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Abstract 
Environmental acoustics captures a wealth of information for understanding biodiversity and 

ecosystem dynamics, offering an ecologically meaningful environment on top of what the 

visual cue can provide. Today, the increasing availability of environmental recordings 

requires new automated techniques to assist the discovery of useful knowledge that is 

otherwise impenetrable. 

Amongst the vocal species, birds are considered as good indicators of the environmental 

health. Bird species richness, which studies the number of unique bird species in a specific 

region within a specific time, is one of the most ecologically meaningful topics that can 

increase the understanding of the regional biodiversity. Manual analysis of bird species 

richness by recordings can be accurate but is time-consuming. Although automated 

techniques are evolving fast, it suffers from ubiquitous characteristics of bird vocalisations, 

such as variations of vocalisations within and across species, the variability of the recordings 

(e.g. different levels of noise), and simultaneous vocalisations. Due to the escalating size of 

environmental recordings, there is a pressing need to develop an accurate and fast approach 

to analyse bird species. 

This thesis formulates the problem of acoustic bird species surveys as identifying the most 

bird species while listening to the least recordings. It is an efficiency problem where the 

number of audio recordings required being listened to is the time measure. A series of 

assistive automated techniques are proposed to address this problem. These techniques are 

divided into two tasks in terms of their functionalities: classification and ranking. 

This thesis creates a single-label multilayer perceptron classification model using 7 acoustic 

indices to analyse environmental audio recordings. The classification model aims to remove 

recordings that contain no bird species. Five common acoustic patterns are defined in this 

research, they are ‘Birds’, ‘Insects’, ‘Low activity’, ‘Rain’, and ‘Wind’. The proposed 

classification model enables to remove a significant portion of irrelevant audio recordings 

(namely ‘Insects’, ‘Low activity’, ‘Rain’, and ‘Wind’) while retaining the majority of those 

(‘Birds’) that actually contain bird vocalisations. The classification process results in a pool 

of audio recordings that are likely to contain bird species. 
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To further improve the efficiency of finding bird species in environmental audio recordings, a 

ranking model is proposed to sort audio recordings based on bird vocalisations. First, acoustic 

indices are investigated in order to find the best indicator of the number of bird species in an 

audio recording. Audio recordings are later ranked based on this indicator to direct manual 

bird species surveys. Additionally, the temporal and acoustic redundancy between audio 

recordings has been considered to enhance the efficiency of bird species surveys. Second, a 

novel non-negative matrix factorisation based algorithm is proposed to deal with overlapping 

bird vocalisations amongst audio recordings. This method extracts distinct spectral profiles 

from audio recordings to represent various bird vocalisations. Based on these spectral profiles, 

audio recordings are sampled in a sequence that maximises the number of new distinct bird 

vocalisations. 

This work is a further step towards using automated techniques to assist bird species surveys 

from a large size of environmental recordings. The proposed classification and ranking 

approach has demonstrated the capability of sampling audio recordings for efficient bird 

species surveys. Although this work focuses on bird species, the approach should be 

applicable to the investigation of other vocal species. 
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1 Introduction 
1.1 Background and motivation 

1.1.1 Environment monitoring 

The natural environment is subject to the unprecedented rate of change. There is a pressing 

need to monitor these changes for biological conservation and natural resource management. 

However, the mechanism of an ecosystem is complex. Tens of thousands factors might affect 

an ecological process and the organisms living in the ecosystem (McMichael, Butler and 

Folke 2003). A significant variety of sensors and networks have been developed which can 

gather a wide range of environmental measurements such as the quality of the water, the 

nutrients in the soil, fluctuations of temperature and humidity, and the abundance and 

diversity of species (Mason et al. 2008). To clarify, the abundance is referred to the species’ 

occurrences; whereas the diversity is referred to the number of unique species (Ehrlich and 

Roughgarden 1987). Fauna and the relationship with their habitats play an important role in 

maintaining environmental health. Unlike geophysical measurements, faunal monitoring 

requires more sophisticated tools and techniques for data collection, management, and 

analysis. 

Vocal communication in fauna is rich for several ecological functions: it helps fauna to 

inform about food, attract mates, avoid danger, and protect territory. It can travel a long 

distance without severe attenuation and offer a wealth of information relating to the 

surroundings. Therefore, vocalisations also lend itself to one of the most direct ways for 

humans to detect them, especially at times when the fauna are difficult to see or in areas 

where humans are difficult to access. 

1.1.2 The use of acoustics for bird species surveys 

Amongst the vocal species, birds have long been considered as good indicators of 

environmental health. Firstly, they react rapidly to the environmental changes; secondly, they 

spread over a wide range of landscapes and have abundant vocalisations, which make them 

easy to detect; thirdly, their behaviours are well understood (Bardeli et al. 2010). 

An efficient means of surveying bird species is to study their vocalisations (Kroosdma, 

Vielliard and Stiles 1996). Birds utilise acoustics for communication, sexual selection, and 

territory defence because acoustics can convey messages under conditions of poor lighting or 
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obstruction where visual cues are hardly available (Catchpole and Slater 2003). Indeed, 

ecologists also take advantages of acoustics to study the behaviours of various species during 

in-field surveys (Forrest 1994). 

Traditional in-field surveys require a group of experienced observers to go to various 

locations, spending several weeks or even months on inventorying species (Hutto, Pletschet 

and Hendricks 1986). Such an effort is time-consuming and laborious. Tape recorders, as one 

of the recording techniques, were first used as complementary equipment to ameliorate such 

an issue (Parker 1991). Playbacks of acoustic recording were also used as stimuli to increase 

the detectability of secretive birds (Johnson et al. 1981). It has been tested that acoustic 

recordings could serve as an alternative to the in-field estimation of bird species richness 

(Haselmayer and Quinn 2000). The use of acoustic recordings for bird species surveys has 

the following advantages (Acevedo and Villanueva-Rivera 2006): 

• They are non-invasive to the local ecosystem. Once deployed in the field, acoustic 

sensors can work continuously for weeks and even months. Only occasional 

maintenance is required, such as changes of batteries or interruption of routine data 

collection; 

• The raw data can be stored permanently. Compared to the manual surveys, recorded 

acoustic data can be replayed as many times as possible, providing a feasible way to 

validate the observations; 

• They are scalable. Acoustic sensors can extend human’s ability for data collection 

over long periods of time and through large spatial scales. 

Tape recorders have not been adopted for environmental monitoring due to the limitations of 

storage capacity and sensor stability since its inception.  Today, advances in these two aspects 

have made digital acoustic sensors affordable and reliable substitutes for acoustic monitoring 

and species conservation (Brandes 2008). 

1.1.3 The study of bird species richness 

A prevalent ecological research topic about bird species is richness. It is a term sometimes 

used interchangeably as diversity in other research (Cotgreave and Harvey 1994; Honnay et 

al. 1999). To clarify, this thesis follows Spellerberg and Fedor’s definitions (Spellerberg and 

Fedor 2003) by distinguishing species richness as a study of the number of unique species 
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from species diversity as an index of relations between the number of species and the number 

of individuals. Accordingly, bird species richness studies the number of unique bird species. 

Although the definition of species richness implies no standardisation of field work protocols, 

a widely used starting point for bird species surveys is to conduct a spatiotemporal sampling 

of species (Whittaker, Willis and Field 2001). Point and transect counts are two popular 

sampling protocols that require people to inventory bird species they hear or see in the field 

(Ralph et al. 1993). However, in-field surveys are limited within a specific region and a 

specific period of time. 

Acoustic sensing techniques alleviate the physical constraints of the collection of the 

environmental sounds for ecological studies. The magnitude of collected audio recordings far 

outweighs what individuals can manually listen to. The problem of data collection at large 

scales has transmuted into the demand of effective and efficient tools to interpret the data 

(Aide et al. 2013). Acoustic bird species survey is such a typical problem requiring 

tremendous time and effort to analyse, thereby necessitating the development of automated 

techniques to enhance manual analysis by sampling recordings that are of interest. 

1.2 Research questions and objectives 

The overarching research question of this thesis is: 

How can automated techniques assist efficient bird surveys in environmental recordings? 

The efficiency in this context is defined as the time that people spent in listening to audio 

recordings for bird species surveys. Specifically, it is measured by the number of bird species 

found given a certain number of audio recordings. 

The question is further divided into two sub-questions: 

1. How can irrelevant audio recordings be removed to assist bird surveys?  

2. How can audio recordings be ranked to increase the efficiency of bird surveys? 

The overall goal of this research is to develop a series of decision support techniques to 

sample audio recordings so that people can find all the bird species by listening to the least 

number of audio recordings. These techniques should be generalizable to recordings collected 

from different locations and initiatives. It gives rise to the following objectives: 

1. The proposed techniques should enable to remove audio recordings that are unlikely 

to contain birds. A new pool of audio recordings can be presented for bird species 
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surveys after the removal of non-bird recordings. Sampling audio recordings at 

random for bird species surveys from this new pool should be more efficient than 

from the original recordings. 

2. Given audio recordings that are likely to contain bird species, the proposed techniques 

should also be able to rank audio recordings that maximise the number of bird species 

found in each recording. 

1.3 Contributions and significance 
This thesis contributes a series of computer-assisted techniques to sample audio recordings 

for efficient bird species surveys. These techniques are applicable to both manual and 

automated recognition of bird species in environmental recordings. The main contributions 

are: 

• A classification model and an optimal feature set to remove audio recordings that are 

unlikely to contain birds; 

• An acoustic index as a proxy for the number of bird species to rank audio recordings 

for efficient bird species surveys; 

• A non-negative matrix factorisation based algorithm to detect overlapping bird 

vocalisations amongst the recordings and direct acoustic sampling. 

This work represents a significant step towards using automated techniques to analyse 

acoustic data for ecological purposes. Automated techniques complement and facilitate 

traditional scientific processes of hypothesis generation and experimental testing. They allow 

unravelling the complexity of ecosystems while there are inherent challenges in analysing 

massive audio recordings. They also provide opportunities for experts and the general public 

to explore and gain a better understanding of the natural environment. Moreover, these 

techniques empower decision makers to develop valuable insights into the biodiversity and 

make timely conservation policies. 

1.4 Thesis outline 
The development of automated techniques first focuses on building classifier models to 

remove recordings that are less likely to contain bird species, and moves, chapter by chapter, 

towards solutions where detailed acoustic information is used as an indicator to sample audio 

recordings for manual bird species surveys. The structure of this thesis is illustrated in Figure 

1.1. 
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Figure 1.1 Thesis overview 

  

Chapter 1 Introduction 
This chapter introduces the general background about acoustic monitoring and bird species 
surveys, proposes the research questions, and describes the contributions and significance of 
the research. 

 

Chapter 2 Literature review 
This chapter reviews the prior work on manual, automated, and semi-automated techniques 
that have been applied for acoustic bird species analysis and identifies the research gap. 

 

Chapter 3 Methodology 
This chapter describes in detail about the datasets, methods, and evaluation metrics used to 
fill the research gap. 

 
Three core chapters of this thesis which shows the results of the proposed methods. 

Chapter 4 Classification of audio clips to assist bird 
species surveys 
This chapter applies the classification technique to remove audio recordings that are less 
likely to contain bird species. It creates a subset of the original audio recordings for the 
follow-up process. 

Chapter 5 Ranking audio recordings for more efficient 
bird species surveys 
Given the subset of audio recordings, this chapter aims to direct manual bird species surveys 
based on acoustic indices. 

Chapter 6 Using non-negative matrix factorisation to 
detect overlapping bird vocalisations 
Since overlapping vocalisations amongst audio recordings could reduce the efficiency of 
manual bird species surveys and acoustic indices cannot be used to detect this information, 
this chapter proposes a new method to address this problem. 

 

Chapter 7 Conclusions 
This chapter summarises the main results and relates them back to the research questions. It 
discusses the limitations of the proposed techniques and envisions future work. 
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The remainder of this thesis is organised as follows. 

Chapter 2 reviews prior work on using manual and automated techniques respectively for 

acoustic data analysis. Manual identification of bird species from audio recordings is accurate 

but time-consuming. Although automated techniques are evolving fast and have been used as 

an efficient alternative for the analysis of a large number of recordings, they are error-prone 

due to background noise present in the recordings, variations of bird vocalisations, 

simultaneous vocalisations of multiple species, and unknown species. 

Chapter 3 describes the collection of audio recordings used in this study. Two major ideas are 

introduced to assist the rapid determination of bird species richness, they are classification 

and ranking. At the end of this chapter, species accumulation curves are introduced to 

evaluate the efficiency of assisting bird species surveys. 

Environmental acoustic data are complex. It contains sounds emanated from various sources 

such as geophony (rain and wind), biophony (vocal species), anthropophony (produced by 

humans), and a mixture of the three. Some acoustic data have distinct temporal and spectral 

characteristics depending on different sound sources, making it feasible to use classification 

methods to categorise audio clips. Chapter 4 first treats these acoustic patterns in a simplistic 

manner by assuming that only one pattern dominates an audio recording. Therefore, a single-

label classifier is generated to filter recordings that are unlikely to contain bird species. This 

chapter later deals with a more complex problem of having multiple acoustic patterns in the 

same audio clips. The results have been compared between single-label and multi-label 

classification models, aiming to find an optimal classification model that can remove 

irrelevant audio recordings but retain unique species. 

Although classification methods initially remove the irrelevant audio clips, the efficiency of 

bird species surveys is still limited to the remaining audio clips that are likely to contain bird 

species. An intuitive strategy is to prioritise audio clips that one should inspect based on the 

number of unique species in it. Chapter 5 aims to find an acoustic index as a proxy for the 

numbers of unique species in an audio clip. By ranking audio clips based on this acoustic 

index, one can improve the efficiency of finding bird species. This chapter first considers the 

use of summary acoustic indices. Considering that temporal and spectral information is 

important for bird species to partition vocalisations and to avoid interspecific competitions, 

this chapter further investigates indices that have increased temporal and spectral resolutions. 
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One deficiency concerning the above-mentioned ranking methods is the neglect of shared 

species amongst audio clips. It is possible that a sampled audio clip contains a large number 

of bird species which have already been found in previous audio clip samples. Therefore, an 

efficient strategy should not only measure the complexity of an audio clip but also compare 

the similarity between different audio clips. To achieve this goal, chapter 6 applies non-

negative matrix factorisation to decompose one-minute audio clips into temporal and spectral 

information and extract distinct spectra to represent bird vocalisations. These spectra are later 

used to represent distinct bird species in an audio clip. Finally, audio clips are sampled by 

maximising the number of unique spectra in each audio clip for bird species richness surveys. 

Chapter 7 summarises the findings of this thesis and discusses how they answer the research 

questions. Finally, it illustrates the limitations of current research and recommends possible 

future work. 
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2 Literature Review 
This chapter reviews the techniques that have been used for acoustic bird species analysis. 

The description starts from manual methods such as listening to or visually inspecting 

recordings (section 2.1) and moves onto the citizen science – an extension of manual analysis 

that aims to motivate the public to analyse the escalating size of recordings (section 2.2). A 

potential substitute for manual analysis is to use automated recognition techniques, including 

automated species recognition (section 2.3) and acoustic scene classification (section 2.4). 

Recently a new research area – soundscape ecology has emerged to study acoustic 

community of a landscape for ecological purposes (section 2.5). Manual analysis is accurate 

but time-consuming; whereas automated techniques are fast in data processing but error-

prone. The complementary use of both manual and automated techniques is called the semi-

automated technique. It utilises automated techniques to assist manual analysis and has 

achieved some promising results in recent research (section 2.6). 

The last section underpins the limitations of currently available methods for acoustic bird 

species analysis. Considering either manual or automated techniques are still far from perfect, 

this thesis follows the idea of the semi-automated technique by investigating computer-

assisted techniques to enhance the efficiency of manual bird species surveys. 

2.1 Manual bird species recognition 

2.1.1 Listening 

A straightforward way for bird species recognition is by manually listening to all recordings. 

It has been reported that bird species richness and abundance recorded by field experts and 

those inferred from simultaneous recordings are comparable (Hobson et al. 2002). For a 

bioacoustic recording system, effects of different microphone configurations, audio storage 

formats, and variability between interpretations amongst analysts have also been investigated 

(Rempel et al. 2005). Although these studies showed that acoustic recordings can mimic what 

a birder would hear in the field and the use of a recording technique is promising, the 

downside is that listeners without visual cues rely heavily on the quality of environmental 

recordings. Additionally, manually listening to even a small fraction of recordings is time-

consuming and labour-intensive. 
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2.1.2 Visual inspection 

The study of bird species using acoustics was limited due to the lack of efficient analytical 

techniques and tools. There was no effective way to measure and compare the recorded bird 

vocalisations. The first revolution came with the introduction of the spectrogram, or 

sonogram, on bird vocalisation analysis (Thorpe 1954). Spectrograms display frequency 

information of an acoustic signal over time. Compared to the traditional spectrum analysis 

which averages acoustic information of an entire recording, the spectrogram offers visual 

cues on dynamic acoustic energy change in the frequency domain. Therefore, it was easier to 

examine and quantify bird vocalisations from spectrograms than original waveform signals. 

Thanks to the advent of modern computer techniques, spectrograms now have become a 

conventional tool to visualise bird vocalisations. 

A spectrogram is generated from a waveform signal by applying short-time Fourier transform. 

This procedure can be depicted as follows: firstly, a waveform acoustic signal is sliced into 

small frames by a fixed-size window; then the fast Fourier transform is applied to an audio 

clip, generating spectra that contain complex values; only magnitudes are calculated from 

these spectra; finally, the magnitudes of spectra are aligned to form a spectrogram. Note that 

there exists a trade-off between time and frequency resolutions (Oppenheim, Schafer and 

Buck 1989); so the actual window size for slicing the waveform signal depends on practical 

applications. The waveform and its corresponding spectrogram of an 8-second signal are 

illustrated in Figure 2.1and Figure 2.2. 

 
Figure 2.1 The waveform of an 8-second audio clip 
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Figure 2.2 The spectrogram of the corresponding audio clip in Figure 2.1  

Some popular for bioacoustics data management and analysis are briefly introduced here: 

• Raven (Charif, Waack and Strickman 2010): a free software package created by the 

Bioacoustics Research Program at The Cornell Lab of Ornithology. This package 

provides typical sound editing, playing, spectrogram generation, and simple 

automated acoustic event detection. However, it can only process a single sound file 

at a time. 

• Audacity (Team 2011): open source software which is applicable to measure, 

visualise and analyse audio recordings. It is cross-platform software and supports 

several different audio formats. 

• Song scope (Wildlife 2014): acoustic analysis software designed by the Wildlife 

Acoustics. Apart from its high-speed review of recordings, it offers a wide range of 

complex automated techniques for acoustic event detection. 

However, even with the use of spectrograms, it takes on average twice as much time as the 

length of an audio recording to manually identify individual species (Wimmer et al. 2013). 

This is due to the fact that people have no visual cues of specific bird species and they 

frequently replay recordings in order to confirm the vocalisations they hear. What is worse, a 

long enough audio recording is physically limited by the size of the computer screen to 

demonstrate the spectrogram. Dividing a long recording into small segments causes frequent 

updates of rendering spectrograms and hence slows down the analysis process. 

2.2 Citizen science for bird species investigations 

Citizen science can be considered as extended manual surveys for bird species investigation. 

The idea is to engage the general public working in collaboration with the professional 

scientists on data collection and analysis. The Cornell Lab of Ornithology is a pioneer in this 

research area using audio recordings for the conservation of biodiversity. The recordings can 
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date back to 1965, ranging from the local to the globe and monitoring a broad range of taxa 

(Dickinson, Zuckerberg and Bonter 2010). Today, the Internet offers a new opportunity for 

skilled persons to access a citizen science project on bird species recognition (Cottman-Fields, 

Brereton and Roe 2013), as well as for the public. 

An early concern regarding citizen science data is the error and bias due to variations 

between experts and non-experts (See et al. 2013). Citizen scientists vary in capability and 

experience. Training may narrow the gap between experts and non-experts However, there 

are multiple ways to train volunteers such as self-training in Internet-based projects or 

personalised training by professionals. It is not yet clear which types of training lead to the 

efficacy of these volunteer-based projects. 

There is a pressing need for wider assessment of data quality in citizen science research. 

Using a reputation model to predict the accuracy of users with unidentified skill levels may 

be a potential solution (Yang, Zhang and Roe 2013). Such a model utilises quantitative 

metrics to rank potential participants based on their performance and initial trust. By adding 

weightings to the data quality, a reputation model aims to ensure that large-scale participatory 

data analysis is reliable. 

Citizen science on ecological data analysis is a developing field. There are other issues need 

to be addressed including cyber-infrastructure and real-time synthesis with environmental 

metadata. Time is still needed to overcome the challenges before reliable results can be 

delivered. 

2.3 Automated bird species recognition 

Traditional studies of bird species by their vocalisations rely largely on listening to 

recordings with visual inspection of the corresponding spectrograms (Baker 1974; Mundinger 

1975; Payne 1985). Such analysis can be a reliable means to categorise different vocalisations, 

but it is based on unspecified evidence and skilled persons’ intuition, making the analysis 

difficult to standardise. Furthermore, continuous recognition of long-duration recordings is 

laborious. All these issues necessitate the use of more efficient techniques for bird 

vocalisation recognition. Thanks to the developments in pattern recognition, automated 

techniques are being developed to meet this challenge (Acevedo et al. 2009). 

Figure 2.3 demonstrates the general workflow of an automated classification system for bird 

species recognition. Typically for automated bird species recognition, an automated 
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classification system has four processes. Inconsistency and noise are common in real-world 

data. The pre-processing step aims to deal with inconsistent audio clips, remove noise, and 

improve quality by data integration, transformation, and reduction for subsequent analysis. 

This is an important step because the accuracy of the classification system is largely 

dependent on the quality of its input. Particularly, in-field recordings are plagued by various 

types of background noise, necessitating an effective noise removal algorithm (Lamel et al. 

1981) to mitigate such effects. The pre-processed input recordings normally consist of a 

sequential bird vocalisations separated by the intermittent silence. If the classification task is 

to identify single bird vocalisations, a short duration audio segment that only contains 

targeted vocalisations should be isolated from the rest of the recording. Such a process is 

called segmentation. Although segmentation sometimes is incorporated into the 

preprocessing or feature extraction step, it is highlighted here since its accuracy has 

significant effects on classification output. In feature extraction step, a discriminating value 

or vector is derived from the previous vocalisation segment to represent vocalisations. Finally, 

whether vocalisations being similar or not is determined by using different criteria in the 

classification process. 

 
Figure 2.3 A general workflow of a classification system 

2.3.1 Structure of bird vocalisations 

The spectrogram has become a conventional way to analyse bird vocalisations in 

environmental audio recordings. People can easily identify distinct structures of bird 

vocalisations in a spectrogram, even if they are not experts on bioacoustics. However, for 

computer-based sound analysis, it is crucial to abstract representative values to represent bird 

vocalisations for further quantitative analysis. Such abstraction of bird vocalisations should 

be stable and descriptive. Prior to moving towards the abstraction of bird vocalisations, the 

basic elements of bird vocalisations should be clarified. 
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Bird vocalisations displayed in a spectrogram are complex, comprising discrete components 

that cover a wide frequency band or last for a long time. A prevalent categorisation method 

divides bird vocalisations into four hierarchical levels: elements, syllables, phrases, and songs 

(Catchpole and Slater 2003). Elements are the smallest units of bird vocalisation in a 

spectrogram; syllables are composed of one or more elements, phrases consist of several 

syllables, and songs are long duration combination of phrases. Figure 2.4 illustrates these four 

levels of bird vocalisations in a spectrogram. Brandes et al. also defined five fundamental 

shapes that compose bird vocalisations, including segments with a constant frequency, 

frequency modulated whistles, broadband pulses, broadband with varying dominant 

frequency, and harmonics (Brandes 2008). These shapes are also at an element or syllable 

level. There was an argument on segmenting bird vocalisations at an element or syllable level 

since they are relatively stable under various conditions (Anderson, Dave and Margoliash 

1996). 

 

Figure 2.4 Four hierarchical levels of bird vocalisations shown in a spectrogram. 

2.3.2 Segmentation of bird vocalisations 

Traditional segmentation methods are largely based on manual inspections (Marler and Peters 

1982; Margoliash, Cynthia and Sue 1994). This usually leads to subjective and unrepeatable 

segmentation results. When the dataset is large, manual methods are laborious. An alternative 

A song 

Time (s) 

Fr
eq

ue
nc

y 
(H

z)
 



14 
 

is to use computational techniques for bird vocalisations segmentation. Early studies have 

used dynamic time warping and template matching to isolate vocalisations in spectrograms 

(Buck and Tyack 1993; Anderson, Dave and Margoliash 1996). Lakshminarayanan et al. 

calculated the Kullback-Liebler divergence of the power spectral density to determine the 

boundaries of bird vocalisation segment (Lakshminarayanan, Raich and Fern 2009). 

Graciarena et al. used a vocal activity detection system to segment recordings (Graciarena et 

al. 2010). These methods work well when recordings consist of single-species vocalisations 

with minimal noise, but may not be able to work in noisy recordings. Recently, an automated 

supervised machine learning technique – random forest, has been proposed to segment bird 

vocalisation from noisy recordings (Neal et al. 2011). One limitation of supervised techniques 

is it requires a large set of training samples and cannot recognise vocalisations that are not in 

the training data. 

2.3.3 Acoustic features 

Acoustic features are single values or feature vectors that are utilised to characterise targeted 

vocalisations from the segmentation. The process of obtaining representative values or 

vectors is called feature extraction, which is a crucial step for successful automated 

recognition. Feature extraction aims to capture discriminating characteristics of vocalisations 

so that computers can identify them. 

A variety of features have been proposed to characterise bird vocalisations such as linear 

predictive coding and Mel-frequency cepstral coefficients (Kogan and Margoliash 1998), 

sinusoidal pulses with time-varying amplitude and frequency (Harma 2003), spectral peak 

tracks (Chen and Maher 2006), syllable pair histograms (Somervuo and Harma 2004), and 

direct measurements of temporal and spectral characteristics (Schrama et al. 2007). Since the 

Fourier or wavelet transforms of signals have a trade-off in temporal and spectral resolutions, 

matching pursuit is used to classify environmental sounds (Chu, Narayanan and Kuo 2009). 

Matching pursuit generates a large set of basis functions and then decomposes a waveform 

signal into a subset of these functions by minimising the residuals of the original signal 

(Mallat and Zhang 1993). Several applications have used different methods to generate the 

basis functions including Gabor dictionary (Mallat and Zhang 1993), waveform dictionary 

which is a combination of Fourier transforms and wavelets (Ramsey and Zhang 1997), multi-

scale Gabor dictionary (Gribonval 2001), and harmonic dictionary(Gribonval and Bacry 

2003). Amongst them, a Gabor dictionary – a set of Gaussian modulated sinusoids, has 
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preferable characteristics to capture varying time-frequency information of environmental 

acoustics. Recently, ridge features have been developed for bird vocalisation retrieval (Dong 

et al. 2013). Unlike aforementioned acoustic features that measure energy dispersion or 

information entropy, ridges are derived directly from spectrograms using image processing 

techniques. 

One issue concerns the complexity of species vocalisations in environmental recordings 

rather than that of species in captivity. For in-field recordings, inter-specific vocalisations 

vary significantly in time and frequency to avoid competing; on the other hand, intra-specific 

vocalisations may also vary because of temperature or vegetation changes. Therefore, 

creating a generic classification approach from labelled data is sometimes prohibitive, 

especially for non-targeted multiple species inventories. 

Rather than designing new acoustic features to represent targeted vocalisations, automatic 

feature learning is considered to be an effective method to enhance the performance of 

classification tasks. The general aim is to develop a feature set inherent in the data from a 

statistical signal processing perspective (Jafari and Plumbley 2011; Coates and Ng 2012). An 

example of unsupervised feature learning is principal component analysis, which forms a 

linear combination of decorrelated variables to represent the original data (Bengio, Courville 

and Vincent 2013). The advantage of such methods is it does not require any labelled data 

other than acoustic contents, making it applicable to any classification workflow (Stowell and 

Plumbley 2014). 

2.3.4 Classification applications 

Algorithms that utilise aforementioned acoustic features to classify bird vocalisations have 

also flourished. Multivariate analysis (Martindale 1980) and cross-correlation (Clark, Marler 

and Beeman 1987) were first reported for matching similar bird vocalisation in spectrograms. 

A significant body of advanced methods has also been applied for bird species detection in 

audio recordings. These methods include artificial neural network (McIlraith and Card 1997), 

hidden Markov models (Kogan and Margoliash 1998), decision tree (Vilches et al. 2006), and 

support vector machine (Fagerlund 2007). Automated recognitions are promising alternatives 

for bird species recognition, but the accuracy is still far from perfect, especially for in-field 

recordings with a low signal-to-noise ratio. 



16 
 

Traditional classification is a supervised machine learning technique that associates a single 

label with each instance, which is called single-label classification. It has been applied to 

detect several different vocal species, including marine mammals (Briggs, Raich and Fern 

2009), birds (Shamir et al. 2014; Bardeli et al. 2010; de Oliveira et al. 2015), and insects 

(Chen et al. 2014). High classification accuracy has been achieved in these studies.  

Simultaneous vocalisations pose another challenge that makes the recognition of species 

vocalisations difficult. Typically, an audio clip may contain multiple vocal bird species or 

multiple acoustic patterns such as rain, wind, and bird vocalisations, but traditional classifiers 

can only associate one instance with a single label. Multi-label problems are common in our 

daily life. For instance, genres of a film can be labelled as ‘action’, ‘adventure’, and ‘fantasy’. 

To resolve these problems, multi-label classification has been applied to a wide range of 

applications, including text classification (Nam et al. 2014), audio and video classification 

(Markatopoulou, Mezaris and Kompatsiaris 2014; Cakir et al. 2015), and bioinformatics 

(Fabris and Freitas 2014). Unlike the single-label classification, a multi-label approach 

enables to associate an audio clip with multiple labels, providing a potential solution to 

address co-occurring classes in an audio recording. 

A common procedure for dealing with a multi-label classification problem is to transform it 

into single-label problems. After the transformation, any single-label classifier can be applied. 

Individual predictions are later integrated into multi-label predictions. The most common and 

straightforward transformation method is binary relevance (Read et al. 2011). It decomposes 

a multi-label problem into multiple binary problems. For each label, a binary classifier is 

trained and used to predict the present or absent of that label. Previous work includes using k-

nearest neighbour (Spyromitros, Tsoumakas and Vlahavas 2008) and perceptron (Fürnkranz 

et al. 2008). One argument against binary relevance methods is it assumes label independence. 

In other words, binary relevance methods ignore the correlations between labels and may 

cause information loss. A subsequent paper (Oscar et al. 2012) showed that binary relevance 

methods are not only computationally efficient but also effective in practical applications. 

There exist some other methods that take into account label correlations during the multi-

label classification process and are accurate on small datasets (Read, Pfahringer and Holmes 

2008; Cheng, Hüllermeier and Dembczynski 2010), but these methods are slow or even 

intractable on large datasets. 
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Recently, a multi-instance multi-label classification approach has been used to predict a set of 

species within a single audio clip (Briggs et al. 2012). To clarify, the multi-instance in this 

paper denotes multiple bird vocalisations in an audio clip; the objects to be classified are 

audio clips, and the labels are the species present. In this work, 96.1% accuracy has been 

achieved on classifying 548 10-second audio clips, each of which may contain one to five 

bird species labels. 

The major disadvantage of multi-label classification, as well as of single-label classification, 

is that they can only predict pre-defined bird vocalisations. Consequently, unexpected 

vocalisations are difficult to handle using these methods. It is also not clear how distant bird 

calls to the microphones and weather conditions would affect the classification accuracy of 

bird vocalisations. 

2.4 Acoustic scene classification 

Acoustic scene classification is another closely related area that associates an audio stream 

with a semantic label for identification of the environment in which the sound emanates. 

Differing from acoustic event recognition which aims at identifying single events, acoustic 

scene classification deals with complex environments containing multiple events. A major 

problem concerning acoustic scene classification is to define a semantic label associated with 

a specific acoustic scene. There is no consensus to categorise all kinds of environments. Even 

within pre-defined categories, it is difficult to identify acoustic scenes due to the complex 

events in a certain environment. Nevertheless, acoustic scene classification can be employed 

as a pre-processing step to enhance the performance of other applications by providing prior 

information about the probability of certain events, such as filtering audio clips that are likely 

to contain bird species. 

The first acoustic scene classification problem discriminated pre-defined environmental 

sound classes including ‘people’, ‘voices’, ‘subways’, ‘traffic’, and ‘others’ (Sawhney and 

Maes 1997). It extracted features from power spectral density and frequency filter banks 

based on human ear and utilised recurrent neural network and nearest neighbour for the 

classification, yielding an overall classification accuracy of 68%. Research in acoustic scene 

classification has evolved in parallel with the understanding of perceptual processes of human 

ability to categorise different soundscapes (Ballas 1993; Dubois, Guastavino and Raimbault 

2006). For example, some researchers also employed Mel-frequency cepstral coefficients to 
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describe local spectral envelopes and trained a hidden Markov model to classify different 

soundscapes (Eronen et al. 2006). 

Several categories of features have been used in acoustic scene classification. Likewise 

automated species recognition in section 2.2, these features are low-level descriptors 

computed from the acoustic signal either from a waveform or its short-time Fourier transform 

(Malkin and Waibel 2005), auditory filterbanks (such as MFCCs), parametric approximation 

features (such as matching pursuit). Additionally, matrix factorisation methods (Cauchi 2011; 

Benetos, Lagrange and Dixon 2012) are also implemented to provide unsupervised learning 

features for a joint estimation of local and global features of an audio stream. 

2.5 Soundscape ecology and acoustic indices 

Soundscape ecology is an emerging research field that studies the relationship between 

landscapes and sounds emanated from them from an ecological perspective (Pijanowski, 

Farina, et al. 2011) (Pijanowski, Villanueva-Rivera, et al. 2011). These sounds consist of 

biophony, geophony, and anthropophony that collectively create unique acoustic patterns at a 

wide range of spatial and temporal scales. Here, biophony is the sound produced by all 

organisms in a specific landscape; geophony is a collection of sounds generated from 

atmosphere circulations such as running water and sporadic wind; and anthropophony is 

referred to man-made sounds emitted out of automobiles and constructions. Soundscape 

ecology focuses on dynamics of this acoustic energy at a community level, making it 

different from the studies of acoustic ecology (Truax 2001) or bioacoustics (Fletcher 2014). 

One of the most challenging in ecology is biodiversity assessment (Pavoine and Bonsall 

2011). Various indices are used to quantify richness, evenness, and abundance of animal and 

plant communities (Magurran and McGill 2011). Typically, these indices are derived from 

species inventory where lists of species are written down. With the collection of acoustic data, 

indices have been adapted to estimate species biodiversity using objective acoustic 

parameters (Rychtáriková and Vermeir 2013). Acoustic indices are summarised sound energy 

of a landscape community recorded in recordings. Generally, they can be categorised into 

two groups: within-group and between-group indices (Sueur et al. 2014), likewise the 

distinction in traditional indices (Whittaker 1972). Within-group indices can be exemplified 

by acoustic entropy index (Sueur et al. 2008) and acoustic complexity index (Pieretti, Farina 

and Morri 2011), which measure acoustic diversity of a single community; by contrast, 
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between-group indices are used to assess the differences between two acoustic communities, 

such as Kolmogorov-Smirnov distance and Kullback-Leibler distance (Gasc et al. 2013). 

Different indices emphasise different aspects of acoustic information. Figure 2.5 illustrates 

the values of two representative indices calculated from 150 one-minute audio clips, grouped 

by five categories (Zhang et al. 2016). Take TemporalEntropy for example. It can separate 

Insects from other four acoustic patterns (p < 0.001). This is mainly because Insects have flat 

waveforms while others have rapid waveform changes. AcousticComplexity captures rapid 

changes of spectral energy, but it fails to differentiate narrow band acoustic energy (bird 

vocalisations) from wide band energy (rain) (p > 0.1). This also confirms that 

AcousticComplexity is preferably used in high signal-to-noise ratio situations. Therefore, 

using a single index is hardly sufficient to describe the complexity of natural acoustics. It is 

recommended that combinations of several indices can complement each other and provide 

more efficient representations of audio clips for biodiversity assessment (Towsey, Wimmer, 

et al. 2014). 

 

Figure 2.5 Summary acoustic indices of 150 one-minute training audio clips 

The aforementioned acoustic indices enable to scale up the analysis of species-specific 

acoustics towards acoustic dynamics of ecological communities. In this study, they are called 

summary acoustic indices since they convert the whole recording into a single value by 

averaging both time and frequency. A later research attempts to extend the usage of acoustic 

complexity index for long-term environmental monitoring (Farina, Pieretti and Piccioli 2011). 

They averaged the amplitude differences across time frames while maintaining all the 

frequency information. Such indices are called spectral acoustic indices in the current study. 
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Traditional spectrograms cannot display long duration recordings effectively. As shown in 

Figure 2.6, active bird vocalisations during the day are squeezed in a traditional 24-hour 

spectrogram and only limited patterns can be seen during the night due to the size of the 

computer screen. There is a necessity to develop effective methods to visualise long duration 

recordings. 

  
Figure 2.6 A traditional spectrogram of a 24-hour recording 

A combination of acoustic indices has also been utilised to visualise long-term acoustic 

information changes over time (Towsey, Zhang, et al. 2014). His work proposes a false-

colour spectrogram to depict a one-day, one-month, and even one-year acoustic data. Here, 

the false-colour is referred to a colour rendering scheme that uses RGB values to visualise a 

maximum of three acoustic indices that representing different facets of the acoustic energy. It 

offers a richer amount of acoustic information than a traditional spectrogram and may 

facilitate navigation through long-duration recordings. 

Extended Acoustic SummarY (EASY) image is a false-colour spectrogram that displays 

months’ and years’ audio recordings. The generation of EASY image is described as follows. 

Three acoustic indices are calculated from a one-minute spectrogram, each of which has a 

single summary value. These values are then aligned in an order so that x-axis denotes the 

minutes of one day and the y-axis denotes different days. Finally, three acoustic indices are 

normalised and assigned to RGB values to construct a false-colour image. 

Figure 2.7 is an example of EASY image by using acoustic complexity index, temporal 

entropy index, and FrequencyCover. From the diagram, it can be seen that the morning and 

the evening chorus coincide with the timing of sunrise and sunset (the left and right curves in 

white). The nocturnal acoustic activities (outside both white curves) are strong during warm 

months (from March to June). Although the diurnal acoustic activities in warm days (upper 

half of the graph) are assumed to be at least as strong as in cool days (bottom half of the 

graph), the graph shows faint acoustic activities in warm days. Notice that in May the 

Insects Insects 

Compressed acoustic information 
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acoustic sensor broke down for a period of time and when it was restored, some 

configurations were changed. These are the artefacts which make the diurnal acoustic 

activities after May stronger than those before May. 

A recent research utilised acoustic indices for rain detection using different lengths of audio 

recordings (Ferroudj et al. 2014). This experiment has achieved a promising accuracy (93%) 

for rain detection, implying that acoustic indices can be used to acoustic scene classification 

for ecological purposes. However, one should note that acoustic indices have a trade-off 

between summarised (such as a change of acoustic intensity) and detailed (such as a specific 

bird vocalisation) information in a long-duration recording. They are not designed for the 

analysis of discrete acoustic events, but rather for characterising the general acoustic patterns 

as a whole. Therefore, people should be cautious of using indices for species related analysis. 

 
Figure 2.7 Extended Acoustic SummarY (EASY) image with civil twilights 

2.6 Semi-automated techniques to assist bird species surveys 

Wimmer et al. (2013) first introduced acoustic sampling methods to assist bird species 

surveys when analysing large volumes of acoustic data. They compared five temporal 

sampling strategies over a five-day recording from the same site, concluding that the most 

efficient method to find bird species is dawn sampling, which investigates audio recordings 

that are 3 hours after dawn. However, there are no further instructions on how to effectively 
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investigate these 3-hour acoustic data, and weather conditions such as heavy rain or strong 

wind could also interrupt acoustic activities of bird species. Dawn sampling is an intuitive 

method for bird species surveys; nevertheless, they realised that combinations of manual 

analysis and automated techniques may provide more feasible approaches for monitoring 

biodiversity at large spatiotemporal scales. They defined such combinations as semi-

automated techniques. 

A computer assisted sampling method has been proposed for determining bird species 

richness in long duration recordings (Towsey, Wimmer, et al. 2014). This work utilised 

acoustic indices as proxies for the number of bird species per recording to sample one-day 

recordings. The experimental results showed that a linear combination of acoustic indices 

outperforms the use of single indices for directing bird species surveys in audio recordings. 

They also argued that this method has a higher efficiency than in-field surveys or random 

sampling of one-day recordings. However, no direct comparisons have been made between 

this method and dawn sampling. 

A recent paper applied a semi-automated approach to assist people with manual annotations 

of bird species (Truskinger, Towsey and Roe 2015). The authors developed two algorithms 

that can recommend potential species to an unknown bird vocalisation, minimising the need 

for people to memorise a large vocalisation dictionary. Despite the use of simple features, the 

best algorithm in his study improved the efficiency and effectiveness of annotating species 

vocalisations. 

2.7 Summary 

This chapter reviews a wide range of manual tools and automated techniques used for the 

analysis of environmental recordings. As for bird species surveys, either manual or automated 

approach has its own strengths and weaknesses. Humans can do well in matching patterns or 

discerning differences in an audio or its spectrogram counterpart. However, humans are also 

susceptible to fatigue and their expertise on bird species is normally constrained within a 

specific spatiotemporal scale. Automated techniques are evolving rapidly and have 

advantages over manual bird species analysis with a large number of environmental 

recordings. 

Acoustic indices offer a new insight into the analysis of a large number of environmental 

recordings. The use of acoustic indices has shown the potential to direct the bird species 
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surveys by sampling audio recordings. It is still not clear which combinations of acoustic 

indices have the optimal performance. Most importantly, the current method has limited 

performance on assisting bird species surveys from environmental recordings. The number of 

audio recordings required to be listened is large. There is a need for a more efficient approach 

to assist acoustic bird species surveys. 

This thesis aims to fill in this research gap by investigating various acoustic indices and 

advanced automated techniques to assist bird species surveys from massive audio recordings. 

Specifically, a classification and ranking procedure will be proposed to enhance the 

efficiency of acoustic bird species surveys in stages. 
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3 Methodology 
This chapter describes the audio recordings and the methodology used to build automated 

techniques to facilitate efficient acoustic bird species surveys. Section 3.1 describes a sub-

tropical ecosystem where the recordings are collected and some pre-processing procedures on 

the raw data which merit further analysis. Section 3.2 introduces a variety of acoustic indices 

that can be used to characterise audio clips and their calculation methods. These indices are 

crucial features for visualisation, classification and ranking audio clips. Section 3.3 depicts 

spectrograms and false-colour spectrograms which are used in this thesis as an exploratory 

analysis of the acoustic data. Single- and multi-label classifiers, their implementations, and 

evaluation of classification performance are detailed in section 3.4. A ranking method is 

proposed in section 3.5 with the classified audio clips that are likely to contain bird species, 

aiming to further improve the efficiency of determination of bird species. Section 3.6 

introduces the benchmark species accumulation curves for examination of the efficiency of 

different approaches in bird species richness surveys. 

3.1 Study sites and acoustic data 

The audio recordings were collected from the Samford Ecological Research Facility (SERF), 

Brisbane, Australia (27.39˚S, 152.88˚E). The main vegetation in the study sites consists of 

inland open forest and woodland comprised of Eucalyptus tereticornis, Eucalyptus crebra 

and Melaleuca quinquenervia in moist drainage. The Samford Creek flows to the west of the 

study area. There are small areas of gallery rainforest and areas of open pasture along the 

southern boundary. A frog pond is in the southern open pasture (near site 4). Figure 3.1 

shows the research area. 

All recordings were made with a constant amplification gain and a sampling rate of 22050 Hz 

in stereo, 16 bits. They are down-sampled to 17640 Hz and cut into one-minute audio clips 

for the computational convenience. The one-minute audio clip has been widely used for 

acoustic data analysis (Pieretti, Farina and Morri 2011; Gage and Axel 2013). Stereo signals 

are later aggregated into a mono signal for further analysis. 

Table 3.1 describes the basic information of the audio recordings. The recordings are 

partitioned into two separate groups. The training set is collected from two sites in the 

Samford Ecological Research Facility over six days. They are used for developing statistical 
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models. The test set is a one-day recording collected from site 4 on 15th October 2010. They 

are used to evaluate the performance of statistical models in terms of assisting acoustic bird 

species surveys. Additionally, bird species have been annotated as presence or absence at a 

one-minute resolution by two experienced bird observers on four sites from 13th or 17th 

October 2010.  

 

Figure 3.1 Four study sites in the Samford Ecological Research Facilities, Brisbane, Australia. 

Table 3.1 Basic information of audio recordings used in this study 

Data Site Dates Formats 

Training 3 13th and 14th October 2010 MP3 

 3 16th and 17th October 2010 MP3 

 3 13th April 2013 WAV 

 3 16th October 2010 MP3 

Test 4 15th October 2010 MP3 

 

3.2 Acoustic indices 

As with most pattern recognition problems, selecting proper features is crucial for successful 

classification. Here our study objects are one-minute audio clips. For an audio clip, acoustic 

features can be derived from its waveform envelope or spectrogram amplitude. In this paper, 

a waveform envelope is a smoothed waveform by using a 512-point rectangular window with 

 1 

 
 

 

2 
3 
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200 m 
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50% overlap. A spectrogram is calculated by applying a Fourier transform to small segments 

of an audio clip. To obtain a comparable temporal resolution as the waveform envelope, the 

small audio segments are cut by a 512-point hamming window. To characterise audio clips, 

acoustic indices (features) can be derived from either waveform envelopes or spectrograms. 

Since environmental recordings contain strong background noise, a noise removal algorithm 

is applied to remove constant acoustic energy from the original recordings (Towsey 2013). 

Depending on how acoustic information is averaged from an audio clip, indices can also be 

categorised into two types: summary indices and spectral indices. Summary indices are single 

values that average all acoustic information of an audio clip; whereas spectral indices are 

vectors that only average temporal information but keep the spectral components. In this 

study, indices derived from waveform envelopes are summary indices; indices derived from 

spectrograms have both summary indices and spectral indices. 

3.2.1 Indices derived from waveform envelopes 

Given a time series x(n), 1≤ n ≤ N. Here, N denotes the length of the signal. Indices derived 

from waveform signals are calculated as follows: 

1. Average signal amplitude (Towsey, Wimmer, et al. 2014): It is the average amplitude of 

the waveform envelope. The values are in decibels. 

2. BackgroundNoise (bgNoise) (Towsey 2013): It measures constant acoustic energy 

estimated from the waveform. The values are in decibels. 

3. Signal-to-noise ratio: It is the decibel differences between maximum amplitudes of the 

waveform envelope and the corresponding background noise features. 

4. Temporal entropy index (H[t]) (Sueur et al. 2008): It is a Shannon index (Buddle et al. 

2005) calculated from a waveform envelope, providing information on acoustic dispersion. 

Temporal entropy index ranges from 0 to 1 inclusive. If it is a signal with constant amplitude, 

the entropy value will be 0; an impulse will lead to entropy value to be 1. 

5-11. Matching pursuit indices (MP) (Mallat and Zhang 1993): matching pursuit maps a 

complex waveform signal to a small feature space, giving a sparse time-frequency 

representation. The advantages of this representation are that it is invariant to background 

noise and can capture the inherent structures of a waveform (Chu, Narayanan and Kuo 2009). 

In this paper, a Gabor dictionary in Matching Pursuit Toolkit (MPTK) (Krstulovic and 
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Gribonval 2006) is used for matching the basis functions. The signal-to-residual ratio 

(MP_SRR), the mean and standard deviation of chirp, frequency, and time scale are 

calculated individually, leading to seven matching pursuit features. The signal-to-residual 

ratio measures the complexity of a waveform signal. Given a certain number of iterations, the 

higher the signal-to-residual ratio, the more complex a waveform signal is; in other words, a 

waveform signal contains more diverse acoustic energy. In each basis function, parameter 

‘chirp’ is referred to the changing rate of frequency and ‘frequency’ is referred to the 

fundamental frequency. Finally, ‘time scale’ is referred to the temporal position of each 

matched basis function. 

The algorithm can be described as follows: 

1) Generate an over-complete set of basis functions; 

2) Compute the correlations between the targeted signal and all basis functions 

respectively by using inner product and find the basis function that has the highest 

correlation; 

3) Subtract the most correlated basis function from the signal at corresponding time 

position with a weighting, resulting in a residual. The weighting is the inner product 

of the basis function and the signal; 

4) Start a new iteration by computing the correlations between the residual and basis 

functions again, until a certain number of iterations or a pre-defined signal-to-residual 

energy ratio has been reached. 

 
Figure 3.2 Various single-length basis functions for matching pursuit algorithm 
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Figure 3.3 Various number of iterations for matching pursuit algorithm 

To determine a proper length for basis functions, the single-label classification accuracy of 

the training data is plotted as a function of the lengths of basis functions in Figure 3.2. The 

acoustic index ACI serves as a baseline in this graph. The classifier is decision tree. Note that 

the length of the basis function should be 2n, where n is an integer from 0 to infinity. The 

length ranges from 256 to 65536 because they cover most common bird vocalisations. Figure 

3.3 shows little fluctuations of accuracy when only matching pursuit features are used. 

Therefore, a 512-point Gaussian window with 50% overlap and a 512-point Fourier 

transform is used, which conforms to the resolution of other acoustic features. The stopping 

criterion is evaluated by comparing classification performance under different numbers of 

iterations (Figure 3.3). With the increase of the number of iterations, the classification 

accuracy increases. However, the increase rate drops when the number of iterations is over 

100 while the performance of combined features also decreases. Considering the trade-off 

between computational costs and classification accuracy gain, the number of iterations is set 

to 500. 

3.2.2 Indices derived from spectrograms 

Acoustic indices can also be calculated from a spectrogram. Here, a spectrogram is the short-

time Fourier transform of a waveform signal with a non-overlapping 512-point hamming 

window. After the short-time Fourier transform, the result is a spectrogram which can be 

described by a matrix S of N time frames and M frequency bins. By averaging acoustic 

information on both time frames and frequency bins of a spectrogram, a summary index can 

be obtained; while averaging acoustic information only on time frames, a spectral index can 

be acquired. 
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Summary indices derived from spectrograms are described as follows: 

12. Acoustic Complexity Index (ACI) (Pieretti, Farina and Morri 2011): It is a measure of 

spectral changes over time. If spectral amplitudes are changing rapidly from frame to frame 

in a spectrogram, ACI will have a relatively large value; by contrast, if spectral amplitudes 

have small changes, ACI will be small. 

13-15. FrequencyCover (Towsey, Zhang, et al. 2014): It is referred to the count of values that 

are greater than a threshold divided by the total time frames of a spectrogram. The threshold 

is 3dB in this paper selected by trial and error. Frequency cover is divided and summarised as 

a single value from three frequency ranges (0-482 Hz, 482-3500 Hz, and 3500-8820 Hz), 

which are defined as low, mid, and high-frequency cover respectively.  

16. Spectral entropy (H[s]) (Towsey, Wimmer, et al. 2014): It is an entropy index of average 

amplitude calculated within frequency bins from 482 Hz to 8820 Hz. The low-frequency 

components are removed to reduce background noise from planes or vehicle engines.  

17. Entropy of spectral maxima (H[m]) (Towsey, Wimmer, et al. 2014): It is an entropy index 

of amplitude that has maximum counts within frequency bin from 482 Hz to 8820 Hz. This is 

the same frequency range as that of spectral entropy index.  

18-19. Ridge features (verRidge and horRidge) (Dong et al. 2013): Ridge features are derived 

from spectrograms using image processing techniques. For a two-dimensional spectrogram 

image, there are at least two directions for calculating ridge features: horizontal ridge 

(temporal domain) and vertical ridge (spectral domain). The calculation of ridge features is 

by convoluting a mask matrix with the spectrogram matrix, where the mask matrix reflects 

the direction of the ridge. In this work, only two mask matrices are used to calculate ridge 

features. These two matrices aim to capture horizontal (maskh) and vertical (maskv) features 

respectively: 

𝒎𝒎𝒎𝒎h =

⎣
⎢
⎢
⎢
⎡
−0.1 −0.1 −0.1 −0.1 −0.1
−0.1 −0.1 −0.1 −0.1 −0.1
+0.4 +0.4 +0.4 +0.4 +0.4
−0.1 −0.1 −0.1 −0.1 −0.1
−0.1 −0.1 −0.1 −0.1 −0.1⎦

⎥
⎥
⎥
⎤
 

𝒎𝒎𝒎𝒎v =

⎣
⎢
⎢
⎢
⎡
−0.1 −0.1 +0.4 −0.1 −0.1
−0.1 −0.1 +0.4 −0.1 −0.1
−0.1 −0.1 +0.4 −0.1 −0.1
−0.1 −0.1 +0.4 −0.1 −0.1
−0.1 −0.1 +0.4 −0.1 −0.1⎦

⎥
⎥
⎥
⎤
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For the convoluted matrix, an empirical value of 5.5 has been used to remove background 

noise. Finally, the summarised ridge features are the average count of vertical and horizontal 

ridges in the spectrogram image. 

20. Mel-frequency cepstral coefficients (MFCCs) (Molau et al. 2001): It is calculated by 

applying a short-time Fourier transform to an audio signal, mapping the powers of the spectra 

to Mel-frequency banks, and converting Mel-frequency banks in a logarithmic scale. Here the 

Mel-scale relates physical frequency to perceived frequency by humans. The equation for 

converting physical frequency to Mel-frequency is: 

𝑀𝑀𝑀-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1125 × 𝑙𝑙𝑙𝑒(1 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 700⁄ ) 

Typically 12 Mel-frequency cepstral coefficients are obtained by using discrete cosine 

transform on the logarithmic Mel-frequency. MFCCs have a higher resolution on low-

frequency information of a signal. Since traditional MFCCs have detailed frequency 

information, to compare with other features which average the frequency components, the 

aveMFCCs is a summarised value obtained by averaging 12 Mel-frequency cepstral 

coefficients. 

Note that aforementioned features are summary indices that are mainly used for classifying 

five acoustic patterns (Birds, Insects, Low activity, Rain, and Wind) of one-minute audio 

clips. Spectral indices are obtained by only averaging temporal information while retaining 

spectral information at frequency bins. Spectral indices are later used as a proxy to rank audio 

clips in chapter 5. 

3.3 Analysis tools 

Software used to calculate the acoustic indices are described as follows. The matching pursuit 

features are calculated by the MPTK 0.7.0 package and MFCCs are calculated by the signal 

processing toolbox in MATLAB 2014b. The software used to generate the rest of the indices 

was a proprietary C# application developed by the QUT Ecoacoustics Research Group 

(Truskinger et al. 2014). The program, named AnalysisPrograms.exe, was compiled on 

August 15th, 2014 with the version number 14.08.0.0. 

R (Team 2013) is open source software designed for statistical computing. It has good 

graphic functionality as well. Users are able to create their own functions for a specific 

process. Its capacity of data analysis is increasing because of its growing number of extensive 
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packages. Due to its flexible and powerful analysis packages, R 3.0.2 and RStudio 0.98.994 

are used as major tools for acoustic data analysis. 

Weka (Waikato Environment for Knowledge Analysis) is open source software which is 

written by University of Waikato, New Zealand in Java (Hall et al. 2009). It provides a broad 

range of implementations of machine learning algorithms. In this research, the feature 

selection and classification tasks are conducted with version 3.7.11. 

3.4 Visualisation for exploratory analysis 

The eco-acoustic research group at the Queensland University of Technology proposes a new 

method --- the false-colour spectrogram --- to display general information in long duration 

recordings (Towsey & Zhang, 2014; Towsey et al., 2014). The false colour is referred to a 

group of colour rendering methods used to display images. In a false-colour spectrogram, 

three acoustic indices are assigned to the RGB values as a rendering scheme, demonstrating 

three aspects of summarised acoustic information in a single spectrogram. 

In an exploratory experiment, ACI, H[t] and FrequencyCover are selected to construct a 

false-colour spectrogram. For each one-minute recording, the spectrogram matrix is p × q, 

where p is referred to time frames, which is determined by the length of the window used in 

short-time Fourier transform; and q is referred to frequency bins. Each of the indices is 

averaged by the time frames, resulting in a vector of q frequency bins for the one-minute 

audio clip. For each day, there is a total of l minutes, which produces a matrix of l×q. 

Consequently, three indices produce three matrices, and they will be allocated to RGB values 

respectively to generate a false-colour spectrogram. 

Figure 3.4 is a false-colour spectrogram of a one-day audio recording collected from 

Sunshine Coast, Brisbane, Australia. The x-axis represents the time at a one-minute 

resolution and the y-axis stands for frequency ranging from 0 Hz to 8820 Hz equally divided 

into 256 bins. Normalised acoustic indices such as acoustic complexity index, temporal 

entropy index, and frequency cover are assigned to RGB values respectively. Each pixel 

denotes the strength of acoustic energy for a specific frequency bin per minute. Various 

acoustic patterns are annotated by listening to the raw recordings. In the graph, birds are 

found to be active from around minute 300 to 1080 (5 a.m. to 6 p.m.). Their vocalisations can 

be interrupted because of heavy rain (yellow region). During the midnight, acoustic energy is 

relatively low (white region) which means there are fewer vocal species. The horizontal band 
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rises after dusk is insect chirping. Acoustic patterns (such as morning chorus, crow’s calls, 

rain and insect’s chirpings) within a fixed period of time explicitly appear in a 24-hour false-

colour spectrogram. It is also convenient for ecologists to quickly pinpoint the acoustic 

patterns of interest. 

 
Figure 3.4 A false-colour spectrogram of a one day’s recording 

3.5 Classifying one-minute audio clips 

To remove audio clips that are unlikely to contain bird species, single- and multi-label 

classifiers are investigated. The classification accuracy and how they effectively remove 

irrelevant audio clips can be found in chapter 4. This section elaborates the settings of 

different classifiers and their evaluation metrics. 

3.5.1 Single-label classifiers 

For the single-label classifiers, three classic algorithms: k-nearest neighbour, decision tree, 

and multilayer perceptron (Duda, Hart and Stork 2012) are examined. These algorithms are 

supervised machine learning that implements different ideas for classification.  

The k-nearest neighbour (kNN) associates an unlabelled instance with the label of most 

similar instances. The parameter k implies the number of nearest neighbours that will be used 

to determine the label. For an unlabelled instance, its label will be determined by the k 

instances that have the most common label. Despite the simplicity of the algorithm, kNN is a 

powerful method and has been widely used. It makes no assumptions about the data 

distribution. It does not require creating a statistical model, making the training process fast. 

Decision tree generates a sequence of splitting nodes that divide a training dataset into groups 

of homogeneous instances and associate any of the nodes that have no further splitting with a 

label. Typically, each splitting node aims at maximising the information gain; in other words, 

after splitting, instances in the same group should be more alike than those before the split. 

Morning 
chorus 

Crow 

Rain 

Insect 
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Normally, the information gain can be measured by the changes of Shannon index or Gini 

index. Decision tree performs well and its model is interpretable on most problems. 

Additionally, it excludes unimportant features and is scalable to large datasets. 

Multilayer perceptron is an artificial neural network algorithm that maps input features onto 

output labels. The input data are sent to input nodes without processing. Each input node is 

used to deal with a single feature in the dataset. The output nodes are the labels. The input 

and output nodes are organised as two groups known as layers. The next layer nodes are 

weighted combinations of nodes from the previous layer. Multilayer perceptron is a 

feedforward neural network which has no feedbacks during the process and has intermediate 

layers in the middle. Particularly, a single-layer perceptron has only one set of connection 

weights from the input data to the output labels. 

In a supervised machine learning paradigm, there are always two steps: one for training a 

classification model and the other for testing the performance of the model. These two steps 

should be conducted with two exclusive datasets. 

3.5.2 Multi-label classifiers 

A multi-label classifier can be considered as a single-label classifier with a ‘wrapper’ that 

converts a multi-label problem into a single-label problem. Although there exist several 

approaches for such a problem transformation (Tsoumakas, Katakis and Vlahavas 2010), 

binary relevance is a powerful one because of its scalability and flexibility. The idea of binary 

relevance is it considers a multi-label classification problem as multiple binary classification 

problems assuming that there are no correlations between different classes. After the problem 

transformation, a single-label classifier is used to classify each of the class. The single-label 

classifiers are the same with those used in single-label classification so that their performance 

on assisting bird species surveys can be compared. 

3.5.3 Parameter setting 

To optimise overall accuracy, a stepwise search on the parameters of three classifiers is 

implemented. These parameters can be applied to both multi-label and single-label 

classification because they use the same classifiers. The Weka 3.7.11 (Hall et al. 2009) and 

its extension MEKA (Read 2015) is used for the single-label and multi-label classification 

problems respectively. 
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For kNN, the number of nearest neighbours is evaluated increasing incrementally from 1 to 

10. It is found that 5 nearest neighbours provide the highest accuracy in the training dataset. 

For decision tree, the minimum number of instances per leaf from 2 to 6 is tested, and the 

default setting of 2 is found to provide the highest accuracy. For multilayer perceptron, the 

number of nodes from 1 to 10 is examined with one hidden layer, and the default number of 6 

nodes offers the highest accuracy. 

A ten-fold cross-validation is implemented to evaluate the classification models. In a ten-fold 

cross-validation, all audio clips are divided into ten groups at random. For each fold, nine 

groups are used for training and the remaining group is used for testing. The final 

performance of any classifier is estimated by the average values over ten folds and the model 

that has the best performance is selected as the final model. 

3.5.4 Evaluation metrics 

In single-label classification, the prediction of a class (one of the five acoustic patterns in this 

study) is binary: either correct or incorrect. Evaluations of a specific class are formulated in a 

2-by-2 contingency table (Table 3.2), including accuracy, precision, and recall. They measure 

different aspects of the performance. Accuracy measures the proportion of correct predictions 

amongst the total number of instances. Precision is referred to the possibility of making a 

correct prediction when the classifier predicts a particular class. Recall is referred to the 

possibility of making a correct prediction amongst a particular class. The definitions are 

given as below: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑇𝑇𝑇𝑇 𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒 + 𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
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Table 3.2 A 2-by-2 contingency table of the single-label classification results 

 
Prediction 

Positive Negative 

Ground Truth 
Positive True Positive False Negative 

Negative False Positive True Negative 

 

In multi-label classification, predictions are a set of labels where predictions can be partially 

correct. It is obvious that none of the aforementioned evaluation metrics reflects this notion in 

their original forms. To measure partially correct, one strategy is to average the differences 

between the predicted labels and the actual labels for all labels and instances. In this research, 

three of these measures are selected to evaluate the performance of multi-label classification. 

They are ranked by the strength from weak to strong: hamming loss, accuracyM, and exact 

match. A subscript letter ‘M’ is used to distinguish the accuracy of multi-label classification 

from that of single-label classification. In the following definitions of evaluation metrics, xi 

and yi denote the prediction and the ground truth respectively; |I| is the number of instances 

(audio clips) and |L| is the number of possible labels. 

Hamming loss accounts for the prediction error and the missing error, normalised over the 

total number of labels and instances. It measures the average times that an instance is 

associated with an incorrect label. Here ‘xor’ denotes exclusive or. 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑥𝑖,𝑦𝑖) =
1

|𝐼|
�

𝑥𝑥𝑥(𝑥𝑖 ,𝑦𝑖)
|𝐿|

|𝐼|

𝑖=1

 

Here, accuracyM is defined as the proportion of the correctly predicted labels to the total 

number of labels; this proportion is later averaged across all instances. Note that it is possible 

to calculate individual accuracy for each label. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀(𝑥𝑖,𝑦𝑖) =
1

|𝐼|
�

|𝑥𝑖 ∩ 𝑦𝑖|
|𝑥𝑖 ∪ 𝑦𝑖|

|𝐼|

𝑖=1

 

Exact match is a measure of precise match between predictions and actual labels. It extends 

the accuracy metric in single-label classification for the multi-label problem, where partially 

correct predictions are considered as incorrect ones. 
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𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ(𝑥𝑖,𝑦𝑖) =
1

|𝐼|
�(𝑥𝑖 ≡ 𝑦𝑖)
|𝐼|

𝑖=1

 

The values of hamming loss, accuracy, and exact match range from 0 to 1 inclusive. For 

hamming loss, 0 corresponds to perfect prediction and 1 corresponds to wrong predictions for 

all labels of each instance; whereas for accuracy and exact match, higher values mean better 

classification performance. 

3.6 Ranking one-minute audio clips 

3.6.1 Using acoustic indices as a proxy for the number of bird species 

Some one-minute audio clips naturally contain more bird species than others. Consider, for 

example, the dawn and dusk choruses. Listening to audio clips which contain more birds has 

a high probability of finding new bird species. Although the exact number of bird species in 

an audio clip is difficult to identify by their vocalisations, one that contains more species 

normally can be characterised due to its high acoustic activity. Acoustic indices are summary 

information that can reflect the general acoustic complexity of an audio clip. Based on the 

assumption that a high diversity of bird species in an audio clip has a high level of acoustic 

complexity, acoustic indices can be used as a proxy for the number of bird species in an audio 

clip. Therefore, a higher efficiency of determining bird species richness can be achieved by 

listening to audio clips that are ranked by the acoustic indices. 

Correlation coefficients between acoustic indices and the number of bird species are used to 

select an index which best indicates the acoustic activity of audio clips. Spearman's, instead 

of Pearson's, correlation coefficient is used to select such a proxy. The reason for selecting 

Spearman’s correlation coefficient is it measures the monotonic relationships without any 

assumption about the statistical distribution of either variable; whereas Pearson’s correlation 

coefficient measures the linear relationships between two variables that have normal 

distributions. Since correlations between acoustic features and the number of bird species do 

not have to be linear in this case, Spearman's correlation coefficient is more appropriate than 

Pearson's. The acoustic index that best correlated with the number of bird species in 

individual audio clips is utilised to rank audio clips, giving each of them a priority to listen to. 
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3.6.2 Detecting shared bird species amongst audio clips 

Acoustic indices reflect the general complexity of an audio clip but ignore the detailed 

information of individual bird species; therefore, they cannot identify shared species amongst 

audio clips, which might impede bird species richness surveys. An ideal strategy for bird 

species richness surveys should be each sampled audio clip provides the maximum number of 

unique bird species. However, prior knowledge of present bird species in an audio clip is 

unavailable in most cases. Indeed, it is the purpose of this study to develop computer-assisted 

techniques to facilitate manual bird surveying. 

A practical alternative is to use distinct bird vocalisation to represent unique bird species 

under the assumptions that no species share similar vocalisations and any species has a low 

diversity of vocalisations. Therefore, the problem of sampling audio clips with the most bird 

species is formulated as sampling audio clips with the most distinct bird vocalisations. A non-

negative matrix factorisation technique is implemented to extract spectral profiles from an 

audio clip to represent distinct bird vocalisations. By measuring the similarity of these 

spectral profiles, it is possible to create a codebook of distinct spectral profiles for all target 

audio clips and identify present ones in each audio clip. Given the present and absent 

information of spectral profiles and hence bird vocalisations, a greedy algorithm is designed 

to sample audio clips so that each audio clip can provide the maximum number of unique 

spectral profiles. Such an algorithm enables to discriminate shared bird vocalisations amongst 

audio clip and the sampled audio clips can enhance the efficiency of manual bird species 

richness surveys. 

3.7 Species accumulation curves 

This thesis aims to develop automated techniques to improve the efficiency of surveying 

birds. To evaluate the performance of different methods, species accumulation curves are 

plotted. Figure 3.5 demonstrates two benchmarks of species accumulation curves. One (black 

triangles) is the theoretical best which maximises the bird species found at each sampled 

audio clip using the bird annotations; the other (green circles) serves as the baseline which is 

the mean of sampling 1435 one-minute audio clips (equivalent to a one-day recording) 1000 

times at random. These two curves constitute the upper and lower boundaries of species 

accumulation curves, any useful method should generate a species accumulation curve 

residing between these two benchmarks. 
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Figure 3.5 Two benchmarks of species accumulation curves 

  

Random sampling 

Theoretical best 
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4 Classification of audio clips to assist bird 

species surveys 
This chapter aims to remove audio clips that are unlikely to contain bird species for efficient 

species surveys. As with any other data analysis procedure, it starts with visual exploration 

because visualisation is a common onset of gaining insights into a large number of data. In 

section 4.1 a false-colour spectrogram is illustrated to explore a one-day audio recording. By 

removing these non-bird recordings, it is possible to improve the efficiency of bird species 

surveys. Despite the complexity of environmental audio clips, section 4.2 assumes that each 

audio clip can be described by a dominant acoustic pattern and uses a classifier for irrelevant 

data removal. In section 4.3, simultaneous acoustic patterns are taken into consideration by 

using multi-label classifiers and the performance of both classification tasks is compared. 

Section 4.4 discusses the efficiency of using classification approaches to assist bird species 

richness surveys with species accumulation curves. Finally, this chapter concludes with 

section 4.5 and raises other issues when using acoustics to study bird species. 

4.1 Visualisation of a one-day audio recording 

To get a glimpse of what could happen in an environmental recording, Figure 4.1 visualises 

1435 continuous one-minute audio clips using the false-colour spectrogram technique 

(Towsey, Zhang, et al. 2014). It is a false-colour spectrogram of a one-day recording on 13th 

October 2010. Normalised acoustic indices such as acoustic complexity index, H[t] and 

FrequencyCover are assigned to the RGB values respectively to construct this figure. Each 

pixel stands for a single frequency bin of a particular minute. It can be seen that the majority 

of bird vocalisations are active from around 5:00 to 18:00 of the day. There might be 

irrelevant recordings that are less likely to contain bird species. 

Based on these observations, five acoustic patterns that may dominate one-minute audio 

recordings are pre-defined. They are ‘Birds’, ‘Insects’, ‘Low activity’, ‘Rain’, and ‘Wind’. 

Although ‘Birds’ is of particular interest in the current study, other four acoustic patterns are 

defined to see if they will be misclassified as ‘Birds’. Geophysical processes (e.g. rain and 

wind) often correlate with species activity. For instance, heavy rain and strong winds 

suppress bird vocalisations and indicate the absence of bird species. Although rain and wind 

can be measured by weather stations, the measurement can be inaccurate if these stations are 
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located far away from acoustic sensors. Insects chirping and silence (low activity) are two 

common acoustic patterns that may occur exclusively in one-minute recordings at night. 

These five acoustic patterns reveal the distribution of general environmental sounds. Figure 

4.2 depicts the five acoustic patterns in waveforms (left) and their corresponding 

spectrograms (right), each of which displays distinct spatiotemporal distributions of acoustic 

energy. 

 
Figure 4.1 An example of active bird vocalisations during the day 

 
Figure 4.2 The waveforms (left) and spectrograms (right) of five pre-defined acoustic patterns 

Bird vocalisations are active during this period of time 
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4.2 Single-label classification 

The visualisations in the previous section show that irrelevant audio clips that are unlikely to 

contain bird species in a one-day recording and they have distinct acoustic characteristics. 

This also makes it possible to use classification techniques to remove the redundancy and 

improve the efficiency of bird surveying. 

A typical single-label classification process consists of two steps (Figure 4.3 and Figure 4.4): 

1. A statistical model is generated based on some labelled audio clips. These audio clips 

should be manually labelled as one of the five pre-defined acoustic patterns and their 

acoustic characteristics can be described by calculating the acoustic indices introduced in 

section 3.2. A statistical model is generated by using criteria that can discriminate 

acoustic patterns with acoustic indices. 

 

Figure 4.3 The generation of a statistical model 

2. The statistical model is used to identify new unlabelled audio clips. This can be achieved 

by calculating the acoustic indices for the unlabelled audio clips and using the statistical 

model to map the acoustic indices to a specific acoustic pattern. 

 

Figure 4.4 Using the statistical model to identify unlabelled audio clips 

A training dataset has been collected to generate single-label classification models. Table 4.1 

shows that there are 150 one-minute audio clips for the five acoustic patterns, each of which 

has 30 audio clips. The 1435 one-minute audio clips on 15th October 2010 have also been 

labelled by the author for testing purpose. The labels are 661 of ‘Birds’, 194 of ‘Insects’, 319 

of ‘LowActivity’, 212 of ‘Rain’, and 49 of ‘Wind’. 
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Table 4.1 Labelled one-minute audio clips for training single-label classification models 

Acoustic pattern Number of one-minute audio clips 

Birds 30 

Insects 30 

Low Activity 30 

Rain 30 

Wind 30 

Total 150 

 

4.2.1 A pilot study 

The decision tree algorithm, as an example of classification techniques, is attested for the 

feasibility of classifying aforementioned five acoustic patterns and removing audio clips that 

are unlikely to contain birds. The decision tree is used rather than other classification 

algorithms mainly because its result is easily interpretable. 

Figure 4.5 illustrates the decision tree model. The oval nodes represent the features (acoustic 

indices) to split the training instances. Rectangular boxes represent the five classes: the 

number on the left is the total instances in that class and the number on the right is the 

misclassified instances. A single number means that they are all correctly classified. Three 

acoustic indices – horRidge, ACI, and BgNoise – are determined by the algorithm as the most 

important features for classifying one-minute audio-clips. The horRidge enables to capture 

acoustic energy that lasts a few time frames of a spectrogram, which is commonly found in 

sounds of ‘Insects’ and ‘Birds’. The ACI describes acoustic intensity differences between 

adjacent time frames of a spectrogram. Therefore, broadband acoustic energy occupying an 

entire audio clip leads to high ACI values. ‘Rain’ and ‘Birds’ (collective bird vocalisations) 

of a one-minute audio clip normally have such acoustic characteristics. ‘Wind’ and ‘Low 

activity’ do not have standout features in spectrograms but have different levels of energy in 

waveforms. This could be the main reason why BgNoise was chosen to discriminate these 

two classes since BgNoise is derived from the waveform envelope. 

Table 4.2 is the confusion matrix for the 150 training one-minute samples collected from site 

3, the SERF. The diagonal values (in bold) represent the correctly classified instances of the 

training data. The overall classification accuracy is 89.3%. Particularly, the class ‘Insects’ has 

the highest classification accuracy (100%) and the classification accuracy for ‘Birds’ is 
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92.9%. Notice that ‘Low activity’ and ‘Wind’ have the most misclassified instances; this is 

due to the fact that ‘Wind’ is sporadic acoustic energy, acoustic indices averaged across one-

minute audio are not able to summarise enough acoustic information to discriminate them. 

 
Figure 4.5 A decision tree model trained by Weka 3.7.11 

Table 4.2 Confusion matrix of training data using decision tree 

Classified as → Birds Insects Low activity Rain Wind 

Birds 28 0 2 0 0 

Insects 0 30 0 0 0 

Low activity 1 0 21 1 7 

Rain 1 0 0 28 1 

Wind 0 0 2 1 27 

 

The results for the test dataset on 15th October 2010 are shown in Table 4.3. The overall 

classification accuracy is 82.6% with a total of 1440 minutes. The classification precision for 

the class ‘Birds’ is 87.7%. According to the bird annotations, 93.6% (58/62) of the total bird 

species remain within 44.0% (634/1440) of a one-day recording. Note that the majority of 

misclassifications for the test dataset occurred between the ‘Birds’ and ‘Rain’. This is mainly 

because some bird vocalisations have similar features as rain and, the acoustic indices used in 

this study fail to distinguish them. Table 4.4 illustrates that more than half of the total amount 

of acoustic data can be removed without losing many species. Particularly on 16th October, 

there is a huge data reduction because of strong wind gusts suppressed other biophonic 

activities. 
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Table 4.3 Confusion matrix of test data using decision tree 

Classified as → Birds Insects Low activity Rain Wind 

Birds 556 67 3 31 4 

Insects 7 141 27 9 0 

Low activity 3 72 231 1 13 

Rain 7 33 3 162 8 

Wind 1 5 9 4 26 

 

Table 4.4 Results before and after classification for 5 days on site 4, the SERF 

 
October 2010 

13th 14th 15th 16th 17th 

Number of species 
before classification 

62 58 62 45 62 

Number of species 
after classification 

60 57 59 39 58 

Data reduction 51.5% 44.6% 56.0% 87.3% 49.0% 

 

Figure 4.6 and Figure 4.7 shows the bird species accumulation curves of two days separately. 

The decision tree approach is compared with two benchmarks. The triangles are the 

theoretical best results that can be obtained from bird annotations. The baseline is sampling 

1435 minutes at random of the same day. The audio clips classified as ‘Birds’ are also 

randomly sampled, providing another species accumulation curve (squares) in the graph. 

Error bars indicate the one standard deviation at each one-minute sample. 

Generally, these two days have seen a distinct increase in terms of the number of bird species 

found at each sampled one-minute audio clip. On 15th October 2010, the differences of bird 

species survey efficiency between the classification methods and random sampling on 1435 

audio clips are much smaller than that of 16th. This is mainly because strong wind gusted 

throughout the 16th and bird species vocalised less actively. The proposed classifier 

successfully removed windy audio clips that are unlikely to contain birds. Such results imply 

that the classification methods are preferable for acoustic bird species surveys in the cases of 

bad weather conditions. 
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Figure 4.6 Species accumulation curves of 15th October 2010, site 4, the SERF 

 
Figure 4.7 Species accumulation curves of 16th October 2010, site 4, the SERF 
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The missing bird species are also investigated. Take 15th October 2010 for example. Red 

junglefowl (Gallus.gallus) and Willie wagtail (Rhipidura.leucophrys) vocalised before dawn 

and their vocalisations are not strong enough for acoustic indices to summarise ample 

acoustic information, so these minutes are misclassified as ‘Low activity’. Rainbow bee-eater 

(Merops.ornatus) vocalises at the 977th minute, but the vocalisations are masked by rain. 

These species should be taken special care of since they vocalise rarer than other species. 

Statistical tests have been conducted to see whether the decision tree model is effective in 

improving the efficiency of determining bird species richness. Since the distribution of 

percent of bird species found at each minute sample is not normal (tested by Shapiro-Wilk’s 

test, p < 0.001), the paired t-test is not suitable for the current experiment. Instead, a two-

sample paired Wilcoxon (also known as Mann-Whitney) tests was used. The Wilcoxon test (p 

< 0.001) shows that the percent of bird species found per minute by random sampling on 

‘Birds’ minutes is different from that of random sampling a one-day recording. When the 

species accumulation curves are taken into consideration (Figure 4.6), the classification 

methods have the potential to improve the efficiency for determining bird species richness, 

especially for those days with rainy and windy data. 

4.2.2 Feature selection 

As reported in other research (Chu, Narayanan and Kuo 2009), using all features for 

classification does not necessarily provide the best performance due to the inter-correlation 

between the features. Note that a total of 20 acoustic indices are used in this thesis (described 

in section 3.2). A forward stepwise method (Hall 1999) is utilised to determine acoustic 

indices that are correlated with the five acoustic patterns but have low inter-correlations, 

leading to a set of 7 acoustic indices: AveSignalAmplitude, AcousticComplexity, 

TemporalEntropy, AveEntropyPeaks, verRidge, horRidge, and MP_SRR. 

The overall classification accuracy are compared in Figure 4.8 using different combinations 

of feature sets and classifiers. The ‘feature selection’ column is derived from the above-

mentioned method. The ‘All features’ column contains 20 acoustic indices described in 

section 3.2. For different feature sets, the use of multiple indices (7 feature sets on the right, 

from ‘ridge features’ to ‘feature selection’) always outperforms that of a single index (7 

single features on the left, from ‘SNR’ to ‘aveMFCC’), implying that different acoustic 

indices complement each other on characterising one-minute acoustic patterns. Acoustic 

indices selected by the forward stepwise method yields comparable classification accuracy 
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with all indices, but the former simplifies the classification model. Therefore, it is preferable 

to perform feature selection prior to the generation of the classification model. For the 

classifiers, the classification accuracy of kNN is unstable when compared with the decision 

tree and the multilayer perceptron; moreover, the multilayer perceptron has higher 

classification accuracy than decision tree in most cases. 

Based on these comparisons, the multilayer perceptron and the acoustic indices selected by a 

forward stepwise method are used to generate a classification model with a consistent and 

optimal performance for the rest of the study. 

 

Figure 4.8 Classification accuracy of three classifiers using different feature sets  

4.2.3 Classification accuracy 

To validate the reliability of the classification model, the multilayer perceptron model with 

selected features is applied to the test dataset with 1435 one-minute audio clips (Table 3.1). 

The overall accuracy of test data is 82.4%. Particularly, Table 4.5 shows that the class ‘Birds’ 

have the highest classification precision (96.7%) and recall (88.4%) amongst the five acoustic 

patterns. To reveal more subtle details, the classification accuracy for each of the five 

acoustic patterns is investigated by using a confusion matrix. Table 4.6 shows that Birds is 

the most common class in the test data and the number of instances is more than twice as 

many as the second largest class Low Activity. The results also point out that Birds, Low 

Activity and Rain are often misclassified as Insects, but not vice versa. 
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Table 4.5 Classification evaluations of the test dataset 

 Birds Insects Low Activity Rain Wind 

Precision (%) 96.7 49.9 91.9 90.9 56.1 

Recall (%) 88.4 87.1 78.0 70.3 65.3 

 

Table 4.6 Confusion matrix of test dataset using the feature selection 

Classified as → Birds Insects Low Activity Rain Wind Actual Total 

Birds 585 67 3 2 5 662 

Insects 7 169 9 9 0 194 

Low Activity 4 53 248 2 11 318 

Rain 6 46 2 149 9 212 

Wind 3 4 8 2 32 49 

Classified Total 605 339 270 164 57 1435 

 

4.3 Multi-label classification 

For multi-label classification, 1435 one-minute audio clips on 15th October 2010 are labelled 

with one to five classes by the author. Table 4.7 shows the number of audio clips with a 

different combination of labels. Over 56% of audio clips contain multiple labels. The average 

number of labels per audio clip (the cardinality of the labels) is 1.66. A ten-fold cross-

validation has been run on this dataset. 

Table 4.7 The number of audio clips associated with different combinations of labels 

Row Number of labels Labels Number of audio clips 

1 1 Birds 556 

2 1 Insects 1 

3 1 Low activity 1 

4 1 Rain 63 

5 1 Wind 3 

6 2 Birds & Insects 19 

7 2 Birds & Low activity 50 

8 2 Birds & Rain 133 

9 2 Birds & Wind 49 

10 2 Insects & Low activity 251 
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11 2 Insects & Rain 127 

12 2 Insects & Wind 25 

13 2 Low activity & Wind 1 

14 2 Rain & Wind 21 

15 3 Birds & Insects & Low activity 61 

16 3 Birds & Insects & Wind 6 

17 3 Birds & Insects & Rain 17 

18 3 Birds & Low activity & Wind 1 

19 3 Birds & Rain & Wind 15 

20 3 Insects & Low activity & Wind 6 

21 3 Insects & Rain & Wind 25 

22 4 Birds & Insects & Rain & Wind 4 

23 Total  1435 

 

4.3.1 Performance 

There are three metrics used to evaluate multi-label classification algorithms. A baseline 

method is provided in order to interpret the performance of the classifier. The baseline 

method is the use of the minimum-error feature for classifier training and prediction (The 

‘OneR’ method suggested in (Witten et al. 2016)). Note that a small hamming loss means 

good classification performance; by contrast, a large value of accuracyM or exact match 

indicates good classification performance. 

It can be seen from Table 4.8 that multi-layer perceptron outperforms other two classifiers 

over three different evaluation metrics in the multi-label classification task. ML-

MultilayerPerceptron has the best performance over three evaluation metrics (values in bold). 

Here, an up-arrow implies that the higher the values, the better the classification performance; 

whereas a down-arrow implies that the smaller the values, the better the classification 

performance. This result is consistent with that of single-label classification, indicating that 

multi-layer perceptron could be a better choice for classifying acoustic patterns in one-minute 

audio clips. According to the hamming loss, it can be inferred that multi-label classifiers 

perform more than 10 times better than the baseline classifier. Particularly, the multi-layer 

perceptron is 11 times better than the baseline based on the hamming loss metric. 

Current multi-label classification is motivated by Briggs’ paper (Briggs et al. 2012). However, 

it may not be appropriate to make direct comparisons between these two experiments. In their 
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work, there are 13 bird species in ten-second audio clips and local acoustic features are 

calculated for the classification tasks. By contrast, this experiment deals with 5 acoustic 

patterns of one-minute audio clips and acoustic indices are global acoustic features. The 

differences between the numbers of labels may affect the evaluation metrics. Apparently, 

multi-label classification task with a larger number of possible labels is more difficult to cope 

with and may result in lower values for the evaluation metrics. Additionally, depending on 

the levels of detailed predictions to be measured, it is essential to use different evaluation 

metrics to demonstrate the performance of multi-label classification. 

Table 4.8 The performance of three different multi-label classifiers 

 Hamming loss ↓ AccuracyM ↑ Exact match ↑ 

ML-kNN 0.099±0.008 0.827±0.014 0.622±0.030 

ML-DecisionTree 0.090±0.010 0.833±0.020 0.661±0.028 

ML-MultilayerPerceptron 0.079±0.007 0.853±0.014 0.696±0.039 

Baseline 0.852±0.018 0.729±0.028 0.545±0.042 

 

4.3.2 Comparisons between multi-label and single-label classification 

The aforementioned evaluation metrics provides a convenient way to understand the 

performance of different classifiers. These measures are inappropriate when more subtle 

details are required. The precision and recall on each of the five acoustic patterns are 

calculated to determine where misclassification actually occurs. The single-label 

classification is also investigated using the same dataset. The experimental settings of single-

label classification such as classifiers, parameters, and cross-validation are identical to those 

in multi-label classification. The label of each instance is determined by selecting a dominant 

acoustic pattern from the five possible labels. Note that, for each instance, the label in single-

label classification is one of those in multi-label classification. 

Figure 4.9 and Figure 4.10 show the precision and recall for both single-label (SL) and multi-

label (ML) classifiers respectively. Generally, all classifiers provide good performance on 

detecting Birds and Low activity, which are the major acoustic patterns in the dataset. 

Amongst the five acoustic patterns, precision and recall of Birds, Rain, Insects, and Low 

activity are higher than 0.7 except for Wind, which has the poorest classification performance. 

For Wind, the standard deviations of both metrics are about 0.1; for the rest four acoustic 

patterns, their standard deviations are less than 0.05. These standard deviations are not shown 
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in the figures for clarity purposes. The reasons for poor classification accuracy of Wind might 

be insufficient training instances and inappropriate features for this particular acoustic pattern. 

However, current dataset is the only available one and the feature set used in this study is 

optimised to provide the best overall classification accuracy. 

 
Figure 4.9 Precisions of single- and multi-label classifiers 

 
Figure 4.10 Recalls of single- and multi-label classifiers 
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In multi-label classification, multilayer perceptron and k-nearest neighbour provide better 

performance than decision tree, but there are no apparent performance differences between 

single-label classifiers. Therefore, multi-layer perceptron classifier in multi-label 

classification is preferable for classifying concomitant classes in long-duration recordings. 

Although multi-label classifiers seem to have higher precisions and recalls than the 

corresponding single-label classifiers in most cases, a direct comparison between these two 

approaches is inappropriate because they deal with different classification problems and a 

different number of labels for each acoustic pattern. 

4.4 Investigation of bird species richness 

Birds are important indicators of environmental health. The detection and analysis of bird 

species have attracted continuous attention over the years. The classification of acoustic 

patterns provides a potential way to remove irrelevant audio clips and improve the efficiency 

in such ecological studies, especially when the volume of audio recordings is huge. 

Figure 4.11 shows the number of bird species per minute in the minutes classified as Birds by 

using single- and multi-label classifiers (The core classification algorithm is multilayer 

perceptron). In the original 24-hour recording, there are about 600 minutes that do not contain 

any bird species. Obviously, single-label classification enables to recognise the majority of 

non-bird minutes. However, a large portion of minutes containing birds is misclassified as 

one of the other four acoustic patterns. Multi-label classification captures the minutes which 

contain one to seven bird species but are misclassified by the single-label method, increasing 

the number of true positives. Also, note that the number of misclassified bird minutes (false 

positives) grows to 200 in the case of multi-label classification. 

Further analysis has been done on bird species loss and the efficiency in bird species surveys 

based on the bird annotations. Compared to the multi-label classification, where there is no 

species loss, the single-label classification retains 59 out of 62 (95.2%) bird species within 

the 605 of 1435 (42.2%) one-minute audio clips classified as Birds; that is, 57.8% of one-

minute audio clips that are unlikely to contain bird species have been removed. Figure 4.12 

shows the species accumulation curves using five different methods. Each point in the curves 

represents the average percent of bird species found given a specific number of one-minute 

samples. It can be seen that classification approaches (red and blue) achieve higher efficiency 

in bird species surveys than randomly selecting minutes without any process (green) (t-test, p 

< 0.001). Take the line parallel to the x-axis at value 50 on the y-axis in Figure 4.12 for 
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example. Using classification methods, one needs to inspect 25 one-minute audio clips to find 

50 percent of species on that day. However, without classification methods, 37 one-minute 

audio clips are required to achieve the same performance. Therefore, one can earn the time of 

inspecting 12 one-minute audio clips using classification methods. Most importantly, the 

earned time increases exponentially if more bird species are required to be found. Although 

multi-label classification increases the false positives (Figure 4.11), a pairwise t-test (p > 0.1) 

shows that there is no difference between the species accumulation curves derived from both 

classification tasks. 

 
Figure 4.11 Distributions of the number of bird species per minute 

In Figure 4.12 the performance of the classification methods are compared with Wimmer’s 

dawn sampling. He suggested that sampling audio clips at random from 3 hours after dawn is 

an efficient strategy for bird species surveys (Wimmer et al. 2013). By implementing the 

dawn sampling method, another species accumulative curve (orange) is obtained. This 

method has a higher efficiency of finding bird species than our classification methods for the 

first 30 one-minute audio clips, but its performance decreases when more audio clips are 

inspected. Dawn sampling is based on the prior knowledge that most bird species vocalise 

during morning chorus. It is susceptible to two factors: weather conditions and the time that 

bird species appear. For example, rain can interrupt the morning chorus and no further 

instructions are given for species surveys during the rest of the day. Dawn sampling also 

excludes species that are absent from the morning chorus. Therefore, our classification 

methods provide comparable efficiency in bird species surveys but are more resilient than 

dawn sampling in these two aspects. 
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Figure 4.12 Five species accumulative curves derived from different sampling methods 

4.5 Summary 

This chapter discusses the use of the assistive classification for bird species richness surveys 

in one-day acoustic data. The experimental results show that the applied classification 

approaches have achieved higher efficiency than the dawn sampling, which, to the best of our 

knowledge, is currently the best-published approach for assisting bird species surveys using 

environmental recordings. The classification approaches have advantages over the dawn 

sampling because they are adaptive to various weather conditions such as the rain and the 

wind. 

A novel set of acoustic indices is suggested to build classification models. Apart from the 

traditional acoustic indices, two new sets of acoustic indices including matching pursuit 

indices and ridge indices are introduced. Amongst them, MP_SRR, horRidge, and verRidge 

play an important role in this classification task together with other four traditional acoustic 

indices. From the results of classification, it can be inferred that acoustic indices are proper 

indicators of general ecological processes. Since acoustic indices are summary information of 

audio clips and barely contain detailed frequency information of an acoustic event, they are 

more appropriate for classifying long-term audio clips instead of discrete acoustic events. 

Two classification paradigms, single-label and multi-label classification, have been 

investigated in filtering one-minute audio clips that are likely to contain birds. Multi-label 

classification ameliorates the problem of simultaneous acoustic patterns in one-minute audio 

clips such as birds singing in the rain, but introduces a large volume of audio clips that do not 
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contain birds, hindering rapid determination of diverse bird species in one-day recordings. By 

contrast, single-label classification causes several species loss, but it removes the majority of 

non-bird minutes and improves the efficiency of bird species surveys. 

This chapter builds a simple but efficient single-label multilayer perceptron classification 

model to reduce acoustic data for bird species surveys. The experimental results show that 

classification approaches successfully weed out a large number of irrelevant audio recordings 

while retaining the majority of bird species (59 out of 62). This is an initial step of developing 

computer-assisted techniques to assist bird species surveys. For audio clips classified as Birds, 

there are no further instructions on how to effectively sample them. The next two chapters 

will be devoted to various ranking approaches that aim to tackle this problem. 
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5 Ranking audio clips for more efficient 

bird species surveys 
This chapter focuses on sampling 605 one-minute audio clips that have been classified as 

Birds for bird species surveys in the previous chapter. Amongst these audio clips, some could 

contain more bird species than others. The method that maximises the number of bird species 

at each sampled audio clip is defined as the maximum sampling. Given the ground truth 

annotation, the species accumulation curve of this new sampling method can be drawn in 

Figure 5.1. Obviously, the maximum sampling outperforms random sampling with a one-day 

recording within 120 samples. In this case, the red curve is derived from the prior knowledge 

of the number of unique bird species in each audio clip, showing a higher efficiency than the 

dawn sampling (the orange curve). However, such prior knowledge is not available in most 

cases of acoustic bird species richness surveys. Instead, only acoustic information is available 

for the computer-assisted analysis. This chapter aims to find a proxy for the number of bird 

species in each audio clip. Audio clips ranked by this proxy should improve the efficiency of 

bird species surveys. 

 

Figure 5.1 Species accumulation curves of the maximum sampling 

The remainder of this chapter focuses on the finding of such a proxy. Section 5.1 reviews the 

work on relations between some acoustic indices and information of bird species in the 

recordings. Section 5.2 attempts to find the best proxy for the number of bird species in one-
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minute audio clips using variants of acoustic indices and examine the efficiency of directing 

bird species richness surveys. These acoustic indices include summary indices, a two-second 

index, and a spectral index derived from environmental recordings. Section 5.3 takes into 

consideration the temporal and acoustic redundancy, aiming to remove them from the 

sampled audio clips in order to further improve the efficiency of bird species richness surveys. 

Finally, section 5.4 summarises the performance of the proposed acoustic indices in ranking 

audio clips, discusses the limitations of removing temporal and acoustic redundancy, and 

bring forward the idea of detecting more detailed bird vocalisations to assist bird species 

richness surveys. 

5.1 Ranking audio clips to direct bird species richness surveys 

The ideal model for rapid determination of bird species should rank audio clips in an order so 

that each investigated audio clip provides the maximum species gain. Such a model requires 

detailed information such as different types of bird vocalisations, and above all, different bird 

species in an audio clip. Obviously, this information is inaccessible to most of the 

environmental recordings except for those annotated by experts with domain knowledge. 

Contrarily, it is our purpose of developing an automated technique to assist people in quickly 

determining different bird species in audio clips. In practice, acoustic information extracted 

from environmental recordings is possible to be mapped to the intensity of bird vocalisations, 

which can further be used to infer the number of different types of vocalisations and possibly 

reflect the number of bird species in an audio clip. 

Acoustic indices are developed for biodiversity appraisal from a landscape perspective in 

long duration recordings. Prior work has shown that acoustic richness index has a logarithmic 

relation with the number of bird species in a chorus recorded in coastal forests (Sueur et al. 

2008). Acoustic complexity index has been demonstrated to be highly correlated with the 

number of bird vocalisations (r = 0.94, p < 0.01) and the vocal intensities (r = 0.73, p < 0.01) 

when the recordings are collected from forests (Pieretti, Farina and Morri 2011). 

Various acoustic indices have also been investigated for determining bird species richness in 

environmental recordings (Towsey, Wimmer, et al. 2014). In that paper, either single indices 

or their weighted combinations have been examined to re-order audio clips for directing bird 

species surveys. The experimental results illustrate that combinations of acoustic indices 

outweigh single indices in terms of ranking audio clips for bird species surveys. However, the 

use of acoustic indices is determined empirically and the corresponding weights are obtained 
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by an exhaustive search, resulting in an ‘overfitting’ for a specific dataset. Such an overfitting 

occurs because this combination of acoustic indices is optimised for the best performance on 

a specific dataset but has poor performance on others. Nevertheless, this work shows that 

acoustic indices have the potential to direct bird species richness surveys. 

5.2 Ranking audio clips by acoustic indices 

Given a set of audio clips that are likely to contain bird species, it might not be able to 

provide satisfactory efficiency of determining bird species richness by listening to them in a 

chronological order or just at random. To resolve this issue, this section aims to find an 

appropriate acoustic index to re-order such a set of audio clips so that those containing more 

complex acoustic activities will have higher priority to be listened to. An acoustic index is a 

statistical summarisation of the distribution of acoustic energy in an audio clip. It captures a 

specific aspect of the overall acoustic complexity of an audio clip from temporal and/or 

spectral domain such as the acoustic energy dispersion (e.g. entropy-based indices) or the 

change rate of spectral energy (e.g. ACI). 

An underlying assumption on using acoustic indices to rank audio clips is the more complex 

acoustic contents of an audio clip, the more species might be found in it. The results of such 

an assumption can be exemplified by a benchmark species accumulation curve, which is 

derived from sampling audio clips with prior knowledge of unique species counts without 

knowing what those species are(Towsey, Wimmer, et al. 2014). Here the percent of bird 

species found in first 60 one-minute audio clip samples is used to estimate the efficiency of 

different methods. To find which acoustic index can best act as a proxy for the number of 

bird species and rank audio clips, the Spearman’s correlation coefficients are calculated. 

5.2.1 Summary acoustic indices 

Summary acoustic indices are first investigated in this section. Table 5.1 shows that the 

summary acoustic index horRidge has the highest correlation coefficient with the number of 

bird species than any other acoustic index. One-minute audio clips are ranked by the 

summary acoustic index horRidge in a descending order to direct bird species richness 

surveys on 15th October 2010. This method leads to 71% of 62 bird species found in that day 

(Table 5.1). This is also the highest percent of bird species found in all the summary acoustic 

indices used to direct bird species richness surveys. Consequently, the horRidge can be 

considered as a good proxy for the number of bird species. 
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Compared with the method used in (Towsey, Wimmer, et al. 2014), the current ranking 

method is performed on the same dataset but with audio clips that are classified as birds. 

Table 5.1 also shows that audio clips ranked by the ACI offer 64.5% percent of bird species 

in first 60 audio clip samples, which is almost the same as the results in Towsey’s work. This 

is mainly because the prior classification method (proposed in chapter 3) removes most audio 

clips that rarely contain bird species, and the ACI enables to capture the complexity of bird 

vocalisations (Pieretti, Farina and Morri 2011). When the ACI is used to rank audio clips, it 

makes no difference between both studies since the ranked audio clips start from those with 

most bird vocalisations that the ACI can represent. 

Table 5.1 Using correlation relations to direct bird species surveys 

 verRidge MP_SRR ACI EntropyPeaks horRidge 

Correlation coefficients with 
the number of bird species per 

audio clip 
0.14 0.16 0.36 0.47 0.62 

Percent of bird species found 
in first 60 one-minute audio 

clips (%) 
58.1 48.4 64.5 66.1 71.0 

 

The horRidge outperforms the best combination of indices (Towsey, Wimmer, et al. 2014) in 

first 60 audio clip samples, although it is not as good as the dawn sampling (Wimmer et al. 

2013), which enables to find 72.6% ± 3.1% of bird species. Such a result also indicates that 

the horRidge might be the best acoustic index to characterise the bird vocalisations and direct 

bird species richness surveys amongst the existing acoustic indices. Based on this result, the 

rest of this chapter uses the horRidge as a representative index to discuss variants of their 

calculation on improving the efficiency of bird species richness surveys. 

5.2.2 Increasing the temporal resolution 

Summary acoustic indices have severe acoustic information loss since they are averaged from 

acoustic contents of one-minute audio clips. Early ecological studies (Cody and Brown 1969; 

Ficken, Ficken and Hailman 1974; Brumm 2006) have suggested that different bird species 

tend to avoid communication competition in the same habitat. They will mitigate the conflicts 

of simultaneous vocalisations by varying the spectra, which could lead to more vocalisations 

given a specific duration of the audio clip. One may wonder if an acoustic index derived from 

an audio clip with a higher temporal resolution could capture such acoustic complexity and 

hence reflect the number of bird species. 
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A case study of the horRidge with a finer temporal resolution is conducted to test this 

hypothesis. Note that the median duration of bird vocalisations is about 1 second. To 

incorporate most of the bird vocalisations, this study utilises a two-second duration, leading 

to 30 two-second segments in a one-minute audio clip. Consequently, the horRidge is re-

calculated at these two-second audio segments, providing a vector of 30 values per audio clip. 

Due to the fact that bird annotations are provided at a one-minute resolution, the vector of 

horRidge needs to be scaled up to represent one-minute audio clips for further evaluation. In 

this case, the maximum value in the two-second vector is used as an indicator of the acoustic 

complexity in each one-minute audio clip. 

After obtaining the maximum two-second horRidge values for one-minute audio clips, they 

are further used to rank audio clips in a descending order, prioritising audio clips that should 

be audited. The experimental result shows that 75.8% of bird species found at first 60 one-

minute audio clips samples, which is better than that of using the summary acoustic index. 

5.2.3 Spectral acoustic indices  

It has also been reported that spectral information is important for bird species to avoid inter-

specific acoustic competition (Farina 2014), but all acoustic features used in the last two 

sections (5.2.1 and 5.2.2) are spectrally summarised; that is, the spectral information has been 

averaged. To demonstrate if the spectral information is helpful to direct bird species richness 

surveys, this section aims to increase the spectral resolution of acoustic indices. Likewise the 

summary acoustic indices, spectral acoustic indices can be calculated by only averaging the 

time frames of a spectrogram. 

Again the horRidge is selected as the representative acoustic index. Figure 5.2 shows the 

examples of horRidge spectra from four one-minute audio clips. It can be observed that the 

more bird species in an audio clip, the larger the number of local maxima in the 

corresponding horRidge spectrum. Although the mapping between them is not perfect in a 

low signal-to-noise ratio case (bottom plot in Figure 5.2: there are two species in that audio 

clip but no apparent peaks can be found), the local maxima of horRidge spectrum could 

possibly serve as a proxy for the number of bird species in each one-minute audio clip. 
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Figure 5.2 Four examples of horizontal ridge (horRidge) spectra  

To test this hypothesis, the number of local maxima is derived from the horRidge spectrum of 

each one-minute audio clip. First, the horRidge spectrum is subtracted by its mean and set all 

negative values to zeros for noise removal. Then a rectangular window of size 20 is used to 

smooth the horRidge spectrum. Finally, the number of local maxima is obtained by 

calculating the second derivative of the smoothed horRidge spectrum. By ranking the number 

of local maxima of one-minute audio clips, a sampled sequence of audio clips is provided to 

direct bird species richness surveys. 

Species accumulation curves are plotted to examine the efficiency of determining bird species 

richness by different methods. The result of the current study is compared with three 

benchmark curves in Figure 5.3. The top curve denotes the theoretical best which maximises 

the bird species found at each sampled audio clip using the bird annotations; whereas the 

curve of green circles at the bottom is derived from the baseline method which is the mean of 

sampling 1435 one-minute audio clips 1000 times at random. Note that any useful species 

accumulation curve should reside between these two curves. For example, the curve of 

orange diamonds is the dawn sampling (Wimmer et al. 2013). This method assumes that there 

are more bird species in the morning chorus; therefore, it recommends to inspecting audio 

clips during 180 minutes after dawn. The dawn sampling is simulated in this study by 

averaging 1000 times of randomly selecting 180 one-minute audio clips after dawn. The 

curve with red squares is obtained by using the proposed method – ranked by the local 

maxima of spectral horRidge index. 
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Figure 5.3 Species accumulation curve of ranking by spectral horRidge index 

A pairwise t-test has been taken between the proposed method and dawn sampling after 40 

one-minute audio clips samples. The experiment (p < 0.001) shows that the ranking audio 

clips by the number of local maxima of horRdige spectra (squares in Figure 5.3) outperform 

dawn sampling (triangles) after 40 one-minute samples in terms of bird species richness 

surveys. Specifically, at first 60 one-minute audio clip samples, the proposed method can find 

82.2% of bird species in that day, which is 10 percentage points higher than the mean of 

dawn sampling (72.6%). 

5.3 Redundancy removal 

There are some limitations in the previous ranking methods. The ranking of one-minute audio 

clips only considers the acoustic complexity to reflect the number of bird species. Although 

audio clips with more bird species are enabled to have a high priority to be listened to, it is 

possible that some of them might share the same species, which could slow down the 

efficiency of bird species richness surveys. Solving this problem could narrow the gap of 

species accumulation curves between the proposed method and the theoretical best in Figure 

5.3. 

The idea of solving this problem is to give low priority to audio clips that may contain the 

same bird species as in the audited ones. Here two potential approaches are implemented to 

achieve this goal. The first one is to consider removing temporal redundancy. The assumption 

is once an audio clip is inspected, its temporal adjacent samples should be given low priority 

since the same species are more likely to appear in consecutive audio clips. The other 

Random sampling 

Sampled by spectral 
horRidge index 

Dawn sampling 
Theoretical best 
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approach is to remove acoustic redundancy. Audio clips that have similar acoustic contents to 

those audited ones should be discarded. The following two sections investigate these 

approaches respectively. 

5.3.1 Removing temporal redundancy 

If consecutive minutes are more likely to share the same bird species, inspecting these 

minutes could lower the efficiency of determining bird species richness surveys. To deal with 

such temporal redundancy, a threshold can be used by removing t-nearest neighbours of 

audited one-minute audio clip samples. For example, if a one-minute audio clip m is audited, 

any one-minute audio clip that falls between m – t and m + t of the same day could be ignored 

even though it is sampled by the proposed method. 

Figure 5.4 shows the effects of removing temporal redundancy on the amount of one-minute 

audio clips and the number of bird species. The ‘ref’ on the x-axis is the reference point that 

contains 1435 one-minute audio clips and 62 species in a one-day recording. ‘0’ denotes the 

case of filtering audio clips that are likely to contain bird species (Classification method 

proposed in chapter 4). 

 
Figure 5.4 Removing n-nearest temporal neighbours of one-minute audio clips 

The number of one-minute audio clips drops dramatically after using classification method (t 

= 0), leading to 40.6% of audio clips left while retaining 95.2% of bird species. When t = 4, 

the number of audio clips left reaches 9% but the number of bird species also decreases to 

85.5%. There is a trade-off between the number of audio clips and the number of bird species. 



64 
 

When the temporal threshold t continuous to grow, it is favourable to obtain a decreasing 

number of audio clips but is hostile to get a decreasing number of bird species. A stepwise 

search of t-nearest neighbours has been conducted at 2, 4, and 7, aiming to optimise the 

highest efficiency of determining bird species richness. The temporal threshold t is adjusted 

in conjunction with the threshold of k when k aims to remove acoustic redundancy. The 

percent of bird species found in first 60 one-minute audio clip samples is presented in Table 

5.2. 

5.3.2 Removing acoustic redundancy 

Acoustic redundancy is defined in this study as audio clips that contain similar acoustic 

complexity with the one that has been audited. The seven acoustic indices selected by 

forward feature selection algorithm are used to measure the acoustic complexity of one-

minute audio clips because they accord with the characteristics of bird vocalisations. All 

acoustic indices are normalised using the z-score. The similarity is evaluated by calculating 

the Euclidean distance. Given two audio clips with the corresponding vectors of seven 

acoustic indices p and q: 

𝒑 = (𝑝1,𝑝2,⋯ ,𝑝7) 

𝒒 = (𝑞1,𝑞2,⋯ , 𝑞7) 

The calculation of the Euclidean distance is expressed as: 

𝑑(𝒑,𝒒) = �(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯+ (𝑝7 − 𝑞7)2 

The redundant audio clips can be determined when the Euclidean distance falls below a 

threshold or when a certain number of one-minute audio clips that have the smallest distances 

have been reached. Since it is difficult to find a proper threshold in advance, this study 

chooses to use the number of audio clips that have the smallest distances as the acoustic 

threshold for redundancy removal. A stepwise search is also performed at 5, 10, and 15 to 

select the number of audio clips that need to be removed. 

5.3.3 Discussions on removing redundancy 

The removal of temporal and acoustic redundancy is performed on audio clips that have been 

ranked by the summary horRidge index. Table 5.2 illustrates different combinations of 

temporal and acoustic thresholds resulting in the percent of bird species found in first 60 one-
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minute audio clip samples. The temporal threshold of 2 offers higher efficiency than it being 

4 or 7 in terms of percent of bird species found in first 60 one-minute audio clips. The change 

of acoustic thresholds has little effect on improving the efficiency of bird species richness 

surveys when the temporal threshold holds. For example, the percent of bird species found in 

first 60 one-minute audio clips are the same (75.8%) when the temporal threshold is 2. Note 

that when the temporal threshold is 7 and the acoustic threshold is 15, there are less than 60 

one-minute audio clips left; this explains why the third row of the last column is empty. 

Table 5.2 Different combinations of temporal and acoustic thresholds 

Temporal threshold (t) 2 2 2 4 4 4 7 7 7 

Acoustic threshold 5 10 15 5 10 15 5 10 15 

Percent of bird species 
found in first 60 one-

minute audio clips (%) 
75.8 75.8 75.8 71.0 71.0 69.3 71.0 72.6 / 

 

The removal of temporal redundancy increases the percent of bird species found in first 60 

one-minute audio clips from 71.0% (ranked by summary horRidge index) to 75.8% 

(removing temporally adjacent audio clip samples before and after the previously selected 

ones). However, this improvement is the same as that of ranking audio clip samples by two-

second horRidge index in section 5.2.2. Therefore, removing temporal redundancy can 

improve the efficiency of bird species surveys to a certain extent, but it is not better than the 

use of spectral information, such as the spectral horRidge index (section 5.2.3). 

5.4 Summary 

This chapter attempts to find a proxy for the number of bird species in one-minute audio clips 

for rapid determination of bird species richness in a one-day recording. Variants of acoustic 

indices have been studied to find the best proxy, including summary acoustic indices, a two-

second acoustic index, and a spectral acoustic index. The experimental results show that 

amongst the summary acoustic indices, the horRidge index is best correlated with the number 

of bird species in individual audio clips but has limited ability to direct bird species richness 

surveys due to the lossy compression on one-minute audio clips. Based on this result, the 

horRidge is used as a representative acoustic index and re-calculated at a two-second 

resolution. Such an increase of temporal resolution slightly improves the efficiency of bird 

species richness surveys when compared to dawn sampling. Finally, the increase of spectral 

resolution of acoustic indices has also been investigated. A spectral acoustic index – the 
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number of local maxima of a horRidge spectrum, serves as a better proxy for the number of 

bird species in one-minute audio clips than other indices. According to the experiment 

conducted on a one-day recording, inspecting audio clips ranked by spectral horRidge index 

can find 82.2% of unique bird species at the first 60 one-minute samples. 

The use of acoustic indices takes into consideration the number of bird species for ranking 

but ignores overlapping vocalisations within one-minute audio clips. These overlapping 

vocalisations could lower the efficiency of bird species richness surveys. The removal of 

temporal and acoustic redundancy aims to counter this effect. The experiments show that 

removing temporally adjacent audio clips can improve the efficiency of bird species surveys 

but the determination of the threshold for temporal redundancy removal is subjective. The use 

of acoustic indices cannot reflect the detailed vocalisation variances in the audio clips. 

However, the idea of removing acoustic redundancy is objective since the calculations are 

based on the acoustic contents of the recordings. The next chapter will focus on extracting 

distinct bird vocalisations from one-minute audio clips. Given this information, it is possible 

to detect overlapping bird vocalisations and sample audio clips in a sequence that maximises 

the number of new vocalisations for efficient bird species surveys. 
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6 Using non-negative matrix factorisation to 

detect overlapping bird vocalisations 

amongst audio clips 
This study aims to find the maximum number of unique bird species while listening to the 

minimum number of one-minute audio clips. An ideal solution to such a problem is to rank 

audio clips in an order that the maximum number of new bird species can be found at each 

audited instance. To achieve this goal, one should know specific species that appear in these 

audio clips. In practice, actual annotations of bird species remain unknown to peoples in most 

of the environmental recordings. Indeed it is the purpose of this study to develop assistive 

automated techniques to maximise the efficiency of determining unique bird species. 

Supervised machine learning is a widely used automated recognition technique for bird 

species recognition (Kwan et al. 2004; Chen and Maher 2006; Briggs, Raich and Fern 2009). 

This technique relies heavily on a labelled training dataset, which is time-consuming, 

laborious, and sometimes prohibitive to obtain. As for bird species recognition, a labelled 

dataset is referred to bird vocalisation segments in audio recordings that are associated with 

specific species names. A ubiquitous characteristic of bird vocalisations is their diversity. 

Competition for the acoustic space and environmental constraints such as temperature and 

vegetation compositions may lead to significant variations within and between species 

vocalisations (Farina 2014). 

This chapter formulates the problem of searching for the maximum number of unique bird 

species in each sampled audio clip in a manner of finding the most new bird vocalisations. 

The rest of this chapter is structured as follows. Section 6.1 introduces the concept of non-

negative matrix factorisation and explains why it is applicable to the current problem. Section 

6.2 describes the detailed algorithm for bird vocalisation extraction and how it can be utilised 

to sample audio clips for bird species richness surveys. The performance of non-negative 

matrix factorisation and its efficiency of assisting bird species richness surveys are 

demonstrated in section 6.3. Section 6.4 discusses the advantages and limitations of the 

current method. Finally, section 6.5 concludes and describes the future work. 
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6.1 Non-negative matrix factorisation 

To address the problem of lacking information on various types of bird vocalisations, it is 

essential to develop an approach that can automatically capture representative acoustic 

features to learn a codebook of spectral profiles from the spectrograms and use them to 

represent bird vocalisations in an audio clip. Several techniques have been used to generate 

compact representations of spectrogram data, such as principal component analysis (Baker 

and Logue 2003) and self-organising maps (Vallejo, Cody and Taylor 2007). The weaknesses 

of these techniques lie in the fact that either global features of an audio clip are extracted or 

the applications are constrained to similar types of vocalisation. It, therefore, requires a 

general approach to extract local structures in audio clips. 

Non-negative matrix factorisation (Lee and Seung 1999) can decompose a matrix into a 

product of two matrices. The felicity of such decomposition is it enables to generate a parts-

based representation, enabling to characterise distinct bird vocalisations of a spectrogram. 

Since its inception, non-negative matrix factorisation has seen a broad range of applications, 

including multiple sound sources separation (Smaragdis 2004; Zhang et al. 2008), music 

transcription (Bertin, Badeau and Richard 2007), and gene data expression (Frigyesi and 

Höglund 2008; Hutchins et al. 2008). One advantage of using non-negative matrix 

factorisation is that its decompositions are additive parts of the original matrix, making the 

data interpretable (Brunet et al. 2004). Recently, probabilistic latent component analysis 

(PLCA) – a probabilistic variant of non-negative matrix factorisation has been proposed for 

the analysis of soundscape ecology (Eldridge A. C. 2016). This study suggests that PLCA 

enables separation of distinct acoustic events from background noise. 

Non-negative matrix factorisation can be described as follows. Given a matrix S of size n × m, 

the goal of non-negative matrix factorisation is to approximate to the matrix S by the 

multiplication of two non-negative matrices W and H: 

𝑺 ≈ 𝑾 ∙ 𝑯 

where the basis matrix W has a size of n × r and the coefficient matrix H has a size of r × m. 

Here, r is called the factorisation rank. 

The approximation is achieved by minimising a cost function which measures the 

reconstruction error. One such cost function is: 

𝐷 =
‖𝑺 −𝑾 ∙ 𝑯‖F
√𝑛 × 𝑚
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where D is the root-mean-squared residual (RMSS)(Berry et al. 2007). The subscript ‘F’ 

denotes the Frobenius norm. Let aij be an element of matrix (S – W   H), the Frobenius norm 

is calculated as: 

‖𝑺 −𝑾 ∙ 𝑯‖F = ����𝑎𝑖𝑖�
2

𝑚

𝑗=1

𝑛

𝑖=1

 

The algorithm is iterative starting with random initial values for W and H. The update rules 

for W and H are: 

𝑾𝑖𝑖 ← 𝑾𝑖𝑖 ∙
(𝑺 ∙ 𝑯𝑇)𝑖𝑖

�𝑾 ∙ (𝑯 ∙ 𝑯𝑇)�
𝑖𝑖

   𝑓𝑓𝑓 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑎𝑎 1 ≤ 𝑞 ≤ 𝑟 

𝑯𝑞𝑞 ← 𝑯𝑞𝑞 ∙
(𝑾𝑇 ∙ 𝑺)𝑞𝑞

�(𝑾𝑇 ∙ 𝑾) ∙ 𝑯�
𝑞𝑞

   𝑓𝑓𝑓 1 ≤ 𝑞 ≤ 𝑟 𝑎𝑎𝑎 1 ≤ 𝑗 ≤ 𝑚  

Variants of non-negative matrix factorisation algorithm differ in the non-negativity 

constraints on the bases (W), the coefficients (H), or both (Feng et al. 2002; Patrik 2004; 

Pascual-Montano et al. 2006). 

A simple example of non-negative matrix factorisation on a spectrogram can be found in this 

paper (Smaragdis, 2004). It is illustrated in Figure 6.1. Generally, the columns of the matrix 

W denote the distinct spectral profiles and the rows of the matrix H denote the corresponding 

temporal coefficients of each spectral profile. The distinct spectral profiles are considered 

unique bird vocalisations in this study. With this information, audio recordings are later 

ranked in an order that maximise the number of unique bird vocalisations for efficient bird 

species surveys. 

 
Figure 6.1 An example of non-negative matrix factorisation. 
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6.2 Representation of distinct bird vocalisations 

The non-negative matrix factorisation algorithm requires a pre-defined r to operate. 

Controversially, determining an appropriate r for an audio recording is a preliminary step to 

obtain distinct bird vocalisations. A small r leads to a combination of multiple distinct spectra; 

whereas a large r ends up with non-informative spectra or a distinct spectrum divided into 

multiple small spectra. This section introduces an approach to automatically determine a 

factorisation rank r for an audio recording. 

6.2.1 Pre-processing spectrogram data 

Low-frequency components of environmental recordings usually contain all kinds of noise 

rather than bird vocalisations. To increase the effectiveness of non-negative matrix 

factorisation, a high-pass filter is applied first to remove the frequency component below 

1000 Hz. Note that the following procedures are performed on spectrograms of one-minute 

audio clips that have been classified as Birds on 15th October 2010 from site 4, the SERF. 

6.2.2 Estimation of the factorisation rank 

The most crucial issue in this study is to determine a proper factorisation rank r for the non-

negative matrix factorisation. There is no uniform r for the non-negative matrix factorisation 

due to the inherent complexity of environmental recordings. A common solution is to 

optimise the factorisation performance by increasing r. For example, the first r where the 

cophenetic correlation coefficient begins to fall can be selected as the optimal value (Brunet 

et al. 2004). Here cophenetic correlation coefficient measures the similarity of pairwise 

distances of spectrogram matrices before and after the non-negative matrix factorisation. Its 

value ranges from 0 to 1, where 1 denotes similar and 0 denotes dissimilar. A decrease of the 

coefficient means the increase of r cannot provide a better approximation. Another research 

uses the sum squared residuals (Hutchins et al. 2008). Conversely, the increase of the sum 

squared residual indicates that a further increase of r is not capturing useful information. 

Therefore, the first r that increases the residual will be selected as the proper factorisation 

rank. 

This work follows an adaptive method proposed by Frigyesi and Hӧglund (Frigyesi and 

Höglund 2008) to determine the factorisation rank r based on the acoustic complexity of each 

recording. For two consecutive factorisation rank r – 1 and r, the decreases of RMSS for the 

original spectrogram (∆Do) and its randomised counterpart (∆Drandom) are calculated. If ∆Do > 



71 
 

∆Drandom , then there is additional information yet to be captured and a larger r is required; if 

∆Do ≤ ∆Drandom , then any increase of r will only capture noise. The last r that has the ∆Do > 

∆Drandom is considered as a proper factorisation rank for a specific spectrogram. In Frigyesi 

and Hӧglund’s work, the spectrogram is randomised across the rows of each column, which 

might be appropriate for gene analysis. By contrast, both the rows (frequencies) and columns 

(time frames) of a spectrogram are randomised since bird vocalisations could be broadband 

and last for several time frames. 

Since the RMSS may converge to local minima, the non-negative matrix factorisation is 

repeated 30 times with random initial values for each spectrogram and the ones with the 

smallest residual are selected as the results. The NMF package in R is used to implement the 

non-negative matrix factorisation in this study. 

6.2.3 Extracting distinct spectra of bird vocalisations 

After applying non-negative matrix factorisation algorithm to a spectrogram, a spectral 

matrix W and a temporal matrix H are obtained. Ideally, a column of W represents a specific 

type of bird vocalisation and its corresponding row of H represents the temporal position; 

when multiplied, they constitute a unique acoustic pattern in a spectrogram (Smaragdis and 

Brown 2003). Note that non-negative matrix factorisation may not capture the exact bird 

vocalisation, but unique spectra that appear repeatedly. In an environmental audio clip, a bird 

vocalisation consisting of different spectral components might be partitioned into separate 

spectral profiles due to the acoustic complexity of in-field recordings. It is necessary to 

integrate these partitioned spectral profiles into one spectrum. 

Figure 6.2 illustrates the problem of a vocalisation being partitioned into two small spectral 

profiles Wa and Wb. In this case, their temporal coefficients (Ha and Hb) should be similar if 

these small spectral profiles belong to the same vocalisation. Therefore, the spectral profiles 

can be integrated into the same spectrum by finding similar temporal coefficients. 

To deal with this problem, a hierarchical clustering technique is applied to find similar 

temporal coefficients. This procedure aims to accommodate the corresponding spectral 

profiles as distinct bird vocalisations. The Ward’s minimum variance method implemented in 

the ‘stats’ package of R is used for the clustering (using the ‘hclust’ function). The 

assumption is spectral profiles of the same vocalisation may occur at adjacent time frames 

and it is unlikely that two or more species vocalise simultaneously throughout a one-minute 
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audio clip. In other words, similar temporal coefficients (rows) of matrix H reflect that their 

spectral counterparts (columns) of matrix W belong to the same vocalisation. Using the 

clusters of temporal coefficients, the corresponding spectral profiles of matrix W are 

averaged. These clustered spectral profiles are later considered as the distinct bird 

vocalisations in an audio clip. 

 
Figure 6.2 Spectral profiles partitioned by the non-negative matrix factorisation 

A critical issue in the hierarchical clustering is tree pruning. In this study, acoustic contents of 

one-minute audio clips are complex and no single constant threshold can identify desirable 

clusters for different audio clips. To address this issue, a dynamic tree cut algorithm 

implemented as an R package is used to prune the cluster tree of temporal coefficients 

(Langfelder, Zhang and Horvath 2008). In this experiment, the dynamic hybrid method is 

used to prune the cluster tree with two parameters. The parameter minClusterSize is referred 

to the minimum number of instances (in this case, spectral profiles) in each cluster. The 

parameter deepSplit is referred to a simple control of the number of the clusters. A large 

deepSplit value will produce a large number of small clusters. In this experiment, the 

minClusterSize is set to 1 since it is possible that a single spectral profile represents a unique 

type of bird vocalisation; the deepSplit is set to the highest value of 3 due to the maximum 

number of spectral profiles of an audio clip is relatively low (r = 28). It is plausible to 

generate small clusters of spectral profiles as distinct bird vocalisations. 

Wa 

 Wb 

 

Ha and Hb 
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6.2.4 Sampling audio clips 

A codebook of distinct spectra of bird vocalisations is created using the clustered spectral 

profiles. This codebook reflects all unique types of bird vocalisations within the target 605 

one-minute audio clips. The process of creating such a codebook is described as follows. The 

initial codebook is empty and the clustered spectral profiles of any single audio clip can be 

added into the codebook. The algorithm then traverses the rest of audio clips and calculates 

the similarity between clustered spectral profiles in the audio clip candidates and those in the 

codebook. A clustered spectral profile that is not similar to any of those in the codebook will 

be added into the codebook as a new bird vocalisation. When the exhaustive search is 

completed, the codebook incorporates all unique clustered spectral profiles/bird vocalisations 

in the recordings. Pearson’s correlation coefficients are used to measure the similarity 

between two clustered spectral profiles. A stepwise search has been conducted on selecting 

the similarity threshold based on the classification accuracy. The search starts from 0.1 to 0.9 

at a 0.1 step, using the number of species found to decide the similarity threshold while 

holding other parameters constant. Finally, the similarity threshold is set to 0.7. Consequently, 

any clustered spectral profile that has a correlation coefficient smaller than 0.7 with spectral 

profiles in the codebook will be considered as a new bird vocalisation and added to the 

codebook. 

Given this codebook, the bird vocalisation present in an audio clip can be associated with a 

specific identity based on the spectral profiles. These spectral profiles are further used to 

indicate distinct bird species in the recordings under the assumptions that no species share 

similar vocalisations and any species has a low diversity of vocalisations. A greedy algorithm 

is then developed to sample audio clips so that each audio clip can provide the maximum 

number of new spectral profiles, which might reflect new bird species. The algorithm is 

described as follows: 

1. Identify present/absent information of spectral profiles in an audio clip using the 

codebook; 

2. Find the audio clip that contains the most spectral profiles. If there is a tie, select an 

arbitrary one; 

3. Search through the remaining audio clips and select the audio clip that provides the 

maximum  new spectral profiles based on the selected audio clips. If there is a tie, select 

an arbitrary one; 
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4. Go back to step 3 until no new spectral profile can be found. 

By listening to these sampled audio clips, one is expected to identify the maximum number of 

bird species while listening to the minimum number of one-minute audio clips. 

6.3 Results 

6.3.1 The evaluation of factorisation rank 

The reconstruction performance of non-negative matrix factorisation is examined with an 

example that has the maximum factorisation rank (r = 28). Figure 6.3 compares the original 

spectrogram and its reconstruction. This is the 398th minute on 15th October 2010. The x- 

and y-axes have been normalised between 0 and 1. The frequency ranges from 1000 – 8820 

Hz and the time frame ranges from 0 to 2064. One vocalisation (No. 3) is absent in the 

reconstructed spectrogram.  
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Figure 6.3 Original spectrogram (top) and its reconstruction from non-negative matrix factorisation 
(bottom).  

Based on the presence/absence annotations of birds, there are eight species in this audio clip, 

each of which has their unique vocalisation labelled in the original spectrogram (Figure 6.3: 

top). One vocalisation (No. 3) is lost in the reconstructed spectrogram (dot box, Figure 6.3: 

bottom). Low signal-to-noise ratio could be the main cause of the lost vocalisation in the 

reconstructed spectrogram. 

6.3.2 Clustered spectral profiles and spectrogram reconstruction 

The reconstruction performance of clustered spectral profiles is examined in this section. 

Figure 6.4 displays a reconstructed spectrogram of the 398th minute using the proposed 

clustering method. Compared to the reconstructed spectrogram with a rank of 28 (The bottom 

plot in Figure 6.3), salient bird vocalisations can be found in Figure 6.4. It is not surprising to 

find that vocalisation No. 3 is absent because the initial factorisation does not capture this 

acoustic information. However, due to the clustering on both spectral and temporal matrices, 

some artefacts have also been introduced, leading to blurring effects on the vocalisations in 

the reconstructed spectrogram (Figure 6.4). Since this reconstructed spectrogram is obtained 

by multiplying clustered spectral matrix W* with clustered temporal matrix H*, it is difficult 

to observe more subtle details on how each cluster behaves. Particularly, spectral profiles 

(columns) of clustered matrix W* will later be considered as distinct bird vocalisations. 
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Figure 6.4 A reconstructed spectrogram using the clustered temporal coefficients 

To further understand the clustered spectral profiles, the columns of matrix W* are plotted in 

Figure 6.5. Note that the normalised frequency (x-axis) in Figure 6.5 is the y-axis in Figure 

6.4 and the amplitudes of spectral profiles (y-axis) in Figure 6.5 contribute to the grey colour 

in Figure 6.4. Therefore, which clustered spectral profile contributes to which vocalisation 

type can be verified by comparing the spectral profiles between Figure 6.4 and Figure 6.5. 

For example, there are nine spectral profiles in Figure 6.5. W1 and W2 register vocalisation 

No. 1; W3 covers the high-frequency component of vocalisation No.2; W4 contributes to 

vocalisation No. 4; W5 is a combination of vocalisations No. 2 and No. 5 because both types 

of vocalisations spread similar frequency ranges; W6 and W7 divide vocalisation No. 6 into 

high and low-frequency components; W8 and W9 furnish us with vocalisations No. 7 and No. 

8 respectively. Although the spectral profiles and the actual bird vocalisations are not 

perfectly matched, a bird vocalisation is able to be registered by a spectral profile. 

1 

2 

3 

4 

5 6 

7 

8 



77 
 

 

Figure 6.5 Nine clustered spectral profiles of an one-minute audio clip 

6.3.3 Sampling audio clips to assist bird species surveys 

The clustering and dynamic tree prune are applied to all 605 one-minute audio clips that are 

classified as Birds in chapter 4, resulting in a list of clustered spectral profiles per audio clip. 

Using the Pearson’s correlation coefficient, a codebook of distinct spectral profiles 

representing unique bird vocalisations is created and later used to identify present bird 

species in audio clips. The greedy algorithm described in section 6.2.4 is implemented to 

sample audio clips so that each audited audio clip provides the maximum number of new 

spectral profiles. 

Species accumulation curves are plotted in Figure 6.6, which demonstrate the efficiency of 

using different strategies to find new bird species in a one-day recording. The figure can be 

interpreted as the percent of bird species found (y-axis) in the given number of one-minute 

audio clips (x-axis). Two benchmarks have been shown in the diagram. The triangular curve 

denotes the highest efficiency of determining unique bird species with ground-truth 

annotations; whereas the curve with green circles serves as a non-informative strategy that 
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sample 1000 times at random from all 1435 one-minute audio clips. Any other strategy will 

reside between these two curves. The diamond curve is the currently best-published strategy 

called dawn sampling, which selects audio clips during three hours after dawn. Here, audio 

clips sampled from these three hours are randomised and averaged over 1000 times. 

After applying the greedy algorithm, 232 audio clips are sampled in a sequence that 

maximises the number of new spectral profiles at each sample. The first 120 one-minute 

audio clips are selected so that the species accumulation curve is comparable to the results 

generated by other sampling methods. 

It can be seen from Figure 6.6 that the efficiency of surveying birds using non-negative 

matrix factorisation method does not exceed that of dawn sampling until 75 one-minute audio 

clip samples. Particularly in the first 60 one-minute audio clip sample, the non-negative 

matrix factorisation method (71.0%) finds a comparable percent of bird species as the dawn 

sampling (72.6%). Note that the species accumulation curve of dawn sampling increases 

rapidly but also exhausts quickly because of the species that do not vocalise at dawn. By 

contrast, the curve generated by the non-negative matrix factorisation method (Figure 6.6: red 

squares) is subject to low efficiency in the beginning but rises quickly after 75 samples. The 

reason for these differences lies in the total number of audio clip candidates being sampled. 

The dawn sampling method will miss species that vocalise outside the dawn period (3 hours 

after dawn). The proposed method does not have such time constraints and can search 

exhaustively from audio clip samples that are likely to contain bird species. Consequently, 

the proposed method enables to find 56 out of 62 (90.3%) bird species in 120 one-minute 

audio clip samples. 

To capitalise on both methods, the first 120 one-minute audio clips sampled by the proposed 

method are selected and those during the dawn are moved to the beginning of the sampled 

sequence while keeping their relative order. The species accumulation curve (Figure 6.6: blue 

squares) demonstrates that dawn sampling compensates the proposed method for the 

inefficiency in the beginning. The combination of the non-negative matrix factorisation-based 

method and the dawn sampling outperforms either method used alone. 
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Figure 6.6 Five species accumulation curves generated by different sampling strategies 

6.4 Discussions 

The use of non-negative matrix factorisation has two niceties of decomposing a spectrogram 

into a spectral profile matrix and a temporal coefficient matrix. One attraction is the spectral 

profiles can be considered as indicators of distinct bird vocalisations and utilised to sample 

audio clips. This method assists people in conducting efficient bird species richness surveys. 

The other felicity is the temporal coefficients indicate the occurrences of the corresponding 

spectral profiles, which might merit further investigation of the abundance of vocalisations. 

A randomisation method is used to estimate the appropriate number of factorisation rank of 

environmental audio clips. Although audio clips used in this study are at a one-minute 

resolution, this randomisation method is applicable to recordings of any arbitrary length. One 

may notice that non-negative matrix factorisation reduces the data dimensions of a 

spectrogram. The effectiveness of such data reduction is based on the acoustic complexity of 

an audio clip. For example, a spectrogram in this study has about 2000 × (256 − 30) = 

452000 data points (The lowest 30 frequency bins, ranging from 0 to 1000 Hz, have been 

removed to avoid low-frequency noise). The maximum number of factorisation rank of a 

spectrogram is 28; therefore it has (2000 × 28) + (28 × 226) = 62328 data points. That is, for 

the most complex spectrogram in the dataset, the decomposed data are approximately 1/7 size 

of the original spectrogram. The trade-off is an increase in computational time, which is 

mainly dependent on different non-negative matrix factorisation algorithms. 

Random sampling 
NMF 
NMF + Dawn sampling 
Dawn sampling 
Theoretical best 
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One advantage of using the proposed method to assist bird species surveys is that it is not 

temporally-dependent. In contrast to the dawn sampling, the proposed method can search 

through all audio clips for species, including those that may not vocalise at dawn. This can be 

exemplified by the 141st one-minute audio clip of the original one-day recording (It is 

recorded from 2:21 a.m. to 2:22 a.m.). It can be learned from the bird annotations that there is 

only one species in this audio clip and it vocalises at night. Apparently, any species that 

vocalise outside of dawn chorus cannot be found by dawn sampling. However, the proposed 

method successfully captures distinct bird vocalisations within 120 one-minute samples. 

The limitations of this technique are two-fold. First, the non-negative matrix factorisation 

only captures the repetitive spectra in an audio clip. Frequency-modulated vocalisations 

(syllables with multiple discrete dominant frequencies such as Vocalisation No. 3) will be 

missed due to a low signal-to-noise ratio by using this technique. However, since this 

vocalisation occurs in most of the audio clips, it is picked up with other bird vocalisations. 

Second, the proposed method is only implemented on a one-day in-field recording collected 

from a sub-tropical area. Future work is needed to test the proposed algorithm with a large 

number of audio recordings. 

6.5 Summary 

This chapter utilises the non-negative matrix factorisation to extract spectral profiles from 

environmental recordings to represent distinct bird vocalisations and direct bird species 

richness surveys. A novel randomisation method is proposed to determine the factorisation 

rank based on the acoustic complexity of an audio clip. The spectral profiles derived from 

non-negative matrix factorisation are later clustered and used to generate a codebook of 

spectral profiles. Given such a codebook, a greedy algorithm is developed to sample audio 

clips in an order that maximises the number of unique bird vocalisations at each audited 

audio clip sample. 

Although the percent of bird species found in the first 60 one-minute audio clip samples 

using the non-negative matrix factorisation method (71.0%) is close to that of dawn sampling 

(72.6%), the former method offers the currently best result in the first 120 samples by finding 

90.3% of total species. This result implies that the non-negative matrix factorisation method 

has the potential to further reduce the redundancy of acoustic data for rapid determination of 

bird species. The use of dawn sampling compensates the non-negative matrix factorisation 
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method for the early inefficiency of the sampling, providing higher efficiency for assisting 

bird species surveys than either method used alone. 

The non-negative matrix factorisation offers an effective way to exact spectral profiles for the 

representation of distinct bird vocalisations in the case of non-targeted multiple species 

inventories. However, there are weaknesses in the proposed method for generating the 

codebook of spectral profiles. First, clustering the spectral profiles based on their 

corresponding temporal coefficients is under the assumption that different vocalisations are 

well partitioned and the same vocalisations are adjacent in the time domain. This assumption 

holds in most cases and relies on the signal-to-noise ratio of bird vocalisations. Second, the 

use of Pearson’s correlation coefficients to measure the similarity between two spectral 

profiles may be simplistic because such a method is subject to outliers. Further work is 

needed to improve this similarity measure. 

The non-negative matrix factorisation method has a promising application in analysis of 

environmental recordings with non-targeted multiple species inventories. Although this study 

focuses on birds, the proposed method should be applicable to the analysis of other vocal 

species such as crickets and frogs. This work also broadens the scope of non-negative matrix 

factorisation from gene expression and image representation to include faunal detection in 

environmental recordings. 
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7 Conclusions and future work 
Advances in acoustic sensor technology enable the preservation of data for environmental 

monitoring and biodiversity assessment. These data remain opaque unless effective and 

efficient methods are used to interrogate them. Traditional in-field manual observation and 

analysis has become a big data problem. Although a growing number of automated 

techniques have been devised for vocal species detection such as insects and frogs (Brandes, 

Naskrecki and Figueroa 2006), birds (Acevedo et al. 2009), and bats (Russo and Voigt 2016), 

they are limited to various aspects such as well-labelled datasets and high signal-to-noise 

ratio recordings. There is a pressing need to develop automated techniques that can enhance 

the efficiency during data analysis process. The objective of the current research is to 

investigate automated techniques in assisting manual surveys of bird species in a one-day 

recording. The proposed methods enable to sample audio clips in a way that the maximum 

number of unique bird species can be manually identified while the minimum number of 

audio clips is required to be listened to. 

7.1 Summary of achievements 

This thesis poses the research question “How can automated techniques assist efficient bird 

surveying in environmental recordings?” To address this question, a series of computer-

assisted techniques have been investigated, improving the efficiency of surveying birds with 

acoustic data. These techniques consist of the main contributions of this thesis and answer the 

sub-questions proposed in section 1.2: 

1. How can irrelevant audio recordings be removed to assist bird species surveys?  

2. How can audio recordings be ranked to increase the efficiency of bird species surveys? 

The mapping between achievements, sub-questions, and chapters is summarised in Table 7.1. 

Table 7.1 The mapping of achievements, research questions, and chapters 

Automated techniques Research questions Chapters 

Classification 1 4 

Ranking 2 
5 

6 
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The main contributions of this thesis are: 

1) Applied a single-label classification model to remove irrelevant audio clips which are 

unlikely to contain bird species 

The first automated technique proposed in this thesis is classification, which aims at filtering 

acoustic data that are likely to contain bird species so that species richness surveys can be 

conducted more efficiently based on these post-classified data. It answers sub-question 1. 

Chapter 4 compares various single- and multi-label classifiers in terms of their classification 

accuracy and the performance of filtering acoustic data for bird species at a one-minute 

resolution. Consequently, an optimal classifier that can retain 95.2% of bird species is 

selected to remove irrelevant acoustic data. The classification method has the advantages of 

being resilient to weather conditions such as heavy rain and strong wind, albeit having a 

comparable efficiency of determining bird species richness to dawn sampling. 

2) Proposed two techniques to rank audio clips for efficient acoustic bird species surveys 

Two ranking techniques are proposed to sample audio clips based on the audio recordings 

classified as ‘Birds’. They answer sub-questions 2. 

Chapter 5 aims to find a proxy for the number of unique bird species from variants of 

acoustic indices. The experimental results show that the summary horizontal ridge (horRidge) 

index is best correlated with the number of unique bird species in targeted one-minute audio 

clips. The sampled sequence of audio clips directed by the horRidge offers higher efficiency 

for bird species richness surveys than that of dawn sampling. It has also been shown that the 

increase of temporal or spectral resolutions of acoustic indices can improve the efficiency of 

bird species richness surveys. Since the ranking by acoustic indices method ignores the same 

species at audited audio clips, a redundancy removal method is introduced to eliminate 

temporally adjacent and acoustically similar audio clips. However, this post-redundancy 

removal method has limited ability to improve the efficiency of bird species richness surveys 

and the use of such a method is subject to empirical parameter settings. 

Chapter 6 develops a non-negative matrix factorisation based algorithm to detect overlapping 

bird vocalisations amongst audio clips for more efficient bird species surveys. This technique 

takes into consideration overlapping bird vocalisations and provides a method to maximise 

the number of new vocalisations at each audited audio clip. A new randomisation technique 

is proposed to determine the factorisation rank of different audio clips, each of which is 
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dependent on the complexity of acoustic content. The temporally adjacent spectral profiles of 

audio clips are clustered and considered as a distinct bird vocalisation. A codebook of distinct 

spectral profiles is created by using a similarity measure. Finally, a greedy algorithm is 

proposed to sample audio clips by maximising the number of unique spectral profiles in each 

sampled audio clip. This technique outperforms other techniques by finding 90.3% of bird 

species within 120 one-minute audio clip samples. Table 7.2 summarises the main results of 

different chapters experiments in comparison with two benchmarks in the first 60 and 120 

one-minute audio clip samples. The best performance is highlighted in bold. 

Table 7.2 The progressive results of the main  

 Random 
sampling 

Dawn 
sampling 

Classification 
Chapter 4 

Ranked by 
acoustic 
indices 

Chapter 5 

Non-negative 
matrix 

factorisation 
Chapter 6 

Percent of bird species 
found in the first 60 one-

minute audio clip 
samples (%) 

60.4 ± 5.2 72.0 ± 3.1 70.2 ± 4.0 82.3 77.4 

Percent of bird species 
found in the first 120 
one-minute audio clip 

samples (%) 

73.0 ± 3.9 80.0 ± 1.7 81.4 ± 3.7 87.1 90.3 

The proposed automated techniques are beneficial to the study of soundscape ecology which 

deals with a number of audio recordings that cover a large spatiotemporal scale. They enable 

to remove irrelevant acoustic data such as the rain and the wind so that laborious manual 

surveys can be alleviated for species analysis. 

The time that a skilled person can spend on listening to recordings for species study is 

rigorously restricted. The proposed methods ameliorate the efforts of bird species richness 

surveys in a one-day recording from 1435 one-minute audio clips to 120 of them while 

retaining 90% of the species. Such an improvement also outweighs other published strategies 

for assisting bird species richness surveys. 

Acoustic indices were developed to assess biodiversity and investigate landscape under the 

framework of soundscape ecology; whereas bird species richness surveys are closely related 

to bioacoustics which mainly focuses on studying individual species. This thesis utilises 

acoustic indices to assist bird species surveys, signifying the linkage between soundscape 
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ecology and bioacoustics. Although the current study focuses on bird species, the idea of 

classifying and ranking audio clips for species richness surveys should be applicable to other 

vocal species. 

7.2 Limitations 

This study assumes that no species share the same vocalisations and any species has a low 

diversity of vocalisations. A mapping between multiple types of vocalisations and multiple 

species is not uncommon in the natural environment. When confronted with recordings 

containing multiple bird species with multiple types of vocalisations, the current approach 

could be less efficient. However, based on the current experimental results, it can be inferred 

that the proposed automated techniques can efficiently assist bird species richness surveys 

using acoustic data collected from a sub-tropical area. 

There is a constraint on the scope of available data from two aspects. First, environmental 

recordings used in this thesis are collected from a single location, which could bias the 

accuracy of the classification model for a sub-tropical ecosystem. Therefore, it is essential to 

test the robustness of the proposed classifier with recordings collected from other regions. 

Additionally, annotations of bird species are limited to a small group of skilled persons. 

One might also wonder if various levels of bird species richness could affect the efficiency of 

the proposed approach. The number of unique bird species in the recordings is not under any 

control during the development of automated techniques; instead, it is the vocal activities of 

birds that could make a difference. Provided that different vocalisations partition well in both 

temporal and spectral domains, the current approach is able to detect the existence of 

different species and efficiently direct the sampling of audio clips, regardless of high or low 

species richness. 

The classification methods have no classes related to amphibians such as frogs. This is 

mainly because the environmental recordings used in this thesis rarely contain amphibians 

and the main study object is bird species. For the classifier proposed in this thesis, audio clips 

that do contain amphibians could be classified into any of the five pre-defined classes, 

depending on the time-frequency structures of their vocalisations. An additional dataset 

(labelled with the targeted amphibian classes) is required to generate a new classifier. 

The study of acoustic indices for soundscape ecology analysis is still in its infancy. There is 

no single index that can reliably estimate all biodiversity facets of an ecosystem. However, 
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several complementary indices can be used for biodiversity assessment. Extra care needs to 

be taken when acoustic indices are used for species analysis especially when they are 

summarised from an audio recording. They might be more suitable for analysing general 

acoustic complexity or species abundance at a community level than specific species 

identification, where detailed acoustic characteristics are important. 

7.3 Future work 

This work can be seen as a first step towards using automated techniques to assist 

biodiversity assessment and environmental monitoring with acoustics. There remains much 

work to be done in this field. Two particularly interesting areas for further research are 

described as follows. 

The classifiers proposed in chapter 4 are useful for filtering massive environmental 

recordings for ecological studies, but they are yet available to the public. A web-based system 

(https://www.ecosounds.org/) is being built by the eco-acoustic group of Queensland 

University of Technology to archive, manage, and process environmental recordings; 

therefore integrating the classification techniques into this system will have a great practical 

use. 

The non-negative matrix factorisation-based algorithm in chapter 6 has shown promising 

results for distinct bird vocalisation detection. It provides a new solution to the problem of 

acoustic species detection in the case of non-targeted multiple species inventories. The 

similarity measure used to construct the codebook of spectral profiles is subject to outliers. 

Using other outlier-resistant similarity measures should create a more accurate codebook and 

hence enhance the efficiency of determining bird species richness. 

  

https://www.ecosounds.org/
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Appendix – Names of bird species 
English name Scientific name 

Eastern Koel Eudynamys orientalis 

Eastern Yellow Robin Eopsaltria australis 

Eastern Whipbird Psophodes olivaceus 

Grey Fantail Rhipidura albiscapa 

Grey Shrike-thrush Colluricincla harmonica 

Leaden Flycatcher Myiagra rubecula 

Lewin’s Honeyeater Meliphaga lewinii 

Magpie-lark Grallina cyanoleuca 

New Guinea Babbler Pomatostomus isidorei 

Olive-backed Oriole Oriolus sagittatus 

Pied Butcherbird Cracticus nigrogularis 

Rainbow Lorikeet Trichoglossus moluccanus 

Rufous Fantail Rhipidura rufifrons 

Rufous Whistler Pachycephala rufiventris 

Sacred Kingfisher Todiramphus sanctus 

Scarlet Honeyeater Myzomela sanguinolenta 

Shining Bronze-cuckoo Chrysococcyx lucidus 

Silvereye Zosterops lateralis 

Spangled Drongo Dicrurus bracteatus 

Striated Pardalote Pardalotus striatus 

Superb Fairy-wren Malurus cyaneus 

Torresian Crow Corvus orru 

White-throated Honeyeater Melithreptus albogularis 

Willie Wagtail Rhipidura leucophrys 

Yellow-faced Honeyeater Lichenostomus chrysops 
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