
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Augusto, Adriano, Conforti, Raffaele, Dumas, Marlon, La Rosa, Marcello,
Maggi, Fabrizio Maria, Marrella, Andrea, Mecella, Massimo, & Soo, Allar
(2017)
Automated discovery of process models from event logs: Review and
benchmark.

This file was downloaded from: https://eprints.qut.edu.au/106942/

c© 2017 The Author(s)

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://eprints.qut.edu.au/view/person/Augusto,_Adriano.html
https://eprints.qut.edu.au/view/person/Conforti,_Raffaele.html
https://eprints.qut.edu.au/view/person/Dumas,_Marlon.html
https://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
https://eprints.qut.edu.au/106942/

1

Automated Discovery of Process Models from
Event Logs: Review and Benchmark

Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,
Fabrizio Maria Maggi, Andrea Marrella, Massimo Mecella, Allar Soo

Abstract—Process mining allows analysts to exploit logs of historical executions of business processes to extract insights regarding
the actual performance of these processes. One of the most widely studied process mining operations is automated process discovery.
An automated process discovery method takes as input an event log, and produces as output a business process model that captures
the control-flow relations between tasks that are observed in or implied by the event log. Various automated process discovery
methods have been proposed in the past two decades, striking different tradeoffs between scalability, accuracy and complexity of the
resulting models. However, these methods have been evaluated in an ad-hoc manner, employing different datasets, experimental
setups, evaluation measures and baselines, often leading to incomparable conclusions and sometimes unreproducible results due to
the use of closed datasets. This article provides a systematic review and comparative evaluation of automated process discovery
methods, using an open-source benchmark covering twelve publicly-available real-life event logs and eight quality metrics. The results
highlight gaps and unexplored tradeoffs in the field, including the lack of scalability of several methods and a strong divergence in their
performance with respect to the different quality metrics used.

Index Terms—Process mining, automated process discovery, survey, benchmark.

F

1 INTRODUCTION

Modern information systems maintain detailed trails of the
business processes they support, including records of key
process execution events, such as the creation of a case or the
execution of a task within an ongoing case. Process mining
techniques allow analysts to extract insights about the actual
performance of a process from collections of such event
records, also known as event logs [1]. In this context, an event
log consists of a set of traces, each trace itself consisting of
the sequence of events related to a given case.

One of the most widely studied process mining opera-
tions is automated process discovery. An automated process
discovery method takes as input an event log, and produces
as output a business process model that captures the control-
flow relations between tasks that are observed in or implied
by the event log.

In order to be useful, such automatically discovered pro-
cess models must accurately reflect the behavior recorded
in or implied by the log. Specifically, the process model
discovered from an event log should: (i) parse the traces in
the log; (ii) parse traces that are not in the log but are likely
to belong to the process that produced the log; and (iii) not
parse other traces [2]. The first property is called fitness, the
second generalization and the third precision. In addition, the

• A. Augusto, M. Dumas, F.M. Maggi, A. Soo are with the University of
Tartu, Estonia.
E-mail: {adriano.augusto,marlon.dumas,f.m.maggi}@ut.ee, al-
lar.soo@gmail.com

• A. Augusto, R. Conforti and M. La Rosa are with Queensland University
of Technology, Australia.
E-mail: {a.augusto,raffaele.conforti,m.larosa}@qut.edu.au

• A. Marrella and M. Mecella are with Sapienza University of Rome, Italy.
E-mail: {marrella,mecella}@diag.uniroma1.it

Manuscript received XX; revised XX.

discovered process model should be as simple as possible, a
property that is usually quantified via complexity measures.

The problem of automated discovery of process models
from event logs has been intensively researched in the past
two decades. Despite a rich set of proposals, state-of-the-
art automated process discovery methods suffer from two
recurrent deficiencies when applied to real-life logs [3]: (i)
they produce large and spaghetti-like models; and (ii) they
produce models that either poorly fit the event log (low
fitness) or grossly over-generalize it (low precision or low
generalization). Striking a tradeoff between these quality
dimensions in a robust manner has proved to be a difficult
problem.

So far, automated process discovery methods have been
evaluated in an ad hoc manner, with different authors
employing different datasets, experimental setups, evalua-
tion measures and baselines, often leading to incomparable
conclusions and sometimes unreproducible results due to
the use of non-publicly available datasets. This article aims
to fill this gap by: (i) providing a systematic review of
automated process discovery methods; and (ii) a compar-
ative evaluation of six implementations of representative
methods, using an open-source benchmark consisting of
twelve publicly-available real-life event logs and eight qual-
ity metrics covering all four dimensions mentioned above
(fitness, precision, generalization and complexity) as well as
execution time.

The outcomes of this research are a classified inventory
of automated process discovery methods and a benchmark
designed to enable researchers to empirically compare new
automated process discovery methods against existing ones
in a unified setting. The benchmark is provided as an open-
source command-line Java application to enable researchers
to replicate the reported experiments with minimal config-

2

uration effort.
The rest of the article is structured as follows. Section 2

describes the search protocol used for the systematic litera-
ture review, while Section 3 presents classifies the methods
identified in the review. Next, Section 4 introduces the ex-
perimental benchmark and results, while Section 5 discusses
the overall findings and Section 6 acknowledges the threats
to the validity of the study. Finally, Section 7 relates this
work to previous reviews and comparative studies in the
field and Section 8 concludes the paper and outlines future
work directions.

2 SEARCH PROTOCOL

In order to identify and classify research in the area of
automated process discovery, we conducted a Systematic
Literature Review (SLR) through a scientific, rigorous and
replicable approach as specified by Kitchenham in [4].

First, we formulated a set of research questions to scope
the search, and developed a list of search strings. Next, we
ran the search strings on different data sources. Finally, we
applied a range of inclusion and exclusion criteria to select
the studies retrieved through the search.

2.1 Research questions formulation
The objective of our SLR is to analyse research studies re-
lated to automated (business) process discovery. Specifically,
we focused on methods that produce process models from event
logs. This means, for example, that methods performing only
trace clustering are not considered in our analysis. To this
aim, we formulated the following research questions:

RQ1 What methods exist for automated process discov-
ery?

RQ2 What type of process model can be discovered by
these methods, and in which language?

RQ3 Which language constructs can be captured by a
model discovered by these methods?

RQ4 What tools exist to support these methods?
RQ5 What type of data has been used to evaluate these

methods, and in which application domains?

RQ1 is the core research question, which aims at iden-
tifying existing methods to perform automated process
discovery. The other questions allow us to identify a set
of classification criteria. Specifically, RQ2 categorizes the
output of a method on the basis of the type of process
model discovered (i.e., imperative, declarative or hybrid),
and the specific language employed (e.g., Petri nets, BPMN,
Declare). RQ3 delves into the specific language constructs
supported by a method (e.g., exclusive choice, parallelism,
loops). RQ4 explores what tool support the different meth-
ods have, while RQ5 investigates how the methods have
been evaluated and in which application domains.

2.2 Search string development and validation
Next, we developed four search strings by deriving key-
words from our knowledge of the subject matter. We first
determined that the term “process discovery” is a very
generic term which would allow us to retrieve the majority
of methods in this area. Furthermore, we used “learning”

and “workflow” as synonyms of “discovery”, respectively,
“process”. This led to the following four search strings:
i) “process discovery”, ii) “workflow discovery”, iii) “pro-
cess learning”, and “workflow learning”. We intentionally
excluded the terms “automated” and “automating” in the
search strings, because these terms are often not explicitly
used. However, this led to retrieving many more studies
than those that actually focus on automated process dis-
covery, e.g. a study on process discovery via workshops
or interviews. Thus, if a query on a specific data source
returned more than one thousand results, we refined it by
combining the selected search string with the term “busi-
ness” or “process mining” to obtain more focused results,
e.g., “process discovery AND process mining”.

We applied each of the four search strings to seven
popular academic databases: Scopus, Web of Science, IEEE
Xplore, ACM Digital Library, SpringerLink, ScienceDirect
and Google Scholar, and retrieved studies based on the
occurrence of one of the search strings in the title, the
keywords or the abstract of a paper. In addition, to ensure
that all relevant studies were identified in our search, we
performed a further search on Google Scholar by retrieving
any study whose full text contained at least one of the search
strings. We noted that this additional search did not return
any relevant study that was not already discovered in our
primary search. The search was conducted in December
2016.

Kitchenham [4] recommends to validate trial search
strings against lists of already known primary studies. Ac-
cordingly, we examined an existing survey in the field of au-
tomated process discovery, namely [3], and verified that all
publications contemplated in this survey were also found by
our search. Given that [3] refers to studies published prior
to 2012, our search returned a large number of publications
not covered in [3].

2.3 Study selection
As a last step, as suggested by [5], [6], [7], [8], we defined
inclusion and exclusion criteria to ensure an unbiased selec-
tion of relevant studies (to be retained, a study must satisfy
all inclusion criteria and none of the exclusion criteria). The
development of these criteria, as recommended in [4], was
based on the objective and the scope of this survey, as
defined by the research questions distilled in Section 2.1.
This led to the following criteria.
Inclusion Criteria

IN1 The study is related to automated process discovery
from event logs;

IN2 The study is published in 2011 or later;
IN3 The study is not investigated in [3];
IN4 The study is an improvement of a method investi-

gated in [3].

Exclusion Criteria

EX1 The study describes an existing method to automated
process discovery without introducing any relevant
improvement to it.

EX2 The study mainly focuses on other process mining
methods, e.g. conformance checking or performance
mining.

3

EX3 The study is not peer-reviewed.
EX4 The study is not written in English.
EX5 The study describes a method for which a software

implementation is not available. Conversely, if the
study claims the existence of an implementation, it is
provisionally included even if the implementation is
not accessible.

EX6 The study describes a method that has not been
evaluated.

EX7 If several studies refer to the same method, all studies
except the most complete and general one are ex-
cluded.

Given that the survey in [3], published in 2012, is the
most recent mapping of studies on the topic, we excluded
from our search all the methods published before 2011 or
already investigated in [3] (cf. IN3 and IN4).

The assessment of each study against the inclusion and
exclusion criteria was performed independently by two
authors of this paper. The results were compared in order to
resolve inconsistencies with the mediation of a third author.

After the application of the inclusion criteria, we ob-
tained a total of 2,165 studies. We then proceeded with the
application of the exclusion criteria. First, we removed du-
plicates. Next, we checked if a study matched the exclusion
criteria EX1-4 by analyzing title, abstract, introduction and
conclusions. Further, we performed a backward reference
search by considering the literature cited by the studies
themselves. After this initial filtering, we obtained 330 stud-
ies.1

Second, we analysed in depth each of the 330 studies
by focusing on EX5-6. If an approach was not implemented
or evaluated, it was discarded from the SLR. This second
filtering returned 98 studies. Finally, we applied EX7, so
that if a method did not add any novel contribution with
respect to a previous study describing the same method,
or if it was a variant of one of its preceding, more general
and complete method, it was excluded from the SLR too.
Overall, this resulted in 32 primary studies describing 32
distinct automated process discovery methods.

Fig. 1 shows how the primary studies are distributed
over time. We can see that the interest in the topic of
automated process discovery has grown over time, with a
sharp increase between years 2013 and 2014. The relatively
low number of studies between 2011 and 2013 is due to the
fact that most of the methods proposed in this period have
later been improved upon. As discussed above, in these
cases we retained the most up-to-date incarnation of each
method.

3 CLASSIFICATION OF METHODS

Driven by the research questions defined in Section 2.1, we
identified the following classification dimensions to survey
the methods described in the primary studies:

1) Model type (procedural, declarative, hybrid) and
model language (e.g. Petri nets, BPMN, Declare)—
RQ2

1. The list of studies obtained in this phase is available at https://
goo.gl/fq73qM

2011 2012 2013 2014 2015 2016
0

1

2

8

9

10

Publication Year

N
um

be
r

of
Pr

im
ar

y
St

ud
ie

s

Fig. 1: Number of primary studies over time.

2) Language constructs captured in procedural models
[parallelism (AND), exclusive choice (XOR), inclu-
sive choice (OR), loop]—RQ3

3) Type of implementation (standalone or plugin, and
tool accessibility)—RQ4

4) Type of evaluation data (real-life, synthetic or ar-
tificial log, where a synthetic log is one generated
from a real-life model while an artificial log is one
generated from an artificial model) and domain of
data (e.g. insurance, banking, healthcare)—RQ5.

This information is summarized in Table 1, where for
each method we report the reference to the primary study,
the year of publication and the number of citations counted
at the time of the search (December 2016). Collectively, this
information allows us to answer the first research question
(“What methods exist for automated process discovery?”).
In the remainder of this section, we proceed with surveying
each method along the above classification dimensions, to
answer the other research questions.

3.1 Model type and language (RQ2)

The majority of methods (25 out of 32) produce procedural
models. Five approaches ([11], [12], [32], [35], [37]) dis-
cover declarative models in the form of Declare constraints,
while [17] produces declarative models using the WoMan
formalism. The method in [18] is the only one able to
discover hybrid models as a combination of Petri nets and
Declare constraints.

Moving on to the language in which the process model
is represented, we can see that Petri nets is the predomi-
nant language. However, more recently we have seen the
appearance of methods that produce models in BPMN, a
language that is more practically-oriented and less technical
than Petri nets. This denotes a shift in the target audience of
these methods, from data scientists to practitioners, such as
business analysts and decision managers. Other technical
languages employed, besides Petri nets, include Heuris-
tics nets, Casual nets, State machines and simple Directed

https://goo.gl/fq73qM
https://goo.gl/fq73qM

4

Method Authors Year Citations Model type Model language Procedural constructs Implementation Evaluation
AND XOR OR Loop Framework Accessible Real-life Synth. Art.

Process Spaceship Motahari et al. [9] 2011 105 Procedural State machines X X X Eclipse X X X
HK Huang and Kumar [10] 2012 6 Procedural Petri nets X X X Standalone X X

Declare Miner Maggi et al. [11] 2012 32 Declarative Declare ProM X X X
MINERful Di Ciccio, Mecella [12] 2013 33 Declarative Declare ProM, Standalone X X X

Inductive Miner - Infrequent Leemans et al. [13] 2013 67 Procedural Process trees X X X X ProM X X
Process Skeletonization Abe, Kudo [14] 2014 2 Procedural Directly-follows graphs X X Standalone X

Evolutionary Tree Miner Buijs e al. [15] 2014 25 Procedural Process trees X X X X ProM X X X
Updated Heuristics Miner De Cnudde et al. [16] 2014 3 Procedural Heuristics nets X X X ProM X X

WoMan Ferilli [17] 2014 10 Declarative WoMan Standalone X X
Hybrid Miner Maggi et al. [18] 2014 15 Hybrid Declare + Petri nets X X X ProM X X

Competition Miner Redlich et al. [19] 2014 7 Procedural BPMN X X X Standalone X
Direted Acyclic Graphs Vasilecas et al. [20] 2014 1 Procedural Directed acyclic graphs X Standalone X X

Decomposed Process Miner Verbeek, van der Aalst [21] 2014 7 Procedural Petri nets X X X X ProM X X
MVPM Mine Folino et al. [22] 2015 26 Procedural Heuristics nets X X Standalone X

CNMining Greco et al. [23] 2015 2 Procedural Causal nets X X X ProM X X X
Alpha$ Guo et al. [24] 2015 2 Procedural Petri nets X X X ProM X X X

Maximal Pattern Mining Liesaputra et al. [25] 2015 1 Procedural Workflow nets X X X ProM X X
Supervised Polyhedra Ponce de Leon et al. [26] 2015 0 Procedural Petri nets X X X Standalone X

DGEM Molka et al. [27] 2015 1 Procedural BPMN X X X Standalone X X
LocalizedLogs van der Aalst et al. [28] 2015 7 Procedural Petri nets X X X ProM X X X

HybridILPMiner van Zelst et al. [29] 2015 7 Procedural Petri nets X X X ProM X X
ProDiGen Vazguez et al. [30] 2015 19 Procedural Heuristics nets X X X Standalone X X

Structured Miner Augusto et al. [31] 2016 1 Procedural BPMN X X X Apromore, ProM, Stand. X X X
Non-Atomic Declare Miner Bernardi et al. [32] 2016 3 Declarative Declare ProM X X X

RegPFA Breuker et al. [33] 2016 1 Procedural Petri nets X X X Standalone X X X
BPMN Miner Conforti et al. [34] 2016 17 Procedural BPMN X X X X Apromore, ProM, Stand. X X X
TB-MINERful Di Ciccio et al. [35] 2016 8 Declarative Declare Standalone X X X

PGminer Mokhov et al. [36] 2016 0 Procedural Partial order graphs X X Standalone, Workcraft X X X
SQLMiner Schönig et al. [37] 2016 1 Declarative Declare Standalone X X

ProM-D Song et al. [38] 2016 1 Procedural Petri nets X X X Standalone X X
CSMMiner van Eck et al. [39] 2016 0 Procedural State machines X X X ProM X X

Proximity Miner Yahya et al. [40] 2016 0 Procedural Heuristic nets X X X ProM X X

TABLE 1: Overview of the 32 primary studies resulting from the search (ordered by year and author).

Acyclic Graphs, while Declare is the most commonly-used
language when producing declarative models.

Petri nets. In [10], the authors describe an algorithm to
extract block-structured Petri nets from event logs. The
algorithm works by first building an adjacency matrix be-
tween all pairs of tasks and then analyzing the information
in it to extract block-structured models consisting of basic
sequence, choice, parallel, loop, optional and self-loop struc-
tures as building blocks. The method has been implemented
in a standalone tool called HK.

In [21], the authors propose an improvement of the algo-
rithm implemented in the ILP Miner [41] whose complexity
is linear on the size of the event log and exponential on
the number of distinct activities. The method is based on
splitting up distinct activities over multiple event logs to
alleviate the overall complexity. An implementation of this
method is available as a ProM plugin.

The method in [24] is based on the α$ algorithm, which
can discover invisible tasks involved in non-free-choice con-
structs. The algorithm is an extension of the well-known α
algorithm, one of the very first algorithms for automated
process discovery, originally presented in [1].

In [25], the authors propose a method for automated
process discovery using Maximal Pattern Mining where
they construct patterns based on the whole sequence of
events seen on the traces. Starting from these patterns they
construct process models in the form of Workflow nets.

In [26], Ponce de Leon et al. present Supervised Polyhe-
dra, a standalone application based on a process discovery
method that takes into account negative events. This feature
guarantees that the discovered models are not only simple,
fitting and precise, but also good at generalizing the behav-
ior underlying an event log.

In [28], the authors present a method for the discovery
of Petri nets implemented in a ProM plug-in available in a
package called LocalizedLogs. In a log, events are localized
by assigning a non-empty set of regions to each event. Re-
gions can only interact through shared events. The approach

is based on a genetic algorithm that exploits localized events
to improve the quality of the discovered models.

In [29], the authors propose an improvement of the tra-
ditional ILP Miner algorithm [41] based on hybrid variable-
based regions. Through hybrid variable-based regions, it is
possible to vary the number of variables used within the
ILP problems being solved. Using a different number of
variables has an impact on the average computation time for
solving ILP problems during ILP-based process discovery.

The method presented in [33] allows the discovery of
Petri nets using the theory of grammatical inference. The
method has been implemented as a standalone application
called RegPFA.

The method proposed in [38] is based on the observa-
tion that activities with no dependencies in an event log
can be executed in parallel. In this way, this method can
discover process models with concurrency even if the logs
fail to meet the completeness criteria. The method has been
implemented in a tool called ProM-D.

Process trees. The Inductive Miner [13], [42], [43], [44], [45]
and the Evolutionary Tree Miner [15] are both based on the
extraction of process trees from an event log. Concerning the
former, many different variants have been proposed during
the last years, but its first appearance is in [42]. Successively,
since that method was unable to deal with infrequent be-
havior an upgrade was proposed in [13], which efficiently
drops infrequent behavior from logs, still ensuring that the
discovered model is behavioral correctness (soundness) and
highly fitting. Another variant of the Inductive Miner is
presented in [43]. This variant can minimize the impact
of incompleteness of the input logs. Finally, the variant
presented in [44] and [45] combines scalability with quality
guarantees. It can be used to mine large event logs and
produces sound models. The Inductive Miner is available
as a ProM plugin.

In [15], Buijs et al. introduce the Evolutionary Tree Miner.
This method, also implemented as a ProM plugin, is based
on a genetic algorithm that allows the user to drive the
discovery process based on preferences with respect to the

5

four quality dimensions for a discovered model (fitness,
precision, generalization and complexity).

Heuristics nets. In [46], the authors present Flexible Heuris-
tics Miner. This method, implemented as a ProM plugin,
can mine process models containing non-trivial constructs
but with a low degree of block structuredness. At the same
time, this method can cope well with noise in event logs.
The process models are a specific type of Heuristics nets
where the semantics of splits and joins is represented using
split/join frequency tables. This results in easy to under-
stand process models even in the presence of non-trivial
constructs and log noise. The discovery algorithm is based
on that of the original Heuristics Miner method [47]. In [16],
the method presented in [46] has been improved as anoma-
lies were found concerning the validity and completeness of
the resulting process model. The improvements have been
implemented in a ProM plugin called Updated Heuristics
Miner.

In [22], Folino et al. propose a two-phase clustering-
based process discovery method, where the clusters are in-
herently defined through logical decision rules over context
data. The method, which also produces a Heuristics net as a
result, has been implemented in a standalone tool.

ProDiGen, a standalone miner by Vazguez et al. [30],
allows users to discover Heuristics nets from event logs us-
ing a genetic algorithm. The algorithm is based on a fitness
function that takes into account completeness, precision and
complexity and specific crossover and mutation operators.

Another method that produces Heuristics nets is pre-
sented in [40]. This method extracts behavioral relations
between the events of the log which are then enhanced
using input from domain experts. The method has been
implemented in a ProM plugin called Proximity Miner.

State machines. The authors of Process Spaceship [9] start
from the observation that information about process exe-
cutions is often scattered across several systems and data
sources. Accordingly, they investigate different ways in
which process-related events could be correlated in ser-
vice interaction logs and propose a mechanism to discover
event correlations (semi-)automatically from them. The data
collected through event correlations is mined to discover
process models in the form of state machines. This method
has been implemented as an Eclipse plugin.

A second method that discovers state machines in dis-
cussed in [39]. Instead of focusing on the events or activities
that are executed in the context of a particular process, this
method concentrates on the states of the different process
perspectives and discover how they are related with each
other. These relations are expressed in terms of Composite
State Machines. The method has been implemented as ProM
plugin called CSM Miner and provides an interactive visu-
alization of these multi-perspective state-based models.

BPMN models. In [48], Conforti et al. present BPMN
Miner, a method for the automated discovery of BPMN
models containing sub-processes, activity markers such
as multi-instance and loops, and interrupting and non-
interrupting boundary events (to model exception han-
dlings). The method has been subsequently improved in [34]
to make it robust to noise in event logs. BPMN Miner is

available as a standalone application and as a plugin for
Apromore and ProM.

Another method to discover BPMN models is Structured
Miner [31]. Different from other methods, this method sep-
arates the concern of producing accurate models with that
of ensuring their block-structuredness, without sacrificing
the former for the latter. Structured Miner works on top of
Heuristics Miner (version 5.2) and comes as a standalone
tool as well as a plugin for Apromore and ProM.

A further method to discover BPMN models is the
Dynamic Constructs Competition Miner [19]. This method
extends the Constructs Competition Miner presented in [49].
The method is based on a divide-and-conquer algorithm
which discovers block-structured process models from logs
including the discovery of exceptional behavior.

Declarative models. [11] describes a two-phase approach
for mining declarative process models expressed using De-
clare constraints [50], [51], i.e. constraints in linear temporal
logic. The first phase is based on an apriori algorithm used
to identify frequent sets of correlated activities. A list of
candidate constraints is built on the basis of the correlated
activity sets. During the second phase, the constraints are
checked by replaying the log on specific automata, each
accepting only those traces that are compliant to one con-
straint. Those constraints satisfied by a percentage of traces
higher than a user-defined threshold are discovered.

Another method to discover Declare constraints in MIN-
ERful [12]. This method consists of two phases as well. The
first phase computes statistical data describing the occur-
rences of activities and their interplay in the log. The second
one checks the validity of Declare constraints by querying
such a statistic data structure (knowledge base).

The WoMan framework proposed by Ferilli in [17],
includes at its core a method to learn and refine process
models from event logs. The method discover first-order
logic constraints and guarantees incrementality in learning
and adapting the models, the ability to express triggers and
conditions on the process tasks and efficiency.

The method presented in [32] is based on the use of dis-
criminative rule mining to determine how the characteristics
of the activity lifecycles in a business process influence the
validity of a Declare constraint in that process. The method
has been implemented as a ProM plugin.

In [35], the authors present a method to discover a class
of Declare constraints called target-branched Declare. A
Declare constraint is target-branched when one of its param-
eters (the target) is the disjunction of two or more activities
to express that one activity out of a set of activities can
occur. The method has been implemented as a standalone
application.

Finally, SQLMiner [37] is based on a mining approach
that directly works on relational event data by querying the
log with standard SQL. By leveraging database performance
technology, the mining procedure is fast without limiting
itself to detecting certain control-flow constraints. Queries
can be customized and cover process perspectives beyond
control flow [52].

Further languages. Further languages include casual nets,
directly-follows graphs, directed acyclic graphs, partial or-
der graphs and hybrid models. Greco et al. propose a

6

discovery method that returns casual nets [23]. A casual net
is a net where only the casual relation between activities
in a log is represented. The method in [23] encodes casual
relations gathered from an event log and if available, back-
ground knowledge in terms of precedence constraints over
the topology of the resulting process models. A discovery
algorithm is formulated in terms of reasoning problems over
precedence constraints.

In [14], the authors introduce a monitoring framework
for automated process discovery. A monitoring context is
used to extract traces from relational event data and attach
different types of metrics to them. Based on these metrics,
traces with certain characteristics can be selected and used
for the discovery of process models expressed as directly-
follows graphs, i.e. graphs that encode the direct causality
relation between activities only.

Vasilecas et al. [20] present a method for the extraction of
directed acyclic graphs from event logs. Starting from these
graphs they generate Bayesian belief networks, one of the
most common probabilistic models, and use these networks
to efficiently analyze business processes.

In [36], the authors show how conditional partial order
graphs, a compact representation of families of partial or-
ders, can be used for addressing the problem of compact
and easy-to-comprehend representation of event logs with
data. They present algorithms for extracting both the control
flow as well as relevant data parameters from a given event
log and show how Conditional Partial Order Graphs can be
used to visualize the obtained results. The method has been
implemented as a Workcraft plugin and as a standalone
application called PGminer.

The method in [18] puts forward the idea of discover-
ing a hybrid model from an event log. A hybrid process
model is hierarchical model, where each node represents
a subprocesses which may be specified in a declarative or
procedural way. They use Petri nets for representing proce-
dural subprocesses and Declare for representing declarative
subprocesses. The method has been implemented as a ProM
plugin called Hybrid Miner.

3.2 Procedural language constructs (RQ3)

All the 25 methods that discover a procedural model can
detect the basic control-flow structure of sequence. Out of
these methods, only four can also discover inclusive choices,
but none in the context of non-block-structured models. In
fact, [13], [15] are able to directly identify block-structured
inclusive choices (due to using process trees), while [21],
[34] can detect this construct only when used on top of the
methods in [13] or [15] (i.e. indirectly).

The remaining 21 methods can discover constructs for
parallelism, exclusive choice and loop, with the exception
of [14], [22], which can detect exclusive choice and loop
but not parallelism, and [20], which can discover exclusive
choices only. This is mostly due to the nature of their
outputs. Indeed, the languages supported by these methods,
i.e. directly-follows graphs, heuristics nets, directed acyclic
graphs and casual nets do not natively support parallelism.
In other methods these languages have been extended to
cater for parallelism (cf. [23], [30], [40]).

3.3 Implementation (RQ4)
Over 50% of the methods (17 out of 32) provide an imple-
mentation as a plugin for the ProM platform.2 The reason
behind the popularity of ProM can be explained by its open-
source and portable framework, which allows researchers
to easily develop and test new discovery algorithms. Also,
ProM is the first software tool for process mining. Three of
the methods which have a ProM implementation are also
available as standalone tools (cf. [12], [31], [34]), while [31],
[34] provide a further implementation as a plugin for Apro-
more,3 an on-line process analytics platform, which is also
open source, and is growing consensus among academics as
a process mining tool oriented towards end users. Finally,
one method [36] has been implemented as a plugin for
Workcraft,4 a platform for designing concurrent systems,
and another method [9] has been implemented as a plugin
for Eclipse.

Unfortunately, only a minority of tools (twelve out of
32) are made publicly available to the community. These
exclude nine ProM plugins.

3.4 Evaluation data and domains (RQ5)
The surveyed methods have been evaluated using three
types of event logs: i) real-life logs, i.e. logs of real-life
process execution data; ii) synthetic logs, generated by
replaying real-life process models; and iii) artificial logs,
generated by replaying artificial models.

We found that the majority of methods (29 out of
32) were tested using real-life logs. Among them, ten ap-
proaches (cf. [9], [10], [11], [12], [20], [23], [28], [32], [33],
[38]) were further tested against synthetic logs, while nine
approaches (cf. [15], [16], [17], [24], [25], [27], [34], [35], [36])
against artificial logs. Finally, two methods were tested both
on synthetic and artificial logs (cf. [30], [31]), while [29] was
tested on artificial logs only.

Among the methods that employ real-life logs, we ob-
served a growing trend in employing publicly-available
logs, as opposed to private logs which hamper the repli-
cability of the results due to not being accessible.

Concerning the application domains of the real-life logs,
we noticed that several methods used a selection of the logs
made available by the Business Process Intelligence Chal-
lenge, which is held annually as part of the BPM Conference
series. These logs are publicly available from the 4TU Centre
for Research Data,5 and cover domains such as healthcare
(used by [12], [13], [25], [37]), banking (used by [12], [13],
[16], [18], [19], [20], [21], [27], [33], [35], [37], [39]), and IT
support management in automotive (cf. [16], [22], [32], [33])
and banking (cf. [35]).

Besides these publicly-available logs, a range of private
logs were also used, originating from different domains
such as logistics (cf. [38], [40]), traffic congestion dynam-
ics [23], employers habits (cf. [17], [39]), financial [28],
automotive [24], administrative [26], healthcare [27], tele-
com [36], project management and insurance (cf. [14], [34])
and building permit approval (cf. [11], [13], [15]).

2. http://promtools.org
3. http://apromore.org
4. http://workcraft.org
5. https://data.4tu.nl/repository/collection:event_logs_real

http://promtools.org
http://apromore.org
http://workcraft.org
https://data.4tu.nl/repository/collection:event_logs_real

7

4 BENCHMARK

Using a selection of the methods surveyed in this paper,
we conducted an extensive benchmark to identify relative
advantages and trade-offs. In the rest of this section, we
justify the criteria for the selection, describe the datasets, the
evaluation setup and metrics, and present the results of the
benchmark. These results, consolidated with the findings
from the systematic literature review, are then discussed in
the next section.

4.1 Methods selection

Assessing all the methods that resulted from the search
would not be possible due to the heterogeneous nature of
the inputs required and the outputs produced. Hence, we
decided to focus on a subset. We applied the following
criteria to include a method in the benchmark:

i an implementation of the method must be available
and accessible

ii the implementation must take as input a simple
event log (no event payload)

iii the implementation must produce as output a Petri
net or a model seamlessly convertible into a Petri net.

The specific reason for enforcing these criteria is that
the metrics used to evaluate the quality of the discovered
model, illustrated later in this section, can only be computed
on top of Petri nets.

On the basis of these criteria we selected the following
methods: Inductive Miner [53], CNMining [23], α$ [24],
Evolutionary Tree Miner [15], LocalizedLogs [28], Hybrid
ILP Miner [29], Structured Miner on Heuristic Miner 5.2 [31],
RegPFA [33], BPMN Miner [34], Decomposed Process Min-
ing [21] and Heuristics Miner version 6.0 [54]. This latter
method was included since it resulted to be the best among
those evaluated in [3].

Methods such as Maximal Pattern Mining [25] and
ProDiGen [30] were discarded because the respective imple-
mentations were not accessible, despite being presented in
the papers.6 A posteriori, we excluded Decomposed Process
Mining, CNMining and BPMN Miner. We excluded Decom-
posed Process Mining as it follows a divide-and-conquer
approach which can be applied on top of any other discov-
ery method to improve the results. We held out CNMining
because during the measurements it was not possible to
convert any of its output causal nets into Petri nets, and
RegPFA because its output is a Petri net only available in
graphical format (DOT). Last, we excluded BPMN Miner
since it produces the same results as Structured Miner in
the case of flat process models (such as the ones used for
this benchmark), but while the latter can only be used in
conjunction with the Heuristics Miner, the former can be
used on top of other discovery methods.

To conclude, the approaches selected for the bench-
mark are: α$, Inductive Miner (IM), Evolutionary Tree
Miner (ETM), Heuristics Miner 6.0 (HM6), Structured Miner
over Heuristics Miner 5.2 (S-HM5.2) and Hybrid ILP Miner
(HILP).

6. We note that in these cases we contacted the authors but obtained
no answer.

4.2 Setup and datasets

To guarantee the reproducibility of our benchmark and to
provide the academic community with a tool for comparing
new methods with the ones evaluated in this paper, we
developed a command-line Java application which performs
measurements of accuracy and complexity metrics on the six
discovery methods selected above. The tool is open-source,7

and can be easily extended to incorporate new discovery
methods or metrics.

The dataset used for our benchmark is the collection of
real-life event logs publicly available at the “4TU Centre
for Research Data” as of March 2017.8 We included all
the BPI Challenge (BPIC) logs, plus the Road Traffic Fines
Management Process (RTFMP) and the SEPSIS Cases log.
They record executions of business processes in different
domains, i.e. healthcare, finance, government and IT service
management. We held out those logs that do not explicitly
capture business processes (the BPIC 2011 and 2016 logs),
and those contained in other logs (e.g. the Environmental
permit application process log).

In three logs (BPIC14, BPIC15 and BPIC17), we applied
the filtering technique in [55] to remove infrequent behavior.
This was necessary since all the models discovered by
the methods tested exhibited very poor accuracy (F-score
close to 0 or not computable) on these logs, making the
comparison useless.

Table 2 reports the characteristics of the twelve logs
used. We can observe that the collection is widely heteroge-
neous containing both simple and very complex logs. The
log size ranges from 681 traces (for the BPIC152f log) to
150,370 traces (for the RTFMP log). A Similar variety can
be observed in the percentage of distinct traces, ranging
from 0.2% to 80.6%, and the number of event classes (i.e.,
activities executed within the process), ranging from 7 to
82. Finally, the length of a trace also varies from very short,
counting only one event, to very long counting 185 events.

We ran our benchmark on a 6-core Intel Xeon CPU E5-
1650 v3 @ 3.50GHz with 128GB RAM. We setup Java JVM
8 with 16GB of heap space, applying a timeout of one hour
for the discovery phase, and one hour for measuring each
of the quality metric. Each discovery method was executed
applying its default settings.

4.3 Evaluation metrics

For all selected discovery metrics we measured the follow-
ing accuracy and complexity metrics: recall (a.k.a. fitness),
precision, generalization, complexity, and soundness.

Fitness measures the ability of a model to reproduce the
behavior contained in a log. Under trace semantics, a fitness
of 1 means that the model can reproduce every trace in
the log. In this paper, we use the fitness measure proposed
in [56], which measures the degree to which every trace in
the log can be aligned with a trace produced by the model.

Precision measures the ability of a model to generate only
the behavior found in the log. A score of 1 indicates that any
trace produced by the model is contained in the log. In this
paper, we use the precision measure defined in [57], which

7. Available at https://github.com/raffaeleconforti/ResearchCode
8. https://data.4tu.nl/repository/collection:event_logs_real

https://github.com/raffaeleconforti/ResearchCode
https://data.4tu.nl/repository/collection:event_logs_real

8

Log Total Distinct Total Distinct Trace Length
Name Traces Traces (%) Events Events min avg max

BPIC12 13087 33.4 262200 36 3 20 175
BPIC13cp 1487 12.3 6660 7 1 4 35
BPIC13inc 7554 20.0 65533 13 1 9 123
BPIC14f 41353 36.1 369485 9 3 9 167
BPIC151f 902 32.7 21656 70 5 24 50
BPIC152f 681 61.7 24678 82 4 36 63
BPIC153f 1369 60.3 43786 62 4 32 54
BPIC154f 860 52.4 29403 65 5 34 54
BPIC155f 975 45.7 30030 74 4 31 61
BPIC17f 21861 40.1 714198 41 11 33 113
RTFMP 150370 0.2 561470 11 2 4 20
SEPSIS 1050 80.6 15214 16 3 14 185

TABLE 2: Descriptive statistics of the event logs used in the benchmark.

is based on similar principles as the above fitness measure.
Recall and precision can be combined into a single measure
known as F-score, which is the harmonic mean of the two
measurements

(
2 · Fitness·Precision

Fitness+Precision

)
.

Generalization measures the ability of an automated dis-
covery algorithm to capture behavior that is not present in
the log but that can be produced by the business process
under observation. To measure generalization we use 3-fold
cross validation [58]: We divide the log into three parts,
discover a model from two parts (i.e. we hold-out one part),
and measure the fitness of the discovered model against
the part held out. This is repeated for every possible part
held out. Generalization is the mean of the fitness values
obtained for each part held out. A generalization of 1 means
that the discovered model produces traces in the observed
process, even if those traces are not in the log from which
the model was discovered, and that the discovered model
is accurate and does not introduce extra behavior (i.e. does
not over-generalize the behavior recorded in the log).

Complexity quantifies how difficult it is to understand
a model for a model reader. Several complexity metrics
have been shown to be (inversely) related to understand-
ability [59], including Size (number of nodes); Control-Flow
Complexity (CFC) (the amount of branching caused by gate-
ways in the model) and Structuredness (the percentage of
nodes located directly inside a block-structured single-entry
single-exit fragment).

Lastly, soundness assesses the behavioral quality of a
process model by reporting whether the model violates one
of the three soundness criteria [60]: i) option to complete, ii)
proper completion, and iii) no dead transitions.

4.4 Benchmark results
The results of the benchmark are summarized in Table 3.
We highlighted in bold the best score for each measure on
each log, and used “-” to report that a given accuracy or
complexity measurement could not be reliably obtained due
to syntactical or behavioral issues in the discovered model
(e.g. the model is disconnected or is unsound).

The first conclusion we can draw from these results is
that four out of six discovery methods were not able to
systematically discover sound models. α$, HM and HILP
experienced severe difficulties in producing useful outputs.
α$ showed scalability issues and it discovered only one
model within the allotted discovery time of one hour,
which did not stand out in accuracy (despite striking a
good balance between fitness and precision) neither did it

in complexity. HILP did definitely better compared to α$,
producing a model ten times out of twelve. However, these
models were either disconnected or contained multiple end
places without indicating a final marking (a requirement
to measure fitness and precision). For this latter reason,
we could assess only the model complexity for HILP. The
models are moderately simple for the BPIC13cp, BPIC13inc
and RTFMP logs, but highly complex for the remaining logs,
with large size and CFC. HM6 shares similar results with
HILP: it always delivered an output in time, in fact faster
than any other discovery method, but only two times out
of twelve this output was a sound model. Precisely, for the
BPIC13inc log, HM6 delivered a very simple and accurate
model with maximum scores for precision, F-score, size,
CFC and structuredness, while for the BPIC153f log, this
method delivered a highly-fitting model having best fitness,
F-score and generalization, thought very high complexity.

About the remaining methods, S-HM5.2 led to slightly
better results than HM6 thanks to its ability to repair sound-
ness issues, being able to produce five sound models out of
twelve. Of these five models, S-HM5.2 scored the best fitness,
F-score and generalization on the BPIC151f and BPIC155f
logs, being second in precision only to ETM. Also, it scored
the best F-score from the RTFMP log, and delivered outputs
of high quality from the two BPIC13 logs, yet not the best
results.

IM and ETM were the only two methods able to sys-
tematically produce sound process models, since they dis-
cover process trees which by construction are fully block-
structured and sound. Furthermore, models discovered us-
ing IM scored the highest value on fitness and generaliza-
tion for nine models out of twelve, whilst models discovered
by ETM scored the best results on precision for nine models
as well. Also, ETM delivered five times the most accurate
models (highest F-score), against two times for IM. Indeed,
the lack of precision for the models produced by IM did
not let it outperform ETM. It is worth mentioning that the
high quality of ETM’s outputs is strictly bounded to the high
execution time needed by ETM’s genetic algorithm (always
capped at one hour). This time can be over four orders of
magnitude higher than the time produced by the fastest
discovery methods, which are IM and HM6. This significant
performance issue renders ETM hardly usable in practice.

Coming to the complexity of the output models, ETM
and IM achieved the best results. First, both methods always
output block-structured process models. Second, size and
CFC are very small compared to those of other methods.

9

Log Discovery Accuracy Gen. Complexity Exec.
Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound Time(s)

α$ - - - - - - - - t/o
IM 0.98 0.50 0.66 0.98 59 37 1.00 yes 6.6

ETM 0.33 0.98 0.49 0.38 69 10 1.00 yes 3,600
BPIC12 HM6 - - - - 85 99 0.05 no 2.5

S-HM5.2 - - - - 128 177 0.10 no 341.0
HILP - - - - 300 460 - no 772.2
α$ - - - - - - - - t/o
IM 0.82 1.00 0.90 0.82 9 4 1.00 yes 0.1

ETM 0.99 0.76 0.86 0.99 11 17 1.00 yes 3,600
BPIC13cp HM6 - - - - 12 6 0.67 no 0.1

S-HM5.2 0.83 0.79 0.81 0.86 17 13 1.00 yes 1.5
HILP - - - - 10 3 - yes 0.1
α$ - - - - - - - - t/o
IM 0.92 0.54 0.68 0.92 13 7 1.00 yes 1.0

ETM 0.84 0.80 0.82 0.88 28 24 1.00 yes 3,600
BPIC13inc HM6 0.91 0.96 0.93 0.91 9 4 1.00 yes 0.8

S-HM5.2 0.83 0.95 0.89 0.83 16 11 1.00 yes 12.8
HILP - - - - 24 9 - yes 2.5
α$ - - - - - - - - t/o
IM 0.89 0.64 0.74 0.89 31 18 1.00 yes 3.4

ETM 0.68 0.94 0.79 0.57 22 15 1.00 yes 3,600
BPIC14f HM6 - - - - 43 51 - no 3.3

S-HM5.2 - - - - 35 24 - no 47.9
HILP - - - - 80 59 - no 7.3
α$ 0.71 0.73 0.76 t/o 219 91 0.22 yes 3,545.9
IM 0.97 0.57 0.71 0.96 164 108 1.00 yes 0.6

ETM 0.57 0.89 0.69 0.56 73 21 1.00 yes 3,600
BPIC151f HM6 - - - - 150 98 - no 0.5

S-HM5.2 1.00 0.75 0.86 1.00 145 89 0.39 yes 481.5
HILP - - - - 282 322 - no 4.4
α$ - - - - - - - - t/o
IM 0.93 0.56 0.70 0.94 193 123 1.00 yes 0.7

ETM 0.62 0.90 0.73 0.57 78 19 1.00 yes 3,600
BPIC152f HM6 - - - - 194 158 0.11 no 0.7

S-HM5.2 - - - - 196 154 0.11 no 119.8
HILP - - - - - - - - t/o
α$ - - - - - - - - t/o
IM 0.95 0.55 0.70 0.95 159 108 1.00 yes 1.3

ETM 0.66 0.88 0.75 0.64 78 26 1.00 yes 3,600
BPIC153f HM6 0.95 0.67 0.79 0.95 157 151 0.07 yes 0.8

S-HM5.2 - - - - 184 183 0.06 no 1,246.6
HILP - - - - 433 829 - no 1,062.9
α$ - - - - - - - - t/o
IM 0.96 0.58 0.73 0.96 162 111 1.00 yes 0.7

ETM 0.66 0.95 0.78 0.63 74 17 1.00 yes 3,600
BPIC154f HM6 - - - - 156 127 0.13 no 0.5

S-HM5.2 - - - - 155 123 0.16 no 301.7
HILP - - - - 364 593 - no 14.7
α$ - - - - - - - - t/o
IM 0.94 0.18 0.30 0.94 134 95 1.00 yes 1.5

ETM 0.58 0.89 0.70 0.56 82 26 1.00 yes 3,600
BPIC155f HM6 - - - - 166 124 0.15 no 1.2

S-HM5.2 1.00 0.70 0.82 1.00 167 123 0.20 yes 304.0
HILP - - - - - - - - t/o
α$ - - - - - - - - t/o
IM 0.98 0.70 0.82 0.98 35 20 1.00 yes 13.3

ETM 0.72 1.00 0.84 0.82 31 5 1.00 yes 3,600
BPIC17f HM6 - - - - 29 10 0.45 no 6.5

S-HM5.2 - - - - 195 114 0.68 no 390.9
HILP - - - - 222 330 - no 384.5
α$ - - - - - - - - t/o
IM 0.99 0.70 0.82 0.99 34 20 1.00 yes 10.9

ETM 0.79 0.98 0.87 0.81 46 33 1.00 yes 3,600
RTFMP HM6 - - - - 47 50 0.06 no 7.8

S-HM5.2 0.92 0.88 0.90 0.77 70 55 1.00 yes 260.9
HILP - - - - 57 53 - no 3.5
α$ - - - - - - - - t/o
IM 0.99 0.45 0.62 0.96 50 32 1.00 yes 0.4

ETM 0.71 0.84 0.77 0.70 30 15 1.00 yes 3,600
SEPSIS HM6 - - - - 81 132 0.17 no 0.03

S-HM5.2 - - - - 52 42 0.58 no 312.3
HILP - - - - 87 129 - no 1.6

TABLE 3: Results of the benchmark.

10

However, ETM tends to output more compact models than
IM, having the smallest size and CFC seven times out of
twelve.

To conclude, while there is no clear winner, IM provided
the best results altogether, followed by ETM, S-HM5.2 and
HM6, with the latter two methods being able to produce
good quality models only from simpler logs out. And while
ETM exhibited similar results to IM in terms of quality, it
required significantly longer execution times.

5 DISCUSSION

Our review highlights a growing interest in the field of
automated process discovery, and confirms the existence of
a wide and heterogeneous number of proposals addressing
the problem of this area of literature. Despite the variety of
proposals we can clearly identify two main streams: meth-
ods which output procedural process models and methods
which output declarative process models. Further, while the
latter only relies on declarative statements to represent a
process, the former provides various language alternatives,
though, most of these methods output Petri nets. The pre-
dominance of Petri nets is driven by the expressiveness
power of this language, and by the requirements of the
methods used to assess the quality of the discovered pro-
cess models (chiefly, fitness and precision). Despite some
modeling languages have a straightforward conversion to
Petri nets, the strict requirements of these quality assess-
ment tools represent a limitation for the proposals in this
research field. For the same reason, it was not possible to
compare the two main streams, so we decided to focus
our evaluation and comparison on the procedural methods,
which in any case, have a higher practical relevance than
their declarative counterparts, given that declarative process
models are hardly used in practice.

Finally, our benchmark shows gaps, limitations and un-
explored trade-offs of procedural methods for automated
process discovery. These include lack of scalability to large
and complex logs, and strong differences in the output
models, across the various quality metrics. On this latter
aspect, the majority of methods were not able to guarantee
soundness, except for IM and ETM, which do so at the price
of enforcing block-structuredness. Moreover, ETM requires
significantly longer execution times than IM, rendering this
method hardly usable in practice. Further, our evaluation
shows that existing methods do not integrate sufficiently
robust noise-filtering techniques to be used on large-scale
real-life events logs. In some cases (i.e. BPIC14, BPIC15,
BPIC17 logs), in order to produce any output for which
fitness and precision could be measured or to avoid extreme
over-fitting (in the case of IM), we had to apply a noise-
filtering technique as a pre-processing step.

To conclude, even if many proposals are available in this
research area, there is no definitive solution to the problem
of automated process discovery. First, the great majority of
the methods do not have a working or available imple-
mentation, which hampers their systematic evaluation, so
one can only rely on the results reported in the respective
papers. Second, for those methods we assessed, we were
not able to identify a clear winner, since all the evaluated
methods struggle to strike a good balance between fitness,

precision and complexity. They either maximize fitness at
the expenses of precision, or achieve a good level of fitness
and precision at the price of obtaining a very complex,
often unsound model. Despite these considerations, it can
be noted that there has been significant progress in this field
in the past five years. Three of the methods proposed since
2011 (i.e. IM, ETM and S-HM5.2) clearly outperform those
that were developed in the previous decade.

6 THREATS TO VALIDITY

The first threat to validity refers to the potential selection
bias and inaccuracies in data extraction and analysis typical
of literature reviews. In order to minimize such issues,
our systematic literature review carefully adheres to the
guidelines outlined in [4]. Concretely, we used well-known
literature sources and libraries in information technology
to extract relevant works on the topic of automated pro-
cess discovery. Further, we performed a backward reference
search to avoid the exclusion of potentially relevant papers.
Finally, to avoid that our review was threatened by insuf-
ficient reliability, we ensured that the search process could
be replicated by other researchers. However, the search may
produce different results as the algorithm used by source
libraries to rank results based on relevance may be updated
(see e.g. Google Scholar).

The experimental evaluation on the other hand is limited
in scope to techniques that produce Petri nets (or models in
languages such as BPMN that can be directly translated to
Petri nets). Also, it only considers major studies identified
in the SLR, with at least ten citations and an available
implementation, and takes the most recent incarnation of
each method (e.g. we only considered α$, as it was shown in
previous work to outperform the α and α+ algorithms). In
order to compensate for these shortcomings, we published
the benchmarking toolset as open-source software in order
to enable researchers both to reproduce the results herein
reported and to run the same evaluation for other methods
or for alternative configurations of the evaluated methods.

Another limitation is the use of only twelve event logs,
which to some extent limits the generalizability of the con-
clusions. However, the event logs included in the evaluation
are all real-life logs of different sizes and characteristics,
including different application domains. To mitigate this
limitation, we have structured the released benchmarking
toolset in such a way that the benchmark can be seamlessly
rerun with additional datasets.

7 RELATED WORK

A previous survey and benchmark of automated process
discovery methods has been reported by De Weerdt et al. [3].
This survey covered 27 approaches altogether, all of which
are included in the 330 studies we identified during our
systematic literature review (prior to filtering).

The benchmark reported in [3] includes seven ap-
proaches, namely AGNEsMiner, α+, α++, Genetic Miner
(and a variant thereof), Flower Heuristics Miner and ILP
Miner. In comparison, our benchmark includes α$ (which is
an improved version of α+ and α++), Heuristics miner and
HILP (the latter being an improved version of ILP). We did

11

not include AGNEsMiner and Genetic Miner due to the very
long execution times (in the order of several hours to several
days as reported in [3]). We did include however ETM in
our benchmark, which is a genetic algorithm postdating the
evaluation in [3], which achieves better execution times by
focusing on block-structured process models and simpler
transformation rules.

Another difference with respect to [3] is that in our paper
we restricted the evaluation to public event logs in order to
ensure reproducibility, whereas the evaluation in [3] is solely
based on closed datasets due to the unavailability of public
datasets at the time that study.

In terms of the findings, [3] found that Heuristics Miner
achieved a better F-score than other approaches and gener-
ally produced simpler models, while ILP achieved the best
fitness at the expense of low precision and high model com-
plexity. Our results show that other techniques postdating
these ones, specifically IM and ETM, achieve even better
F-score and lower model complexity than Heuristics Miner,
which in addition suffers from the fact that it often produces
unsound process models. It thus appears that progress in the
field in the last years has been achieved by focusing on the
discovery of block-structured process models.

Another previous survey in the field is outdated [61] and
a more recent one is not intended to be comprehensive [62],
but rather focuses on plugins available in the ProM toolset.
Another related effort is CoBeFra – a tool suite for measur-
ing fitness, precision and model complexity of automatically
discovered process models [63]. The methods for the eval-
uation of fitness and precision used in our benchmark are
taken from this suite.

8 CONCLUSION

This article presented a Systematic Literature Review (SLR)
of automated process discovery methods and a comparative
evaluation of existing implementations of these methods
using a benchmark covering twelve publicly-available real-
life event logs and eight quality metrics. The toolset used
in this benchmark is available as open-source software and
all the event logs are sourced from the 4TU Centre. The
benchmarking toolset has been designed in a way that it
can be seamlessly extended with additional methods, event
logs, and evaluation metrics.

The SLR put into evidence a vast number of automated
process discovery methods (330 relevant papers were iden-
tified). Traditionally, many of these proposals produce Petri
nets, but more recently, we observe an increasing number of
methods that produce models in other languages, including
BPMN and declarative constraints. We also observe a recent
emphasis on methods that produce block-structured process
models.

The results of the empirical evaluation show that meth-
ods that seek to produce block-structured process models
(IM, ETM and S-HM5.2) achieve the best performance in
terms of fitness, precision and complexity. Methods that do
not restrict the topology of the generated process models
(α$, Heuristics Miner and HILP), generally produce un-
sound process models when applied to real-life event logs.
We have also observed that in the case of very complex
event logs, it is necessary to use a filtering method prior

to applying existing automated process discovery methods.
None of the methods appears to have a sufficiently powerful
and adaptive filtering technique to cope with the complexity
of these event logs.

Finally, the study has shown that there is still significant
room for improvement in the field. One of the two top-
performing automated process discovery methods (IM) is
problematic because it often generates “flower” structures,
i.e. fragments where a set of activities can be performed any
number of times and in any order. These structures lead
to low precision. The other top-performing method (ETM)
suffers from significant performance issues, relying on a ge-
netic algorithm at its core. Finally, S-HM5.2, a relatively well-
performing method, is not robust – it sometimes produces
unsound process models due to its reliance on the Heuristics
Miner.

ACKNOWLEDGMENTS

This research is partly funded by the Australian Research
Council (grant DP150103356) and the Estonian Research
Council (grant IUT20-55).

REFERENCES

[1] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[2] W. van der Aalst, Process Mining: Data Science in Action. Springer,
2016.

[3] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A
multi-dimensional quality assessment of state-of-the-art process
discovery algorithms using real-life event logs,” Information Sys-
tems, vol. 37, no. 7, pp. 654–676, 2012.

[4] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[5] A. Fink, Conducting research literature reviews: from the internet to
paper, 3rd ed. Sage Publications, 2010.

[6] C. Okoli and K. Schabram, “A guide to conducting a systematic lit-
erature review of information systems research,” Sprouts: Working
Papers on Information Systems, vol. 10, no. 26, pp. 1–49, 2010.

[7] J. Randolph, “A guide to writing the dissertation literature re-
view,” Practical Assessment, Research & Evaluation, vol. 14, no. 13,
pp. 1–13, 2009.

[8] R. Torraco, “Writing integrative literature reviews: guidelines and
examples,” Human Resource Development Review, vol. 4, no. 3, pp.
356–367, 2005.

[9] H. R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah,
“Event correlation for process discovery from web service inter-
action logs,” The VLDB Journal—The International Journal on Very
Large Data Bases, vol. 20, no. 3, pp. 417–444, 2011.

[10] Z. Huang and A. Kumar, “A study of quality and accuracy trade-
offs in process mining,” INFORMS Journal on Computing, vol. 24,
no. 2, pp. 311–327, 2012.

[11] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst,
“Efficient discovery of understandable declarative process models
from event logs,” in Advanced Information Systems Engineering -
24th International Conference, CAiSE 2012, Gdansk, Poland, June 25-
29, 2012. Proceedings, 2012, pp. 270–285.

[12] C. Di Ciccio and M. Mecella, “A two-step fast algorithm for the
automated discovery of declarative workflows,” in Computational
Intelligence and Data Mining (CIDM), 2013 IEEE Symposium on.
IEEE, 2013, pp. 135–142.

[13] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discov-
ering block-structured process models from event logs containing
infrequent behaviour,” in Business Process Management Workshops -
BPM 2013 International Workshops, Beijing, China, August 26, 2013,
Revised Papers, 2013, pp. 66–78.

[14] M. Abe and M. Kudo, “Business monitoring framework for pro-
cess discovery with real-life logs,” in International Conference on
Business Process Management. Springer, 2014, pp. 416–423.

12

[15] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “Qual-
ity dimensions in process discovery: The importance of fitness,
precision, generalization and simplicity,” International Journal of
Cooperative Information Systems, vol. 23, no. 01, p. 1440001, 2014.

[16] S. De Cnudde, J. Claes, and G. Poels, “Improving the quality of
the heuristics miner in prom 6.2,” Expert Systems with Applications,
vol. 41, no. 17, pp. 7678–7690, 2014.

[17] S. Ferilli, “Woman: logic-based workflow learning and manage-
ment,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 44, no. 6, pp. 744–756, 2014.

[18] F. M. Maggi, T. Slaats, and H. A. Reijers, “The automated discovery
of hybrid processes,” in International Conference on Business Process
Management. Springer, 2014, pp. 392–399.

[19] D. Redlich, T. Molka, W. Gilani, G. Blair, and A. Rashid, “Dynamic
constructs competition miner-occurrence-vs. time-based ageing,”
in International Symposium on Data-Driven Process Discovery and
Analysis. Springer, 2014, pp. 79–106.

[20] O. Vasilecas, T. Savickas, and E. Lebedys, “Directed acyclic graph
extraction from event logs,” in International Conference on Informa-
tion and Software Technologies. Springer, 2014, pp. 172–181.

[21] H. Verbeek and W. M. van der Aalst, “Decomposed process
mining: The ilp case,” in International Conference on Business Process
Management. Springer, 2014, pp. 264–276.

[22] F. Folino, M. Guarascio, and L. Pontieri, “On the discovery of
explainable and accurate behavioral models for complex lowly-
structured business processes.” in ICEIS (1), 2015, pp. 206–217.

[23] G. Greco, A. Guzzo, F. Lupia, and L. Pontieri, “Process discovery
under precedence constraints,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 9, no. 4, p. 32, 2015.

[24] Q. Guo, L. Wen, J. Wang, Z. Yan, and S. Y. Philip, “Mining invisible
tasks in non-free-choice constructs,” in International Conference on
Business Process Management. Springer, 2015, pp. 109–125.

[25] V. Liesaputra, S. Yongchareon, and S. Chaisiri, “Efficient process
model discovery using maximal pattern mining,” in International
Conference on Business Process Management. Springer, 2015, pp.
441–456.

[26] H. Ponce-de Léon, J. Carmona, and S. K. Vanden Broucke, “Incor-
porating negative information in process discovery,” in Interna-
tional Conference on Business Process Management. Springer, 2015,
pp. 126–143.

[27] T. Molka, D. Redlich, M. Drobek, X.-J. Zeng, and W. Gilani,
“Diversity guided evolutionary mining of hierarchical process
models,” in Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation. ACM, 2015, pp. 1247–1254.

[28] W. M. van der Aalst, A. Kalenkova, V. Rubin, and E. Verbeek, “Pro-
cess discovery using localized events,” in International Conference
on Applications and Theory of Petri Nets and Concurrency. Springer,
2015, pp. 287–308.

[29] S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst, “ILP-
Based Process Discovery Using Hybrid Regions,” in International
Workshop on Algorithms & Theories for the Analysis of Event Data,
ATAED 2015, ser. CEUR Workshop Proceedings, vol. 1371. CEUR-
WS.org, 2015, pp. 47–61.

[30] B. Vázquez-Barreiros, M. Mucientes, and M. Lama, “Prodigen:
Mining complete, precise and minimal structure process models
with a genetic algorithm,” Information Sciences, vol. 294, pp. 315–
333, 2015.

[31] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno,
“Automated discovery of structured process models: Discover
structured vs. discover and structure,” in Conceptual Modeling: 35th
International Conference, ER 2016, Gifu, Japan, November 14-17, 2016,
Proceedings 35. Springer, 2016, pp. 313–329.

[32] M. L. Bernardi, M. Cimitile, C. Di Francescomarino, and F. M.
Maggi, “Do activity lifecycles affect the validity of a business rule
in a business process?” Information Systems, 2016.

[33] D. Breuker, M. Matzner, P. Delfmann, and J. Becker, “Compre-
hensible predictive models for business processes,” MIS Quarterly,
vol. 40, no. 4, pp. 1009–1034, 2016.

[34] R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa,
“Bpmn miner: Automated discovery of bpmn process models with
hierarchical structure,” Information Systems, vol. 56, pp. 284–303,
2016.

[35] C. Di Ciccio, F. M. Maggi, and J. Mendling, “Efficient discovery of
target-branched declare constraints,” Information Systems, vol. 56,
pp. 258–283, 2016.

[36] A. Mokhov, J. Carmona, and J. Beaumont, “Mining conditional
partial order graphs from event logs,” in Transactions on Petri Nets
and Other Models of Concurrency XI. Springer, 2016, pp. 114–136.

[37] S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski, and
J. Mendling, “Efficient and customisable declarative process min-
ing with sql,” in International Conference on Advanced Information
Systems Engineering. Springer, 2016, pp. 290–305.

[38] W. Song, H.-A. Jacobsen, C. Ye, and X. Ma, “Process discovery
from dependence-complete event logs,” IEEE Transactions on Ser-
vices Computing, vol. 9, no. 5, pp. 714–727, 2016.

[39] M. L. van Eck, N. Sidorova, and W. M. van der Aalst, “Discover-
ing and exploring state-based models for multi-perspective pro-
cesses,” in International Conference on Business Process Management.
Springer, 2016, pp. 142–157.

[40] B. N. Yahya, M. Song, H. Bae, S.-o. Sul, and J.-Z. Wu, “Domain-
driven actionable process model discovery,” Computers & Industrial
Engineering, 2016.

[41] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and
A. Serebrenik, “Process discovery using integer linear program-
ming,” Fundam. Inform., vol. 94, no. 3-4, pp. 387–412, 2009.

[42] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Dis-
covering block-structured process models from event logs - A
constructive approach,” in Application and Theory of Petri Nets
and Concurrency - 34th International Conference, PETRI NETS 2013,
Milan, Italy, June 24-28, 2013. Proceedings, 2013, pp. 311–329.

[43] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Discovering
block-structured process models from incomplete event logs,” in
International Conference on Applications and Theory of Petri Nets and
Concurrency. Springer, 2014, pp. 91–110.

[44] ——, “Scalable process discovery with guarantees,” in Interna-
tional Conference on Enterprise, Business-Process and Information Sys-
tems Modeling. Springer, 2015, pp. 85–101.

[45] ——, “Scalable process discovery and conformance checking,”
Softw. Syst. Model., 2017, to appear.

[46] A. J. M. M. Weijters and J. T. S. Ribeiro, “Flexible heuristics miner
(FHM),” in Proceedings of the IEEE Symposium on Computational
Intelligence and Data Mining, CIDM 2011, part of the IEEE Symposium
Series on Computational Intelligence 2011, April 11-15, 2011, Paris,
France, 2011, pp. 310–317.

[47] A. J. M. M. Weijters and W. M. P. van der Aalst, “Rediscovering
workflow models from event-based data using little thumb,”
Integrated Computer-Aided Engineering, vol. 10, no. 2, pp. 151–162,
2003.

[48] R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa,
“Beyond tasks and gateways: discovering bpmn models with sub-
processes, boundary events and activity markers,” in International
Conference on Business Process Management. Springer, 2014, pp.
101–117.

[49] D. Redlich, T. Molka, W. Gilani, G. S. Blair, and A. Rashid,
“Constructs competition miner: Process control-flow discovery
of bp-domain constructs,” in Business Process Management - 12th
International Conference, BPM 2014, Haifa, Israel, September 7-11,
2014. Proceedings, 2014, pp. 134–150.

[50] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “DECLARE:
full support for loosely-structured processes,” in 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference (EDOC
2007), 15-19 October 2007, Annapolis, Maryland, USA, 2007, pp. 287–
300.

[51] M. Westergaard and F. M. Maggi, “Declare: A tool suite for declar-
ative workflow modeling and enactment,” in Proceedings of the
Demo Track of the Nineth Conference on Business Process Management
2011, Clermont-Ferrand, France, August 31st, 2011, 2011.

[52] S. Schönig, C. Di Ciccio, F. M. Maggi, and J. Mendling, “Discov-
ery of multi-perspective declarative process models,” in Service-
Oriented Computing - 14th International Conference, ICSOC 2016,
Banff, AB, Canada, October 10-13, 2016, Proceedings, 2016, pp. 87–
103.

[53] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Discovering
block-structured process models from event logs containing in-
frequent behaviour,” in International Conference on Business Process
Management. Springer, 2013, pp. 66–78.

[54] A. Weijters and J. Ribeiro, “Flexible heuristics miner (fhm),” in
Computational Intelligence and Data Mining (CIDM), 2011 IEEE
Symposium on. IEEE, 2011, pp. 310–317.

[55] R. Conforti, M. L. Rosa, and A. ter Hofstede, “Filtering out
infrequent behavior from business process event logs,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 2, 2017.

13

[56] A. Adriansyah, B. van Dongen, and W. van der Aalst, “Con-
formance checking using cost-based fitness analysis,” in Proc. of
EDOC. IEEE, 2011.

[57] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and
W. M. P. van der Aalst, “Alignment based precision checking,” in
Proc. of BPM Workshops, ser. LNBIP, vol. 132. Springer, 2012, pp.
137–149.

[58] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in International Joint Conference on
Artificial Intelligence, IJCAI. Morgan Kaufmann, 1995, pp. 1137–
1145.

[59] J. Mendling, Metrics for Process Models: Empirical Foundations of Ver-
ification, Error Prediction, and Guidelines for Correctness. Springer,
2008.

[60] W. M. P. van der Aalst, Verification of workflow nets. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 407–426.

[61] van der Aalst, W. M. P., van Dongen, B. F., J. Herbst, L. Maruster,
G. Schimm, and Weijters, A. J. M. M., “Workflow mining: a survey
of issues and approaches,” Data Knowl. Eng., vol. 47, no. 2, pp.
237–267, 2003.

[62] J. Claes and G. Poels, “Process Mining and the ProM Framework:
An Exploratory Survey,” in Business Process Management Work-
shops. Springer, 2012, pp. 187–198.

[63] S. K. L. M. vanden Broucke, J. D. Weerdt, J. Vanthienen, and
B. Baesens, “A comprehensive benchmarking framework (CoBe-
Fra) for conformance analysis between procedural process models
and event logs in ProM,” in IEEE Symposium on Computational
Intelligence and Data Mining, CIDM. IEEE, 2013, pp. 254–261.

Adriano Augusto is a joint-PhD student at Uni-
versity of Tartu (Estonia) and Queensland Uni-
versity of Technology (Australia). He graduated
in Computer Engineering at Polytechnic of Turin
(Italy) in 2016, presenting a master thesis in the
field of Process Mining.

Raffaele Conforti is Post-Doctoral Research
Fellow at the Queensland University of Technol-
ogy, Australia. He conducts research on process
mining and automation, with a focus on auto-
mated process discovery, quality improvement
of process event logs and process-risk manage-
ment.

Marlon Dumas is Professor of Software En-
gineering at University of Tartu, Estonia. Prior
to this appointment he was faculty member at
Queensland University of Technology and visit-
ing researcher at SAP Research, Australia. His
research interests span across the fields of soft-
ware engineering, information systems and busi-
ness process management. He is co-author of
the textbook “Fundamentals of Business Pro-
cess Management” (Springer, 2013).

Marcello La Rosa is Professor of Informa-
tion Systems at the Queensland University
of Technology, Australia. His research inter-
ests include process mining, consolidation and
automation. He leads the Apromore Initiative
(www.apromore.org), a strategic collaboration
between various universities for the development
of a process analytics platform, and co-authored
the textbook “Fundamentals of Business Pro-
cess Management” (Springer, 2013).

Fabrizio Maria Maggi is a Senior Researcher at
the University of Tartu, Estonia. He worked as
Post-Doctoral Researcher at the Department of
Mathematics and Computer Science, Eindhoven
University of Technology. His research interest
span business process management, data min-
ing and service-oriented computing.

Andrea Marrella is Post-Doctoral Research Fel-
low at the Department of Computer, Control,
and Management Engineering at Sapienza Uni-
versity of Rome. His research interests include
Human-Computer Interaction, User Experience
Design, Knowledge Representation, Reasoning
about Action, Automated Planning, Business
Process Management. He has published over
40 research papers and articles and 1 book
chapter on the above topics, among others in
ACM Transactions on Intelligent Systems and

Technologies, IEEE Internet Computing and Journal on Data Semantics.

Massimo Mecella is Associate Professor (with a
qualification to Full Professorship) with Sapienza
Università di Roma, Department of Engineer-
ing in Computer, Control and Management Sci-
ences. His research focuses on service ori-
ented computing, business process manage-
ment, Cyber-Physical Systems and Internet-
of-Things, advanced interfaces and human-
computer interaction, with applications in fields
such as eGovernment, eBusiness, smart houses
and smart spaces and healthcare. He published

more than 150 research papers and chaired different conferences in the
above areas.

Allar Soo Allar Soo is student in the Masters of
Software Engineering at University of Tartu. His
Masters thesis is focused on automated process
discovery and its use in practical settings.

	Introduction
	Search protocol
	Research questions formulation
	Search string development and validation
	Study selection

	Classification of methods
	Model type and language (RQ2)
	Procedural language constructs (RQ3)
	Implementation (RQ4)
	Evaluation data and domains (RQ5)

	Benchmark
	Methods selection
	Setup and datasets
	Evaluation metrics
	Benchmark results

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Adriano Augusto
	Raffaele Conforti
	Marlon Dumas
	Marcello La Rosa
	Fabrizio Maria Maggi
	Andrea Marrella
	Massimo Mecella
	Allar Soo

