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Tech Report: Rank Minimization and Sparse Modeling
Iman Abbasnejad

In this document we provide more details on the presented bounds in Eq.8, Eq.9, Eq.10 and Eq.11
and also the relation between the /o-norm and nuclear norm in our paper [|Abbasnejad et al.2017]. In
this document we use the same notations and definitions as the paper.

1 Details of Equations 8 - 11

Lemma 4.1 suggests that the inner product between the linear combinations of two arbitrary k—sparse
vectors X, X is approximately preserved by linear projection:

(1+e)xT%x —2R% < (Ax)T(A%) < (1 — e)xT% + 2R% (1)

by substituting ||x||2 < R, ||%X||2 < R in the above equation we have (for more details see Lemma 4.2
and Lemma 4.3 in [[Calderbank, Jafarpour, and Schapire2009]):

(14 ox"% = (x5 + [%]3)e < (Ax)T(A%) < (1 = e)x" %+ ([x]|3 + [[%]3)e 2)

by generalizing Eq. [2|to any arbitrary k—sparse vector x;, X; and substituting a;y;x; and ¢&;¢;X; in
Eq.[2] we have:

(1+ ) oudyyarix] X5 — ([lowyixi|3 + |1 6557%;113)e 3)
< (Aaayixi)) " (A(d;9,;%5)) <
(1 — Qoudyyarix; X + (loyxi|3 + 116557,%;115)e

Since linear SVM classifier is the linear combination of training examples:
M N
w = Z QYiXi, W= Z X, “)
i=1 j=1

by getting summation over o;y;X; and ;7;%; and substituting w = Zﬁl QYK W = Zjvz1 &YX
and x; = X;, N = M in Eq.[3|we have:

M M
(14w’ w =26 [laiyixi[3 < (A(w)"(AW) < (1 - w w+2e Y [lowyixills  (5)
i=1 i=1



from norm inequalities and definitions we know:

M M M M M
D llewyixilld <> lewyixill2 > llewyixilla = D lyilllaixilla Y il o2 (6)
=1 i=1 =1 =1 i=1

M M
=K flaixilla Y lleixi]|2
i=1 i=1
M .
where > .7, |y;| < K. Therefore we can rewrite Eq as follows:
M M
(1+e)wTw—2K262Haixi||22||aixi”2 (7
i=1 i=1

< (Aw) (A(@) <

M M
(1—-e)wlw+ 2K2€Z laix; |2 Z laix; |2
i=1 i=1

following the same procedure and substituting w = Zf\il Biyivi in Eq.we have:

M M
1+ 6w’ w —2K% Y " [1Bivilla Y 1Bivill ®
=1 =1

< (A(w)"(A@) <

M M
(1—w’w+ 2K [|Bivilla > [1Bivill

i=1 i=1

In order to compare the bounds in Eq.[8]and Eq. [T0] we only need to compare:

M M
Z||0<¢Xz'||2, leb’mllz
i=1 i=1

To do so, from the definition we have:

M M M M
S llaixilla Y llexilla = leallxill2 > lealllxill2
=1 =1 =1 =1

M M M M
S Bivilla Y 1Bl = > IBilllvilla Y 1Bil[[vill2
=1 1=1 =1 =1
and since Y21 |ai| = LY M 18] = L,2M, x| = 1X]lp, XM, vi = [ V] r, therefore we
have:
(14 e)ww — 2K%€)|X||% < (A(w)T(A(W) < (1 — e)wTw + 2K 2| X% 9)
and:
(14 e)wlw —2K%|V||% < (A(w)T(AW) < (1 — e)wTw + 2K2%¢||V|% (10)

and in order to compare the bounds we need to compare the Frobenius norm of the set of input
examples, X, V



2 /3—norm vs. Nuclear norm

In this section we study the effect of nuclear norm minimization on the £s-norm.

In this section our goal is to show if | V]|, < || X]|«, then || X||z < ||[V]]2 where V = X o7
and 7 is a set of transformation that only applies on the indexes and makes the rank of V as small as
possible. In other words we want to show if:

F<r= V[, <|X[. =Y d <) o (1)
i=1 =1
then:
[X[2 < [[V]2 = 01 <61 (12)

where rank(X) = r, rank(V) = 7 and 0, 0; are the i-th singular values of V and X .
In order to see the relation between the ¢, —norm and the nuclear norm we can rewrite Eq. as
follows:

IX||«=01+024...+0.=C, ||V]i=d1+da+...+0.=C—c¢ (13)

where e is the difference between ||X]||.. and || V... By substituting C' from the left hand side in Eq.
to the right hand side in Eq. [I3]we have:

O:1+0"2+...+0,'7::Jl+02+...+0'r—6 (14)

For comparison, we consider the worst case scenario in which oy = 09 = ... = 0, and 61 = J5 =
... = 0y, therefore:

¥ =roy —¢€ (15)

substituting 6; = ko in the above equation yields:

fkalzral—eﬁkzw (16)
TO1
in order to see when k£ > 1 and the || X||2 < |[V||2 we have:
rop —e>7rop = € < (r — 7)oy a7

where (r — ) > 0. Fig. |1| visualizes the £2-norm vs. the nuclear norm. The details of datasets and
implementations can be found in [[Abbasnejad et al.2015, /Abbasnejad et al.2016||/Abbasnejad and!
Teney2015]
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Figure 1: || X]|2 vs || X]|« for different r = rank(X)
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