Queensland University of Technology
Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Abbasnejad, Iman
(2017)

Rank minimization and sparse modeling.
(Unpublished)
This file was downloaded from: http://eprints.qut.edu.au/106842/

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

Tech Report: Rank Minimization and Sparse Modeling Iman Abbasnejad

In this document we provide more details on the presented bounds in Eq.8, Eq.9, Eq. 10 and Eq. 11 and also the relation between the ℓ_{2}-norm and nuclear norm in our paper Abbasnejad et al.2017]. In this document we use the same notations and definitions as the paper.

1 Details of Equations 8-11

Lemma 4.1 suggests that the inner product between the linear combinations of two arbitrary k-sparse vectors \mathbf{x}, \mathbf{x} is approximately preserved by linear projection:

$$
\begin{equation*}
(1+\epsilon) \mathbf{x}^{T} \dot{\mathbf{x}}-2 R^{2} \epsilon \leq(A \mathbf{x})^{T}(A \dot{\mathbf{x}}) \leq(1-\epsilon) \mathbf{x}^{T} \dot{\mathbf{x}}+2 R^{2} \epsilon \tag{1}
\end{equation*}
$$

by substituting $\|\mathbf{x}\|_{2} \leq R,\|\dot{\mathbf{x}}\|_{2} \leq R$ in the above equation we have (for more details see Lemma 4.2 and Lemma 4.3 in (Calderbank, Jafarpour, and Schapire2009]):

$$
\begin{equation*}
(1+\epsilon) \mathbf{x}^{T} \dot{\mathbf{x}}-\left(\|\mathbf{x}\|_{2}^{2}+\|\dot{\mathbf{x}}\|_{2}^{2}\right) \epsilon \leq(A \mathbf{x})^{T}(A \dot{\mathbf{x}}) \leq(1-\epsilon) \mathbf{x}^{T} \dot{\mathbf{x}}+\left(\|\mathbf{x}\|_{2}^{2}+\|\dot{\mathbf{x}}\|_{2}^{2}\right) \epsilon \tag{2}
\end{equation*}
$$

by generalizing Eq. 2 to any arbitrary $k-$ sparse vector $\mathbf{x}_{i}, \mathbf{x}_{j}^{\prime}$ and substituting $\alpha_{i} y_{i} \mathbf{x}_{i}$ and $\dot{\alpha}_{j} y_{j} \dot{\mathbf{x}}_{j}$ in Eq. 2 we have:

$$
\begin{align*}
& (1+\epsilon) \alpha_{i} \dot{\alpha}_{j} y_{i} y_{j}^{\prime} \mathbf{x}_{i}^{T} \cdot \mathbf{x}_{j}^{\prime}-\left(\left\|\alpha_{i} y_{i} \mathbf{x}_{i}\right\|_{2}^{2}+\left\|\dot{\alpha}_{j} y_{j}^{\prime} \mathbf{x}_{j}\right\|_{2}^{2}\right) \epsilon \tag{3}\\
& \leq\left(A\left(\alpha_{i} y_{i} \mathbf{x}_{i}\right)\right)^{T}\left(A\left(\dot{\alpha}_{j} y_{j}^{\prime} \mathbf{x}_{j}^{\prime}\right)\right) \leq \\
& \quad(1-\epsilon) \alpha_{i} \dot{\alpha}_{j} y_{i} y_{j}^{\prime} \mathbf{x}_{i}^{T} \cdot \mathbf{x}_{j}^{\prime}+\left(\left\|\alpha_{i} y_{i} \mathbf{x}_{i}\right\|_{2}^{2}+\left\|\dot{\alpha}_{j} y_{j}^{\prime} \dot{\mathbf{x}}_{j}\right\|_{2}^{2}\right) \epsilon
\end{align*}
$$

Since linear SVM classifier is the linear combination of training examples:

$$
\begin{equation*}
\boldsymbol{\omega}=\sum_{i=1}^{M} \alpha_{i} y_{i} \mathbf{x}_{i}, \quad \dot{\boldsymbol{\omega}}=\sum_{j=1}^{N} \alpha_{j}^{\prime} \dot{y}_{j} \dot{\mathbf{x}}_{j} \tag{4}
\end{equation*}
$$

by getting summation over $\alpha_{i} y_{i} \mathbf{x}_{i}$ and $\alpha_{j}^{\prime} y_{j} \dot{\mathbf{x}}_{j}$ and substituting $\boldsymbol{\omega}=\sum_{i=1}^{M} \alpha_{i} y_{i} \mathbf{x}_{i}, \dot{\boldsymbol{\omega}}=\sum_{j=1}^{N} \dot{\alpha}_{j} \dot{y}_{j} \dot{\mathbf{x}}_{j}$ and $\mathbf{x}_{i}=\dot{\mathbf{x}}_{j}, N=M$ in Eq. 3 we have:

$$
\begin{equation*}
(1+\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}-2 \epsilon \sum_{i=1}^{M}\left\|\alpha_{i} y_{i} \mathbf{x}_{i}\right\|_{2}^{2} \leq\left(A (\boldsymbol { \omega }) ^ { T } \left(A(\dot{\boldsymbol{\omega}}) \leq(1-\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}+2 \epsilon \sum_{i=1}^{M}\left\|\alpha_{i} y_{i} \mathbf{x}_{i}\right\|_{2}^{2}\right.\right. \tag{5}
\end{equation*}
$$

from norm inequalities and definitions we know:

$$
\begin{align*}
\sum_{i=1}^{M}\left\|\alpha_{i} y_{i} \mathbf{x}_{i}\right\|_{2}^{2} \leq \sum_{i=1}^{M}\left\|\alpha_{i} y_{i} \mathbf{x}_{i}\right\|_{2} \sum_{i=1}^{M}\left\|\alpha_{i} y_{i} \mathbf{x}_{i}\right\|_{2} & =\sum_{i=1}^{M}\left|y_{i}\right|\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2} \sum_{i=1}^{M}\left|y_{i}\right|\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2} \tag{6}\\
& =K^{2} \sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2} \sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2}
\end{align*}
$$

where $\sum_{i=1}^{M}\left|y_{i}\right| \leq K$. Therefore we can rewrite Eq 5 as follows:

$$
\begin{align*}
&(1+\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}-2 K^{2} \epsilon \sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2} \sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2} \tag{7}\\
& \leq\left(A(\boldsymbol{\omega})^{T}(A(\dot{\boldsymbol{\omega}}) \leq\right. \\
&(1-\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}+2 K^{2} \epsilon \sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2} \sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2}
\end{align*}
$$

following the same procedure and substituting $\boldsymbol{\omega}=\sum_{i=1}^{M} \beta_{i} y_{i} \mathbf{v}_{i}$ in Eq. 3 we have:

$$
\begin{align*}
& (1+\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}-2 K^{2} \epsilon \sum_{i=1}^{M}\left\|\beta_{i} \mathbf{v}_{i}\right\|_{2} \sum_{i=1}^{M}\left\|\beta_{i} \mathbf{v}_{i}\right\|_{2} \tag{8}\\
& \leq\left(A(\boldsymbol{\omega})^{T}(A(\dot{\boldsymbol{\omega}}) \leq\right. \\
& \quad(1-\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}+2 K^{2} \epsilon \sum_{i=1}^{M}\left\|\beta i \mathbf{v}_{i}\right\|_{2} \sum_{i=1}^{M}\left\|\beta_{i} \mathbf{v}_{i}\right\|_{2}
\end{align*}
$$

In order to compare the bounds in Eq. 8 and Eq. 10 we only need to compare:

$$
\sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2}, \quad \sum_{i=1}^{M}\left\|\beta_{i} \mathbf{v}_{i}\right\|_{2}
$$

To do so, from the definition we have:

$$
\begin{aligned}
& \sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2} \sum_{i=1}^{M}\left\|\alpha_{i} \mathbf{x}_{i}\right\|_{2}=\sum_{i=1}^{M}\left|\alpha_{i}\right|\left\|\mathbf{x}_{i}\right\|_{2} \sum_{i=1}^{M}\left|\alpha_{i}\right|\left\|\mathbf{x}_{i}\right\|_{2} \\
& \sum_{i=1}^{M}\left\|\beta_{i} \mathbf{v}_{i}\right\|_{2} \sum_{i=1}^{M}\left\|\beta_{i} \mathbf{x}_{i}\right\|_{2}=\sum_{i=1}^{M}\left|\beta_{i}\right|\left\|\mathbf{v}_{i}\right\|_{2} \sum_{i=1}^{M}\left|\beta_{i}\right|\left\|\mathbf{v}_{i}\right\|_{2}
\end{aligned}
$$

and since $\sum_{i=1}^{M}\left|\alpha_{i}\right|=1, \sum_{i=1}^{M}\left|\beta_{i}\right|=1, \sum_{i=1}^{M}\left\|\mathbf{x}_{i}\right\|=\|\mathbf{X}\|_{F}, \sum_{i=1}^{M} \mathbf{v}_{i}=\|\mathbf{V}\|_{F}$, therefore we have:

$$
\begin{equation*}
(1+\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}-2 K^{2} \epsilon\|\mathbf{X}\|_{F}^{2} \leq\left(A (\boldsymbol { \omega }) ^ { T } \left(A(\dot{\boldsymbol{\omega}}) \leq(1-\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}+2 K^{2} \epsilon\|\mathbf{X}\|_{F}^{2}\right.\right. \tag{9}
\end{equation*}
$$

and:

$$
\begin{equation*}
(1+\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}-2 K^{2} \epsilon\|\mathbf{V}\|_{F}^{2} \leq\left(A (\boldsymbol { \omega }) ^ { T } \left(A(\dot{\boldsymbol{\omega}}) \leq(1-\epsilon) \boldsymbol{\omega}^{T} \boldsymbol{\omega}+2 K^{2} \epsilon\|\mathbf{V}\|_{F}^{2}\right.\right. \tag{10}
\end{equation*}
$$

and in order to compare the bounds we need to compare the Frobenius norm of the set of input examples, \mathbf{X}, \mathbf{V}

$2 \ell_{2}$-norm vs. Nuclear norm

In this section we study the effect of nuclear norm minimization on the ℓ_{2}-norm.
In this section our goal is to show if $\|\mathbf{V}\|_{*} \leq\|\mathbf{X}\|_{*}$, then $\|\mathbf{X}\|_{2} \leq\|\mathbf{V}\|_{2}$ where $\mathbf{V}=\mathbf{X} \circ \tau$ and τ is a set of transformation that only applies on the indexes and makes the rank of \mathbf{V} as small as possible. In other words we want to show if:

$$
\begin{equation*}
\dot{r} \leq r \Longrightarrow\|\mathbf{V}\|_{*} \leq\|\mathbf{X}\|_{*} \Longrightarrow \sum_{i=1}^{\dot{r}} \sigma_{i} \leq \sum_{i=1}^{r} \sigma_{i} \tag{11}
\end{equation*}
$$

then:

$$
\begin{equation*}
\|\mathbf{X}\|_{2} \leq\|\mathbf{V}\|_{2} \Longrightarrow \sigma_{1} \leq \dot{\sigma}_{1} \tag{12}
\end{equation*}
$$

where $\operatorname{rank}(\mathbf{X})=r \operatorname{rank}(\mathbf{V})=\dot{r}$ and σ_{i}, σ_{i} are the i-th singular values of \mathbf{V} and \mathbf{X}.
In order to see the relation between the $\ell_{2}-$ norm and the nuclear norm we can rewrite Eq. 11 as follows:

$$
\begin{equation*}
\|\mathbf{X}\|_{*}=\sigma_{1}+\sigma_{2}+\ldots+\sigma_{r}=C, \quad\|\mathbf{V}\|_{*}=\sigma_{1}^{\prime}+\sigma_{2}^{\prime}+\ldots+\sigma_{r}^{\prime}=C-\epsilon \tag{13}
\end{equation*}
$$

where ϵ is the difference between $\|\mathbf{X}\|_{*}$ and $\|\mathbf{V}\|_{*}$. By substituting C from the left hand side in Eq. 13 to the right hand side in Eq. 13 we have:

$$
\begin{equation*}
\sigma_{1}^{\prime}+\sigma_{2}^{\prime}+\ldots+\sigma_{\dot{r}}=\sigma_{1}+\sigma_{2}+\ldots+\sigma_{r}-\epsilon \tag{14}
\end{equation*}
$$

For comparison, we consider the worst case scenario in which $\sigma_{1}=\sigma_{2}=\ldots=\sigma_{r}$ and $\sigma_{1}=\sigma_{2}=$ $\ldots=\sigma_{\hat{r}}$, therefore:

$$
\begin{equation*}
\dot{r} \sigma_{1}=r \sigma_{1}-\epsilon \tag{15}
\end{equation*}
$$

substituting $\sigma_{1}=k \sigma_{1}$ in the above equation yields:

$$
\begin{equation*}
\dot{r} k \sigma_{1}=r \sigma_{1}-\epsilon \Longrightarrow k=\frac{r \sigma_{1}-\epsilon}{\dot{r} \sigma_{1}} \tag{16}
\end{equation*}
$$

in order to see when $k \geq 1$ and the $\|\mathbf{X}\|_{2} \leq\|\mathbf{V}\|_{2}$ we have:

$$
\begin{equation*}
r \sigma_{1}-\epsilon \geq \dot{r} \sigma_{1} \Longrightarrow \epsilon \leq(r-\dot{r}) \sigma_{1} \tag{17}
\end{equation*}
$$

where $(r-\dot{r}) \geq 0$. Fig. 1 visualizes the ℓ_{2}-norm vs. the nuclear norm. The details of datasets and implementations can be found in Abbasnejad et al.2015, Abbasnejad et al.2016, Abbasnejad and Teney2015]

Figure 1: $\|\mathbf{X}\|_{2}$ vs $\|\mathbf{X}\|_{*}$ for different $r=\operatorname{rank}(\mathbf{X})$

References

[Abbasnejad and Teney2015] Abbasnejad, I., and Teney, D. 2015. A hierarchical bayesian network for face recognition using 2d and 3d facial data. In Machine Learning for Signal Processing (MLSP), 2015 IEEE 25th International Workshop on, 1-6. IEEE.
[Abbasnejad et al.2015] Abbasnejad, I.; Sridharan, S.; Denman, S.; Fookes, C.; and Lucey, S. 2015. Learning temporal alignment uncertainty for efficient event detection. In Digital Image Computing: Techniques and Applications (DICTA), 2015 International Conference on, 1-8. IEEE.
[Abbasnejad et al.2016] Abbasnejad, I.; Sridharan, S.; Denman, S.; Fookes, C.; and Lucey, S. 2016. Complex event detection using joint max margin and semantic features. In Digital Image Computing: Techniques and Applications (DICTA), 2016 International Conference on, 1-8. IEEE.
[Abbasnejad et al.2017] Abbasnejad, I.; Sridharan, S.; Denman, S.; ; Fookes, C.; and Lucey, S. 2017. From affine rank minimization solution to sparse modeling. In Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, 1-7. IEEE.
[Calderbank, Jafarpour, and Schapire2009] Calderbank, R.; Jafarpour, S.; and Schapire, R. 2009. Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain. preprint.

