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Abstract

Compressed sensing is a simple and efficient technique
that has a number of applications in signal processing and
machine learning. In machine learning it provides an-
swers to questions such as: “Under what conditions is the
sparse representation of data efficient?”, “When is learning
a large margin classifier directly on the compressed domain
possible?” and “Why does a large margin classifier learn
easier if the data is sparse?”. This work tackles the problem
of feature representation from the context of sparsity and
affine rank minimization by leveraging compressed sensing
from learning perspective in order to provide answers to
the aforementioned questions. We show, for a full-rank sig-
nal the high dimensional sparse representation of data is
efficient, because from the classifier viewpoint such a rep-
resentation is in fact a low dimensional problem. We pro-
vide practical bounds on the linear classifier to investigate
the relationship between the SVM classifier in the high di-
mensional and compressed domains and show for the high
dimensional sparse signals, when the bounds are tight di-
rectly learning in the compressed domain is possible.

1. Introduction
Classification is one of the most fundamental problems

in machine learning and has a number of applications in
signal and image processing. The problem of classification
can be categorized into first, transforming the input exam-
ples into an appropriate feature space and second, apply-
ing a classification algorithm on the transformed features.
Generally two approaches can be introduced for rich fea-
ture representation: (i) sparse representation of the input
signals with respect to only a few high dimensional basis
and (ii) low-rank structure of the input examples. Sparse
representation has a number of advantages in the context
of machine learning, for instance representing the input ex-
amples with only a few active elements makes learning a
classifier easier, or a sparse signal can leverage the benefits
of a low dimensional data by applying a linear compress-

ing method on it. On the other hand, the low-rank structure
helps a classifier to simply measure the similarity between
the low-rank patterns of the input examples.

Recently Candès and Donoho [16, 20] introduced a
novel sampling theory called compressed sensing (CS) and
showed that one can recover the signal from far fewer sam-
ples than the Nyquist-Shanon sampling rate under two con-
ditions: first, the signal be sparse and second, the restricted
isometric property holds. We shall discuss these properties
more in the subsequent sections. CS enables a potentially
large reduction in the sampling and computation costs for
sensing signals and has a number of applications in signal
processing and machine learning. From the context of ma-
chine learning, recently Calderbank [15] show learning di-
rectly on the compressed domain is possible. They provide
theoretical bounds on the SVM classifier and show with
high probability, a random projection of linear SVM clas-
sifier to low dimensional domain has true accuracy close to
the best SVM classifier in the data domain:

‖Aω‖22 ≤ ‖ω‖22 + e (1)

whereA is a linear projection from high dimensional to low
dimensional feature space, ω is a linear classifier trained on
the high dimensional feature space and e is the error (see
Fig. 1 for the visualization). There are two central advan-
tages in the context of compressed learning from machine
learning viewpoint. Firstly learning classifiers on the com-
pressed domain enables a large reduction in computational
cost. Secondly, it eliminates the cost of recovering the sig-
nals if we are only interested in the classification task.

One drawback with Calderbank’s bounds is that, they are
highly sensitive to the degree of sparsity of the input sig-
nals. As is shown in Section 4, for sparser signals Calder-
bank’s bounds are tight, however by increasing the sparsity
the bounds become looser. In general introducing an algo-
rithm that controls the level of sparsity is an NP-hard prob-
lem. Furthermore, in many applications we cannot control
the degree of sparsity. In order to make compressed learn-
ing more efficient and applicable we present new bounds
on the margin of linear classifier that are derived by anneal-
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Figure 1: Compressed learning visualization. a) For the
full-rank representation the data is represented as a cloud
of points within the three dimensions (sphere). b) when the
data are in the low-rank representation the cloud of points
are in 1-dimension or at most 2 dimensions (here we assume
disk).

ing the entropy of the sparsity configuration and the rank
of input signals. As a result we will be able to investigate
the problem of feature representation and its impact on the
performance of the classifier.

1.1. Paper Contributions

In this paper, we study the problem of compressed sens-
ing in the context of linear kernel SVM classifier and fea-
ture representation. The underlying idea behind our work is
that each linear SVM is a linear combination of the train-
ing examples. Such a presentation is not unique and can
be expressed as a mixture of examples which are formed
in different structures i.e. sparse and low-rank. Based on
this assumption we construct the new bounds on the SVM
classifier to draw the relationship between the classifier in
the high dimensional domain and the compressed domain.
More specifically, we build our assumption based on two
principles of sparsity and affine rank minimization to show
when tighter bounds are provided. As a result we can
demonstrate in which conditions sparse and low-rank rep-
resentation of the input examples are efficient from learn-
ing viewpoint. Unlike Calderbank’s model [15], where the
bounds are only depend on the sparsity, we present more
practical bounds that make compressed learning applicable.
Finally, through experiments we support our claim.

Notations and Definitions
In this paper we adopt the same notation as [2, 8, 15].

We assume x ∈ Rn is a k−sparse vector and its `2−norm
is bounded by some parameter R, ‖x‖2 ≤ R. Am×n is the
linear measurement matrix used in compressed sensing. We
define the data domain as:

X = {(x, y) : x ∈ Rn, y ∈ {−1, 1}}

and the measurement domainM as:

M = {(Ax, y) : (x, y) ∈ X}

For X = {x1,x2, . . . ,xm} ∈ Rn×m, σi denotes the i-th
largest singular value of X. We define the Frobenius, `2
and nuclear norm as:

‖X‖F =

√√√√min{n,m}∑
i=1

σ2
i , ‖X‖2 = σ1, ‖X‖∗ =

min{n,m}∑
i=1

σi

(2)

For α ∈ R and for any arbitrary vector x:

‖αx‖2 = |α|‖x‖2, ‖X‖2F =

m∑
i=1

‖xi‖22 (3)

Similar to [15] we assume D is some unknown distribution
over X , and S has M labeled examples i.i.d from D :

S = {(x1, y1), (x2, y2), . . . , (xM , yM )}

and AS is the compressed representation of S:

AS = {(Ax1, y1), (Ax2, y2), . . . , (AxM , yM )}

Definition 1.1. Support Vector Machine: For M examples
sampled i.i.d from distribution D the SVM’s classifier ω is
obtained as a linear combination of the training vectors:

ω =

M∑
i=1

αiyixi, ∀i : 0 ≤ αi ≤
C

M
, ‖ω‖2 ≤ C

For the linear classifier ω we define its true hinge loss as:

HD(ω) = E(x,y)∼D[1− yωTx]

and the true regularization loss of ω as:

L(ω) = HD(ω) +
1

2C
‖ω‖2 (4)

ω can be found by minimizing the empirical loss over X :

L̂(ω) = ĤS(ω) +
1

2C
‖ω‖2

where ĤS(ω) is the empirical hinge loss:

ĤS(ω) = E(xi,yi)∼S [1− yiωTxi] (5)

For the proof, the readers are referred to [15, 19].
Definition 3.2. Convex hull is defined by a unique bounded
polyhedron, that vertices constitute a set of points:

s =

M∑
i=1

αixi,∀ i : αi ≥ 0 ,

M∑
i=1

αi = 1



2. Related work

Previously Johnson and Lindenstrauss [23] demon-
strated that projecting high dimensional data onto a ran-
dom low dimensional subspace, with high probability only
changes the pairwise distances between all the points by
(1 ± ε). The problem of random projection has widely
studied in the literature in the context of dimensionality
reduction, clustering [12, 14] and nearest neighbor algo-
rithms [11]. The use of Johnson and Lindenstrauss’s lemma
in classification is first introduced in [9]. They theoretically
showed that the random projection of high dimensional data
onto a low dimension subspace correctly classifies. This
work is followed by Blum et al. [13] and Balcan et al. [10].
They demonstrated that if high dimensional data is separa-
ble by a large margin, then a random projection to a low
dimensional subspace will with high probability preserve
separability.

More recently Calderbank et al. [15] used the idea of CS
and introduced an algorithm to show learning on the com-
pressed domain is possible. They provide the theoretical
bounds on the regularization loss of the linear SVM (Eq. 4)
in the low dimensional domain, and show that the perfor-
mance of the best classifier in the high dimensional domain,
is approximately preserved by random projection to a low
dimensional subspace.

An initial question one might ask is whether compressed
learning can be generalized to any arbitrary input exam-
ple. As is shown in Section 4, there are two important pa-
rameters that fundamentally affect the bounds presented by
Calderbank: (i) the level of sparsity and (ii) the entropy of
sparsity indexes (i.e. rank) of the input examples. One limi-
tation with such a presentation is that, in order to the bounds
be tight the degree of sparsity has to be fixed or limited by
some threshold. However, in many cases, it is challeng-
ing to control the level of sparsity. In this work to address
this problem we build new bounds on the classifier based
on the notion of affine rank minimization and sparsity pat-
terns in order to present more practical bounds. We should
note that in this presentation we are not trying to present
tighter bounds however we are looking to build a practical
bounds that make compressed learning more applicable and
generalizable.

3. An Introduction to Compressed Sensing

Compressed sensing (CS), is based on the idea that sig-
nals that can be represented in their proper basis can have a
concise representation. From signal processing viewpoint,
for the sparse signals, information rate is much smaller than
bandwidth and the sparse signals can be recovered from far
fewer samples than required by Nyquist-Shanon sampling
theorem. CS is governed by two principles; sparsity and

incoherence. Mathematically,

z = Am×nx

where m � n, x is a k−sparse signal, z ∈ Rm is the
compressed vector and Am×n is the measurement matrix.
In [17] they show that in order Am×n act as a compressed
matrix it should satisfy the Restricted Isometric Property
(RIP).
Definition 4.1. Restricted Isometric Property: Am×n satis-
fies (2k, ε)−RIP if it acts as a near-isometric with distortion
factor ε, over all 2k−sparse vectors x.

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2

In [17] they show that if the entries of Am×n sampled i.i.d.
from a Gaussian random distribution then with high proba-
bility this matrix satisfies the RIP:

Am×n ∼
1√
m
N (0, 1), m = Ω(k log(n/k))

4. Compressed Learning
Recently Calderbank and his colleagues demonstrate,

with high probability, SVM classifier on the compressed
domain performs almost as accurate as the best classifier
on the data domain (see Fig. 1). To establish the bounds
they first expand RIP and observe that it preserves the inner
product between the two k−sparse vectors x, x́.
Lemma 4.1 [15] Let Am×n the measurement matrix satis-
fying (2k, ε)−RIP, and x, x́ be two k−sparse vectors in Rn,
with ‖x‖2 ≤ R, ‖x́‖2 ≤ R. Then:

(1 + ε)xT .x́− 2R2ε ≤ (Ax)T (Ax́)

and
(Ax)T (Ax́) ≤ (1− ε)xT .x́ + 2R2ε

To see the proof, we refer the readers to [15]. Since the
SVM classifier is a linear combination of training exam-
ples (Definition 1.1) they have generalized Lemma 4.1 on
the combination of the sparse vectors and show that the RIP
also approximately preserves the inner product between any
two vectors from the convex hull of the set of sparse vectors.
Theorem 4.2 [15] Let Am×n be a matrix satisfying
(2k, ε)−RIP. Let M,N be two integers, and

{(x1, y1), . . . , (xM , yM ), (x́1, ý1), . . . , (x́N , ýN )} ∈ X

Let α1, . . . , αM , β1, . . . , βN be non-negative numbers such
that

∑M
i=1 αi ≤ C and

∑N
j=1 άj ≤ D for some C,D ≥ 0.

ω =

M∑
i=1

αiyixi, ώ =

N∑
j=1

άj ýix́i
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Figure 2: Lemma 4.1 for different sparsity values, Theorem
4.2 for different inputs with different histogram of indexes.
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Figure 3: Two sets of examples with their corresponding
histogram of indexes. In this figure, (a) has a low rank struc-
ture and (b) has a full rank structure.

Then:
|ωT ώ − (Aω)T (Aώ)| ≤ 3CDR2ε

The details of the proof can be found in [15]. Finally Def-
inition 1.1, Lemma 4.1 and Theorem 4.2 imply that the
true regularization term, Eq. 4, of the projected classifier
on the compressed domain AωS , performs as accurate as
the best classifier on the data domain ωS . For more details
we strongly encourage the readers to read [15].

4.1. Setting the Problem

Let us begin with a review of Lemma 4.1. This lemma
is crucial because it shows the distance between the inner
product of any two k−sparse vectors under a linear pro-
jection. One parameter that is very important and plays a
significant role in the theory of compressed learning is the
level of sparsity: k . We investigate how the bounds vary
with respect to k. To do so we generate n = 5000 di-
mensional k−sparse vectors (x ∈ Rn), where k changes
between [10 : 200] and ‖x‖2 ≤ R = 500. Fig. 2 shows
the upper and lower bounds obtained from Lemma 4.1 for
different sparsity values.

We also examine Theorem 4.2, which implies that the
linear projection, approximately preserves the inner product
between the combination of input examples. For simulation
in this case we synthetically examine the other important

factor that could affect the bounds. Since ω is a linear com-
bination of the training examples, such a presentation is not
unique and can be expressed as a combination of examples
that are formed in different patterns and structures. In this
simulation we consider ω as a linear combination of the
input examples that belong to different sets with different
entropy of indexes (Fig. 3 shows two different sets of exam-
ples with their corresponding histogram of indexes). Fig. 2
shows the upper and lower bounds obtained from Theorem
4.2 for this experiment.

From Fig. 2 we can see how the bounds derived in [15]
turn out in practical cases. As can be seen the tighter bounds
are provided only for some limited sparsity values. In this
paper we construct the new bounds that show where the
bounds presented in Lemma 4.1 and Theorem 4.2 are tighter
and compressed learning is possible. This presentation en-
ables us to study the problem of feature representation to
see when the sparse representation of data is efficient from
the classification viewpoint.

5. Compressed Learning via Rank Minimiza-
tion

In this section, we investigate the problem of compressed
learning in order to provide more practical bounds on the
margin of SVM classifier.

5.1. From CS to Rank Minimization

The affine rank minimization problem can be described
as:

min rank(X), s.t. A(X) = A(X0) (6)

where X ∈ Rn×m is the optimization variable, A :
Rn×m → Rp is a linear operator and X0 denotes the
r−rank solution (r � min(n,m)). Thus we are interested:

min ‖A(X)−A(X0)‖2, s.t. rank(X0)� r (7)

To guarantee uniqueness,A(.) is assumed to satisfy the cor-
responding RIP for affine transformation as:

(1− ε)‖X‖F ≤ ‖A(X)‖ ≤ (1 + ε)‖X‖F

In general Eq. 7 is known to be an NP-hard problem and
also hard to approximate [24] due to the non-convexity of
rank(X). One popular heuristic that recently has been pro-
posed in the literature [21] replaces the rank function with
the summation of singular values of the decision variable.
The heuristic is to solve:

min ‖X‖∗, s.t. X ∈ C (8)

where ‖.‖∗ is the nuclear norm and is defined in Eq. 2 and C
is belong to the set of low rank matrices. This optimization
is convex, and can be cast as a semidefinite program and
solved efficiently. For a survey we refer the readers to [27].



5.2. Rank Minimization and SVM Classifiers

As is shown in Section 4, previous work on compressed
learning is hard to generalize to any arbitrary input exam-
ples, because the bounds are highly sensitive to the degree
of sparsity and for some sparsity values the bounds are
loose. In this section we study the theoretical features of our
model based on two principles of sparsity and affine rank
minimization in order to demonstrate the practical bounds
on the margin of linear classifier . To do so, we begin with
some results from [15].

The results of Definition 1.1, Lemma 4.1 and Theorem
4.2 suggest that the inner product between the linear combi-
nation of two sets of examples under random projection is
bounded by a lower bound:

(1 + ε)

M∑
i=1

N∑
i=1

αiάjyiýjx
T
i x́j −

M∑
i=1

N∑
j=1

(‖αiyixi‖22 + ‖άj ýj x́j‖22)ε

≤ (A
M∑
i=1

αiyixi)
T (A

N∑
j=1

άj ýj x́j) (9)

and an upper bound:

(A

M∑
i=1

αiyixi)
T (A

N∑
j=1

άj ýj x́j) ≤ (10)

(1− ε)
M∑
i=1

N∑
i=1

αiyix
T
i άj ýj x́j +

M∑
i=1

N∑
j=1

(‖αiyixi‖22 + ‖άj ýj x́j‖22)ε

by putting ω =
∑M

i=1 αiyixi, ώ =
∑N

j=1 άj ýjx́j and x =

x́, N = M in the above equations and using Eq. 3 we have1:

(Aω)T (Aω) ≤ (1− ε)ωTω + 2K2ε
M∑
i=1

‖αixi‖2
M∑
i=1

‖αixi‖2

(11)

where
∑M

i=1 |yi| ≤ K. This bound is the main result
of [15] and they use it to construct the bounds on the true
regularization loss of SVM as presented in Eq. 4.

In this paper in order to study the problem of compressed
learning we begin with the above presentation to introduce
our main results on the linear kernel SVM classifier. Our
main assumption in this paper is that, since the SVM clas-
sifier is a linear combination of training examples, such a
presentation can be defined as a linear summation of the
training examples in terms of different structures. In other
words, we re-parametrize ω presented in Eq. 11 as:

ω =

M∑
i=1

βiyivi,= [β1y1(x1 ◦ τ1)| . . . |βMyM (xM ◦ τM )]

where τi = {τ1, . . . , τM} is a set of transformations, which
are used to manipulate the input examples. In this pre-
sentation we consider such a transformation only applies

1In this work due to the lack of space we only provide the upper bound,
however we have the same procedure for the lower bound.

on the indexes of sparse input examples and makes the
rank of the transformed examples as small as possible (see
Fig 3). Rewriting Eq. 10 and Eq. 11 and substituting
ω =

∑M
i=1 βiyivi in the equations, yields:

(Aω)T (Aω) ≤ (1− ε)ωTω + 2K2ε
M∑
i=1

‖βivi‖2
M∑
i=1

‖βivi‖2

(12)

In order to compare our proposed bounds with the previous
work [15] we only need to compare the right-hand sides of
the inequalities in Eq. 11 and Eq. 12 (

∑M
i=1 ‖βivi‖2 and∑M

i=1 ‖αixi‖2 terms). From the definitions and Eq. 3 we
have:

M∑
i=1

‖αixi‖2 =

M∑
i=1

|αi|‖xi‖2,
M∑
i=1

‖βivi‖2 =

M∑
i=1

|βi|‖vi‖2

and since each xi,vi belongs to the convex hull,∑M
i=1 αi = 1,

∑M
i=1 βi = 1, therefore we have:

M∑
i=1

|αi|‖xi‖2 ≤
M∑
i=1

‖xi‖2,
M∑
i=1

|βi|‖vi‖2 ≤
M∑
i=1

‖vi‖2

so the only parameters we need to compare are
∑M

i=1 ‖vi‖2
and

∑M
i=1 ‖xi‖2 which are equal to the Frobenius norm of

the sets of examples, V and X.

5.3. Norm Effects and SVM Bounds

In Section 5.2 we demonstrated the effects of Frobenius
norm on the presented bounds in Eq. 11 and Eq. 12. In
this section we investigate the bounds behavior based on
the principle of affine rank minimization in the context of
feature representation. In order to investigate the effects of
low-rank structure we use the notion of alignment [18, 26]
which can be efficiently computed through the rank min-
imization algorithm. As is shown in [26], the matrix of
aligned examples (images) will have low-rank, ideally rank
one, however for noisy signals, the aligned examples might
have an unknown rank higher than one. For comparison
we consider two different cases: ‖V‖F ≤ ‖X‖F and
‖V‖F ≥ ‖X‖F . We define V = X ◦ τ = [v1| . . . |vM ],
where τ belongs to the set of transformations that minimizes
the rank of the input matrix X and makes it well aligned.

Unfortunately, in this case the value of Frobenius norm
is not straightforward to calculate as it depends on the prob-
lem of alignment and sets of transformations such as warp-
ing, but instead from the norm definitions, we know for any
arbitrary matrix X of rank r the Frobenius norm is bounded
by:

‖X‖2 ≤ ‖X‖F ≤ r‖X‖2
Therefore in order to compare the Frobenius norm we can
instead compare the `2-norm of X and V which is the dual
norm of the nuclear norm [21].



We start with the case when the signal is well-aligned.
In other words the entropy of indexes is minimized and
all the vi vectors have almost a similar sparsity structure
(Fig. 3a). As explained in [26] this situation is equivalent to
rank(V) ≤ rank(X). Follow from Eq. 8 this state can be
expressed as:

‖V‖∗ ≤ ‖X‖∗ ⇒
ŕ∑

i=1

σ́i ≤
r∑

i=1

σi

where rank(V) = ŕ, rank(X) = r and σ́i, σi are the i−th
singular values of V and X respectively. We can show that
if:

‖X‖∗ − ‖V‖∗ ≤ (r − ŕ)σ1 (13)

then the following inequality holds:

‖V‖2 ≥ ‖X‖2

In other words the nuclear norm minimization is equiva-
lent to maximizing the `2-norm of a matrix, if Eq. 13 holds.
Since in this paper we assume τ is a set of transformations
that only applies on the input examples and makes them
low-rank and well-aligned, therefore Eq.13 holds (other-
wise the critical information of the input examples is lost).
Therefore when the input examples are well-aligned the `2-
norm increases and the bounds become loose. On the other
hand in the case of rank(V) ≥ rank(X) (see Fig 3b), fol-
lowing the same procedure it implies that:

‖V‖2 ≤ ‖X‖2

As a result, as long as rank(V) > rank(X) the bounds
become tighter.

5.4. CS and Feature Representation

Up to now we have dealt with the problem of compressed
learning from the compressed sensing perspective and the-
oretically showed that when the presented bounds in Eq. 11
and Eq. 12 are tight, the performance of the classifier on the
compressed domain ωAS is similar to the best classifier on
the data domain ωS :

ωS ≈ ωAS =⇒ ωT
SωS ≈ (AωS)T (AωS)

we have also shown for the input examples X ∈ Rm×n the
tighter bounds are obtained when rank(X) > 1.
Remark 5.1 When the input features are not well-aligned
the sparse representation of the signal is efficient and it is
advantageous to learn the SVM classifier ωS on the sparse
domain. Because such data can be randomly projected to
a low dimensional feature space, and it is in fact a low-
dimensional problem from the classification viewpoint. On
the other hand, when the input examples are low-rank and

Input Image Aligned Image

(a) MNIST dataset

Input Image Aligned Image

(b) LFW dataset

Figure 4: Examples of the MNIST and LFW databases.
“Input Images” refers to the original images from the
dataset, “Aligned Images” refers to the images aligned us-
ing RASL [26].

well-aligned, dictionary learning and sparse coding do not
have remarkable effects on the classifiers from the learning
aspect. Because such a problem is not a low dimensional
problem from the classifiers perspective anymore.

The following remark is the consequence of Section 5.3
and can be generalized on any arbitrary input examples X.

6. Experiments

In this section, we introduce our experiments on syn-
thetic and real data to complement our theoretical study.

6.1. Experimental Setup

For comparison we consider two sets of features: (i)
sparse and, (ii) low-rank. For sparse representations,
we consider two well-known approaches, Bag-of-Words
(BoW) and sparse coding and for low-rank feature tem-
plates we use the RASL model presented in [26].
BoW: BoW representations can be viewed as the sparse
encoding of the i-th input vector using the codebook ma-
trix D ∈ RD×T where T is the number of vocabular-
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(c) LFW experiments

Figure 5: This figure shows the results on the proposed
datasets. The bars and the plot in Fig. 5a show the error
rates between the performance of the classifier on the data
domain ωS and the compressed domain ωAS and the plots
in Fig. 5b and Fig.5c show the classification performance
of ωS vs ωAS for different feature representations.

ies [4, 5]:

η{x} = arg min
b
‖x−Db‖2, s.t. b ∈ B (14)

B = {et}Tt=1 is the set of all T dimensional vectors et con-
taining all zeros except for one. In this work, the codebook
is learned through k-means clustering.
Sparse coding: Sparse coding aims to factorize an ensem-
ble of input vectors X = [x1, . . . ,xM ] into a linear combi-
nation of some basis under sparsity constraints:

η{x} = arg min
b
‖x−Db‖2 + λ‖b‖1 (15)

where λ is a parameter controlling the sparsity penalty.
RASL model: For alignment, we use the RASL model pre-
sented in [26]. RASL is presented by solving the following

rank-minimization problem:

min ‖Xi‖∗ + λ‖Ei‖1, s.t. Ii ◦ (τ0, τi)−1 = Xi + Ei (16)

where X is the low-rank representation of image I , E is
the error and τ is the set of transformations. We should
note that, RASL model only rotate, translate and warp the
images (see Fig 4), therefore Eq. 13 holds.
Evaluation metrics: To evaluate the performance, we re-
port the error between the area under the ROC curve for the
classifiers on the data domain ωS and compressed domain
ωAS .
SVM: For the linear SVM we use the implementation [25].
We do the standard grid-search on cross-validation to tune
parameters including C.

6.2. Databases

Synthetic Data: To conduct controlled experiments
with known ground truth, we synthetically generate two
classes of k−sparse data X1 ∈ Rn×M ,X2 ∈ Rn×M with
known r = rank(X) that are sampled i.i.d. from two sets
of Gaussian Random distributions:X1 ∼ N (µ1, σ

2
1) and

X2 ∼ N (µ2, σ
2
2). In this work we generate nine sets of data

(G1-G9) with various values of r and k. For this experiment
we set n = 1000,M = 300, µ1 = 0, µ2 = 3, σ2

1 = σ2
2 =

0.1.
MNIST: This dataset is a large handwritten digits dataset
and contains a training set of 60,000, and a test set of 10,000
examples from 10 digits, zero to nine. The images are cen-
tered in 28 grey level images. Fig. 4a shows some exam-
ples [1].
Labeled Faces in the Wild: LFW [22] contains 13, 233
face images of 5, 749 different persons with different gen-
der, ages and etc. under different constraints [7]. In this
experiment we choose 700 images from 20 distinguished
classes for evaluation. Fig 4b displays examples.

6.3. Results

Fig. 5 shows the results on the proposed datasets. We
report the performance of the SVM on the data domain
ωS vs the compressed domain ωAS (the plots in Fig. 5b
and 5c), and the error rate between the performance of ωS

and ωAS (the plot in Fig. 5a and the bars). Fig. 5a visu-
alizes the results on the synthetic data for various sparsity
and rank values. As is shown, when the data is sparse and
the signal is full-rank, “G1”-“G6” the bounds are tight (the
error rate is small), however by minimizing the rank, “G7”,
“G8” and “G9” the bounds become looser (the error rate
increases). The plot in Fig. 5a displays the error rate be-
tween ωS and ωAS for the synthetic data with the fix spar-
sity k = 10 and different ranks values. As can be seen by
minimizing the rank the error rate increases and the bounds
become looser.



Fig. 5b and Fig. 5c show the results on the MNIST and
LFW datasets respectively. In these figures, “A” refers to
the low-rank representation of the input signals using RASL
model in Eq. 16, “B-NA” and “S-NA” refer to the sparse
representation of the examples using BoW in Eq. 14 and
Sparse coding in Eq. 15, “B-A” and “S-A” correspond to the
low-rank representation of the BoW and the Sparse coding
features using RASL model, and “R” refers to the raw rep-
resentation of the input examples. We should note that for
the feature representation using BoW, the sparsity is one,
k = 1 and for the sparse coding, k > 1. As can be seen
from the figures, the sparse and high rank representation of
the examples, “B-NA” and “S-NA”, provide tighter bounds
in Eq. 12 (error rate≈ 1%), however for the low-rank repre-
sentation the bounds become looser (error rate ≈ 5%). On
the basis of our experiments, we make the following con-
clusions:
− Generally for the full-rank examples, the sparse repre-
sentation of the signal provides tighter bounds. As a conse-
quence, from the linear classifiers viewpoint, the full-rank
and high dimensional representation of the input examples
is similar to the random projection of such data to a low di-
mensional subspace.
− The sparse and low-rank data, obtain large error rate be-
tween the performance of the classifier on the data domain
and the compressed domain. Thus, such representation pro-
vides looser bounds. As a result, from the classifier aspect,
such data is not in fact a low dimensional problem.

7. Discussion and Conclusion
By drawing the connections between the sparsity and

affine rank minimization, we are able to determine the
bounds on the linear SVM classifier to show in which condi-
tions the alignment and sparsity are efficient from classifier
viewpoint. We, theoretically and empirically demonstrate
that for the full-rank signal the sparsity is efficient, because
such a representation can randomly project to a low dimen-
sional subspace and is in fact a low dimensional problem
and classifier is learning easier in such data. On the other
hand, for well-aligned and low-rank data, sparsity does not
have advantages. Because, such a representation cannot
randomly project to a low dimensional subspace anymore.
Finally through experiments we supported our claim.
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