Crim1 to be co-expressed with VEGF-A in the podocytes of the renal 

glomerulus. In mice lacking Crim1, there was an increased diffusion of VEGF-A away from 

the podocytes at 17.5 dpc, and a concomitant activation of the VEGF-A receptor Flk1 in 

adjacent vascular endothelial cells, supporting the observation of glomerular defects in these 

homozygotic mice (Wilkinson et al., 2007). To assess whether renal abnormalities were 

present in the adult kidney, Wilkinson et al. made use of Crim1KST264/KST264 outbred mice, as a 

proportion of these homozygous animals survive to adulthood (Wilkinson et al., 2007). The 

kidneys of these adult mice displayed multiple glomerular cysts, interstitial fibrosis and 

endothelial cell thickening (Wilkinson et al., 2007), accompanied by further evidence of 

increased vascular leakiness and compromised extraglomerular vasculature (Wilkinson et al., 

2009). Furthermore, a later study revealed renal fibrosis in Crim1KST264/KST264 adult mice along 

with endothelial aberrations, including an increase in vascular permeability and a 

discontinuous endothelium displaying abnormal collagen deposits (Phua et al., 2012). This 

could be due to the association of Crim1 with TGFβ-1, which is known stimulate endothelial-

to-mesenchymal transformation (EndoMT) (Kim et al., 2001; Varga and Wrana, 2005; Phua 

et al., 2012). In the adult human kidney, CRIM1 has been shown to be localized in the 

podocytes, both qualitatively, using renal tissue in immunohistochemical experiments, and 

quantitatively, using immortalised human podocytes (Nyström et al., 2009), where BMPs and 

VEGFs are also expressed (Simon et al., 1995; Godin et al., 1999), indicating a possible role 

for CRIM1 in tethering these growth factors and releasing them into the local environment in 

a controlled manner. 
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Placenta 

The placenta plays a central role during embryogenesis. It comprises a labyrinthine zone 

consisting of syncytiotrophoblast cells and junctional zone consisting of spongiotrophoblast 

and glycogen trophoblast cells. In mice, Crim1 is expressed in various placental cell types 

including chorionic trophoblasts at 9.5 dpc, synctiotrophoblasts at 13.5 and 15.5 dpc, and 

spongiotrophoblasts from 13.5 dpc (Pennisi et al., 2012). Crim1 is important for placental 

development as, in the absence of this gene, placental size is reduced from 13.5 dpc until 17.5 

dpc, with a consequent reduction in the size of Crim1KST264/KST264 embryos at the later stage 

(Pennisi et al., 2012). There is also a decrease in the number of sinusoidal-trophoblast giant 

cells and an increase in glycogen cells of Crim1KST264/KST264 placentae at 15.5 dpc, 

hypothesized to be due to a possible dysregulation of multiple signalling pathways (Pennisi et 

al., 2012), such as the IGF and VEGF pathways (Charnock-Jones et al., 1994; Randhawa and 

Cohen, 2005). 

 

Lens and retinal vasculature 

In the developing murine embryonic eye, Crim1 expression is observed from 9.5 dpc until at 

least day postnatal day (P) 21 (Lovicu et al., 2000). Initially, Crim1 is detected in the 

precursor to the lens, the lens placode, and subsequently is expressed by all lens cells by 11.5 

dpc. Crim1 transcripts are also present in the corneal epithelium and endothelium by 15.5 

dpc, as well as the retinal epithelium and retinal ganglion cells at 18.5 dpc. At P21, Crim1 

expression persists only in the lens (Lovicu et al., 2000). Analysis of	  Crim1glcr11 (glaucoma 

relevant 11) mutants, termed so because of their glaucoma and cataract phenotype, reveals	  

multiple lens defects that are evident from 16.5 dpc, including abnormal cell adhesion at 

epithelial adhesion junctions, disrupted polarity and a reduction in the number of proliferating 

lens epithelial cells, which collectively culminate in a smaller, atypical lens (Zhang et al., 

2016). By P60, Crim1 mutant mice also display lens cataracts and abnormal cellular 

proliferation within the retina. Mechanistically, the adhesion defects in these Crim1 mutants 

are consistent with an interaction observed between Crim1 and β1 integrin, which is also 

expressed in both lens epithelial cells and lens fiber cells (Zhang et al., 2016). Indeed, 

analysis of β1 integrin signalling reveals that Crim1 regulates the phosphorylation status of 

its downstream effectors focal adhesion kinase (FAK) and extracellular signal-regulated 

kinase (ERK), resulting in modulation of lens morphogenesis by membrane-bound Crim1 

(Zhang et al., 2016).  
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As Crim1 is expressed in vivo and in vitro in vascular endothelial cells (Glienke et al., 2002), 

and in the vasculature of the embryonic mouse hindbrain and postnatal retinas (Fan et al., 

2014), its role in the retinal vasculature has also been analysed. Crossing the Crim1Flox allele 

to Pdgfrb-iCreER mice to enable inducible deletion of Crim1 from endothelial cells reveals 

that defective retinal vascular development occurs in the absence of Crim1 from the 

vasculature (Fan et al., 2014). The phenotypes observed included reduced vessel density, 

length and branchpoint number, and vessel regression in the first week of postnatal 

development (Fan et al., 2014). Indeed, these authors revealed modulation of the autocrine 

activity of VEGF-A by Crim1, indicating that it has an important regulatory role in the 

formation and development of the vasculature (Fan et al., 2014). The distribution of the cell 

adhesion molecule VE-Cadherin at the angiogenic front of Crim1flox/flox; Pdgfb-iCreER retinal 

vasculature preparations was also altered (Fan et al., 2014), a finding consistent with the 

impaired endothelial tube formation evident in HUVECs in the absence of CRIM1 (Glienke 

et al., 2002). This is suggestive of a cell adhesion anomaly. A possible role for the conserved 

RGD motif in Crim1 in this context is possible, as this domain of Crim1 potentially binds 

integrins and so modulates cellular attachment (Kolle et al., 2000). The intracellular domain 

of Crim1 could also play a role in cell adhesion, as the cytoplasmic domain of Crim1 has 

been shown to indirectly bind β-catenin and N-cadherin in Xenopus (Ponferrada et al., 2012).  

 

Nervous system 

Preliminary investigations have also shown that Crim1 may be important for the development 

of the nervous system. For instance, in the developing mouse spinal cord, Crim1 is expressed 

from 9.5 dpc in the floor plate, and in pools of motor neurons at later stages of development 

(Kolle et al., 2000). Moreover, Crim1 expression is observed in other regions of the nascent 

mouse neuraxis, including the forebrain and hindbrain from 11.5 dpc, and in the midbrain at 

13.5dpc, (Kolle et al., 2000). Despite this, studies have yet to elucidate the mechanistic 

function of Crim1 in the developing nervous system. Looking forwards, using our 

understanding of the role of Crim1 in other developmental contexts may provide insights into 

the role of this factor within the developing nervous system. For example, the colocalization 

of Crim1 and β1 integrins at the leading edges of lens epithelial cell projections regulates cell 

adhesion and polarity (Zhang et al., 2016). As cellular adhesion and polarity are critical 

components that underlie the proliferation and subsequent differentiation of neural stem cells 
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within the embryonic brain, a role for Crim1 in mediating these aspects during neural 

development is plausible.  

 

The role of Crim1 in cardiac development 

Overview of organogenesis of the heart 

Another organ in which Crim1 plays an important role during development is the heart. The 

heart is the first organ to form and function in the vertebrate embryo (Yutzey and Kirby, 

2002), and cardiac progenitor cells are among the earliest to migrate through the primitive 

streak during gastrulation (Garcia-Martinez and Schoenwolf, 1993; Schoenwolf and Garcia-

Martinez, 1995). Splanchnic mesenchymal cells, the principal cardiac precursors, arise from 

primary heart fields in the lateral plate mesoderm (Waldo et al., 2001) and aggregate in the 

cardiogenic region to form angioblastic cords. These canalize to form two thin-walled 

endocardial heart tubes. Their subsequent fusion forms a single two-layered heart tube 

(Manasek, 1969) comprising the outer mesenchymal myocardial mantle which forms the 

myocardium, and the inner endothelial tube which forms the endocardium, separated by 

myocardium-produced cardiac jelly (Waldo et al., 1999).  

 

The epicardium of the heart develops from a transient structure, the proepicardium (PE) 

(Virágh and Challice, 1981; Männer, 1993; Virágh et al., 1993; Gittenberger-de Groot et al., 

1998), that is located between the sinus horns and liver primordium (Virágh et al., 1993), and 

which is derived from the lateral plate mesoderm (Serluca, 2008). The PE contains smooth 

muscle, fibroblast and endothelial progenitors (Mikawa and Gourdie, 1996; Dettman et al., 

1998; Gittenberger-de Groot et al., 1998; Männer, 1999; Pérez-Pomares et al., 2002), but 

whether it is the sole contributor of endothelial cells to the coronary vasculature is 

contentious, as the liver bud and sinus venosus have also been suggested as sources of the 

same (Poelmann et al., 1993; Ishii et al., 2007; Red-Horse et al., 2010; Cossette and Misra, 

2011).  

 

Proepicardial cells attach to the inner curvature of the atrioventricular junction of the 

rudimentary heart (Männer, 1993; Ishii et al., 2010) to form its outermost layer – the 

epicardium. Species-specific migration of proepicardial cells to the myocardium occurs either 

by proepicardial vesicle budding or via an extracellular matrix bridge to potentially guide the 

translocation (Nahirney et al., 2003). It has been suggested that the proximity between the 

liver bud and the PE affects proepicardial attachment to the heart and differentiation via an 
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associated effect on proepicardial marker genes (Ishii et al., 2007). Following the attachment, 

a population of epicardial cells undergo EMT to form subepicardial cells, including those 

contributing to the subepicardial coronary vasculature, whereas another subset of these cells 

traverse the subepicardial space and migrate into the myocardium (Virágh and Challice, 

1981) to give rise to various cell types, including coronary vascular smooth muscle cells, 

coronary vascular endothelial cells and cardiac fibroblasts (Virágh and Challice, 1981; 

Männer, 1993; Virágh et al., 1993; Mikawa and Gourdie, 1996; Gittenberger-de Groot et al., 

1998).  

 

Crim1 and cardiac development 

What evidence is there that Crim1 plays a role in cardiac development? Firstly, studies on the 

Crim1KST264 genetrap line (which carries a LacZ reporter), have shown that Crim1-promoter 

mediated LacZ expression is evident in the murine proepicardium at 9.5 dpc, and within the 

epicardium throughout cardiac development. It is also observed in coronary vascular smooth 

muscle cells and, to a weaker extent, in coronary vascular endothelial cells, at later stages of 

heart development (Pennisi et al., 2007). LacZ expression is also observed in the outflow 

tract mesenchyme, bicuspid and tricuspid valve leaflets and atrial septum at 18.5 dpc (Iyer et 

al., 2016). These sites of expression imply that Crim1 may regulate many aspects of cardiac 

development. Interestingly, there are many cardiac phenotypes, such as chamber septation 

and valve defects, hypoplastic ventricular walls and coronary vasculature defects, that arise as 

a result of dysregulation of growth factors such including TGFβs, BMPs, VEGFs and IGFs 

(Kim et al., 2001; Chen et al., 2004; Goldman et al., 2009; Uchimura et al., 2009; Li et al., 

2011; Wu et al., 2012). This indicates that growth factor activity is normally tightly 

controlled during cardiogenesis. Given the interaction of Crim1 with many of these factors in 

other organ systems, and preliminary data indicating that Crim1 mutant cardiac phenotypes 

are reminiscent of these phenotypes, we posit that Crim1 mediates cardiogenesis, at least in 

part, via the regulation of growth factor signalling.  

 

For example, epicardial EMT is a vital process that occurs during normal heart development, 

and several growth factors have been implicated in both EMT, and the differentiation of 

epicardial cells into their correct lineages. A number of distinct molecular processes work 

cooperatively in order to initiate and promote epicardial EMT. As the heart develops, there is 

significant cross-talk between the epicardium and myocardium, with epicardial signalling via 

its secreted factors and epicardium-derived cells, as well as signalling from the myocardium, 
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being essential for myocardial growth and differentiation (Sucov et al., 2009) and coronary 

vascular development (Kang and Sucov, 2005). Thus, it is this reciprocal signalling between 

the epicardium and myocardium which provides cues to ensure the proper and timely 

differentiation of epicardial lineages, maturation of the myocardium and the coronary 

vasculature, and, ultimately, the development and functioning of the heart. For instance, 

TGFβs stimulate epicardial EMT (Dokic and Dettman, 2006; Olivey et al., 2006; Sánchez 

and Barnett, 2012). Binding of TGFβ2 and TGFβ3 to TGFβR2, and the subsequent activation 

of TGFβR1, leads to the phosphorylation of SMAD2/3 proteins and upregulation of 

transcription factors such as snail1 and slug. These factors repress the expression of E-

cadherin, while promoting the expression of Vimentin, RhoA and various ECM molecules 

(Xu et al., 2009), thus facilitating a transition away from epithelial characteristics. Using the 

WT1-Cre and WT1-CreERT2 cell lines, we have shown that EMT and epicardial migration 

are increased in the absence of Crim1 (Iyer et al., 2016). The epicardium of Crim1 null 

mutant hearts surprisingly shows a reduced phospho-SMAD2 level, indicative of reduced 

TGFβ signalling (Iyer et al., 2016), at 13.5 dpc, despite enhanced EMT. This indicates that 

there could be a role for Crim1 in the formation or stabilization of cadherin-dependent 

junctional complexes in epithelial cells, via which it could serve to normally restrain 

epicardial EMT. β-catenin is a crucial component of adherens junctions, and has been 

previously shown to complex indirectly with Crim1 (Ponferrada et al., 2012). Indeed, 

assessment of β-Catenin distribution at epicardial cell-cell junctions is altered in Crim1-

deficient mice, indicating a loss of stability at these contact points within the developing heart 

(Iyer et al., 2016).  

 

Epithelial and mesenchymal cells secrete PDGF-A, which may act as a mitogen that 

stimulates ventricular development and cardiomyocyte proliferation (Kang et al., 2008). 

Moreover, PDGF-B can stimulate proepicardial cells expressing smooth muscle markers to 

undergo epicardial EMT and subsequently commit to the coronary smooth muscle cell 

lineage, mediated through PDGFR-β (Lu et al., 2001), while PDGFR-α plays an important 

role in the formation of cardiac fibroblasts (Smith et al., 2011). Both PDGF receptors are 

implicated in EMT, whereby epicardium-derived cells (EPDCs) give rise to myocardial 

fibroblasts and vascular smooth muscle cells (Mellgren et al., 2008; Smith et al., 2011). We 

have recently reported a reduction in the number of EPDC-derived myocardial fibroblasts 

within Crim1 mutant mice (Iyer et al., 2016). Although Crim1 has been shown to capable of 

binding PDGF-B (Wilkinson et al., 2007), direct evidence to support a role of Crim1 in the 
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modulation of this pathway in the heart is currently lacking. Future work aimed at 

investigating this exciting prospect will undoubtedly advance our understanding of the 

mechanism through which Crim1 regulates the biology of EPDC-derived cells. Moreover, 

PDGF-B is also expressed by endothelial cells is required for the endothelial-cell-mediated 

recruitment for coronary vascular smooth muscle cells to the developing coronary vessels 

(Van den Akker et al., 2008). Given the nature of the Crim1 protein, this cysteine-knot 

protein could also potentially antagonise this aspect of cardiac development by tethering 

PDGFs to the cell surface and limiting their action, another fruitful avenue of future research. 

 

Interestingly, in support of this hypothesis, Wilkinson et al. previously identified that Crim1 

potentially functions as an antagonistic regulator of certain members of the BMP family. 

Crim1 interacts intracellularly with both BMP4 and BMP7 (Wilkinson et al., 2003), and co-

localizes with their respective pre-BMPs within the golgi via its CRRs, ultimately reducing 

the secretion of mature BMPs. Furthermore, a proportion of the BMPs released remain bound 

to Crim1 (Wilkinson et al., 2003). Crim1 has also been implicated in tethering BMPs to the 

cell, which may serve to restrict their functional potential, and, since BMPs are known to act 

across a restricted distance (Jones et al., 1996), possibly to act in the presentation of BMP 

ligands to neighbouring cells. BMPs are well known for their role in cardiac development. 

For instance, BMP2 increases epicardial EMT via TGFβR3 activation in epicardial cell lines 

(Sánchez and Barnett, 2012), and BMP4 has been shown to play an important role in both 

atrioventricular and outflow tract septation (Jiao et al., 2003; Liu et al., 2004). The absence 

of Bmp10 leads to impaired ventricular trabeculation and formation of thin ventricular walls 

(Neuhaus et al., 1999), a phenotype recapitulated in mice lacking both Bmp 6 and Bmp7 

(Kim et al., 2001). Given the need for exquisite spatial and temporal modulation if BMP 

signaling, it is likely that Crim1 also regulates this family of molecules during cardiac 

development, Indeed, hypoplastic ventricles are observed in Crim1 null mice, alongside a 

concomitant increase in apoptosis of intramural cells, indicating that Crim1 is necessary for 

the formation of the myocardium, potentially via the modulation of BMP signalling (Iyer et 

al., 2016). The use of next generation sequencing in Crim1-deficient mice, coupled with 

proteomic approaches, could provide a future avenue to determine the role Crim1 plays in the 

modulation of BMP biology during cardiac development. 

 

IGFs have been also implicated as epicardial mitogenic factors during heart formation. For 

instance, IGF-2 is secreted from the epicardium and exerts a mitogenic effect on the 
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formation of the compact myocardium (Li et al., 2011). Could the IGFBP motif of Crim1, 

along with the CRR domains, bind IGFs and regulate their activity? Interestingly, there is an 

increase in ERK1/2 signalling in the myocardium of Crim1–deficient hearts at 13.5 dpc (Iyer 

et al., 2016). This indicates that Crim1 regulates signalling molecules secreted by the 

epicardium, or by the myocardium itself, and is thus essential for myocardial maturation in 

the early stages of heart development. A large number of growth factors are known to 

activate the ERK pathway, including IGFs, and downstream ERK signalling can be both pro- 

and anti-apoptotic, making it important to identify which growth factors are specifically 

involved in this process, and exactly how this augmented ERK1/2 signalling affects the 

development of the myocardium. It would thus be useful to assess whether Crim1 can indeed 

bind IGFs, and further whether Crim1 can modulate this important growth factor in the 

context of the developing heart. 

 

Concluding remarks 

While the broad role of Crim1 in developmental organogenesis is now well established, much 

remains unclear as to how this transmembrane protein exerts its biological influence. 

Critically, the mechanisms by which Crim1 mediates growth factor signalling in different 

developmental contexts are still poorly defined. For example, in C. elegans, crm-1 acts as an 

agonist of a BMP-like pathway, the DBL-1 pathway, in a non-cell-autonomous fashion (Fung 

et al., 2007), although it is not known whether this occurs through an interaction with the 

ligand or its receptor. In contrast to this agonistic role with regards to BMP signalling, the 

Drosophila homolog of Crim1, CRIMPY, antagonizes the function of the BMP ligand Glass 

bottom boat (Gbb) in motorneurons at the neuromuscular junction (NMJ), and restrains the 

expansion of the NMJ (James and Broihier, 2011). The full-length Gbb precursor associates 

preferentially with the extracellular domain of CRIMPY to regulate synaptic development, 

before Gbb is secreted from the motorneuron terminal (James and Broihier, 2011). Similarly, 

Crim1 binds to and antagonistically modulates the processing of pre-BMPs and the secretion 

of mature BMPs in COS7 cells (Wilkinson et al., 2003). These findings highlight the fact that 

the function of Crim1 in organogenesis is context-dependent, and that the timing and site of 

Crim1 expression, coupled with that of the multitude of growth factors it can potentially 

interact with, will influence its biological function. 

 

Looking to the future, investigations into Crim1 function during development will enable us 

to probe the mechanisms underlying a variety of pathological disorders. For instance, the 
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adult myocardium has limited regenerative capacity. New technologies have made the 

generation of cardiomyocytes from induced stem cells a possibility, but it remains essential to 

clarify the growth factors and signalling molecules germane to this process to make this 

feasible. BMPs, for instance, regulate stem cell renewal and differentiation into 

cardiomyocytes, and cooperate with other signalling pathways to further modulate gene 

expression of transcription factors (Varga and Wrana, 2005; van Wijk et al., 2007). As Crim1 

can regulate BMP processing, investigating the intersection between Crim1 biology and BMP 

signalling during the generation of cardiomyocytes in vitro could be a valuable approach. 

Similarly, research on the reactivation of the adult epicardium following myocardial damage 

has increased in recent years, and the modulation of growth factors such as BMPs, TGFβ, 

VEGF and PDGF by Crim1 is an attractive avenue of research that remains to be explored. 

Moreover, as myocardial injury stimulates epicardial cells to give rise to fibroblasts and 

smooth muscle cells (Limana et al., 2011; Zhou et al., 2011; Duan et al., 2012; Huang et al., 

2012; van Wijk et al., 2012), our recent observation that, in the absence of Crim1, the number 

of cardiac fibroblasts is reduced (Iyer et al., 2016), is another step towards deciphering its 

role not only in lineage specification but also potential therapeutic interventions to improve 

cardiac performance after damage.  

 

With relation to other pathological disorders, the analysis of serum from chronic heart failure 

patients shows an increase in CRIM1 levels, along with an increase in secreted factors 

involved in fibrosis, indicating a positive correlation between CRIM1 and pro-fibrotic 

activity (Eleuteri et al., 2014), though whether these increases are reflected within cardiac 

tissue is not clear. Moreover, CRIM1 is expressed at higher levels in drug-resistant leukaemia 

cells, implicating it as a potential drug resistance marker (Prenkert et al., 2010). The intronic 

regions of CRIM1 and ZEB2 have been demonstrated to be downregulated in breast cancer 

epithelial cells (Kim et al., 2015), and CRIM1 has also been suggested to be a target of the 

Hippo pathway, and to be overexpressed in gastric cancer tissues (Lim et al., 2014). These 

tantalising vignettes into the role of CRIM1 in cancer biology and disease provide a platform 

on which to further investigate the role of this gene in pathological conditions. Indeed, 

studies from development have illustrated that Crim1 may act at the nexus of many critical 

signalling pathways, and so the manipulation of Crim1 expression may provide a 

parsimonious mechanism by which cellular functions such as proliferation, differentiation 

and repair can be efficiently manipulated following injury and tumorigenesis.  
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