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Tech Report: Rank Minimization and Sparse Modeling
Iman Abbasnejad

In this document we provide more details on the presented bounds in Eq.8, Eq.9, Eq.10 and Eq.11
and also the relation between the `2-norm and nuclear norm in our paper [Abbasnejad et al.2017]. In
this document we use the same notations and definitions as the paper.

1 Details of Equations 8 - 11
Lemma 4.1 suggests that the inner product between the linear combinations of two arbitrary k−sparse
vectors x, x́ is approximately preserved by linear projection:

(1 + ε)xT x́− 2R2ε ≤ (Ax)T (Ax́) ≤ (1− ε)xT x́ + 2R2ε (1)

by substituting ‖x‖2 ≤ R, ‖x́‖2 ≤ R in the above equation we have (for more details see Lemma 4.2
and Lemma 4.3 in [Calderbank, Jafarpour, and Schapire2009]):

(1 + ε)xT x́− (‖x‖22 + ‖x́‖22)ε ≤ (Ax)T (Ax́) ≤ (1− ε)xT x́ + (‖x‖22 + ‖x́‖22)ε (2)

by generalizing Eq. 2 to any arbitrary k−sparse vector xi, x́j and substituting αiyixi and άj ýjx́j in
Eq. 2 we have:

(1 + ε)αiάjyiýjx
T
i .x́j − (‖αiyixi‖22 + ‖άj ýjx́j‖22)ε (3)

≤ (A(αiyixi))
T (A(άj ýjx́j)) ≤

(1− ε)αiάjyiýjx
T
i .x́j + (‖αiyixi‖22 + ‖άj ýjx́j‖22)ε

Since linear SVM classifier is the linear combination of training examples:

ω =

M∑
i=1

αiyixi, ώ =

N∑
j=1

άj ýjx́j (4)

by getting summation overαiyixi and άj ýjx́j and substituting ω =
∑M

i=1 αiyixi, ώ =
∑N

j=1 άj ýjx́j

and xi = x́j , N = M in Eq. 3 we have:

(1 + ε)ωTω − 2ε

M∑
i=1

‖αiyixi‖22 ≤ (A(ω)T (A(ώ) ≤ (1− ε)ωTω + 2ε

M∑
i=1

‖αiyixi‖22 (5)
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from norm inequalities and definitions we know:

M∑
i=1

‖αiyixi‖22 ≤
M∑
i=1

‖αiyixi‖2
M∑
i=1

‖αiyixi‖2 =

M∑
i=1

|yi|‖αixi‖2
M∑
i=1

|yi|‖αixi‖2 (6)

= K2
M∑
i=1

‖αixi‖2
M∑
i=1

‖αixi‖2

where
∑M

i=1 |yi| ≤ K. Therefore we can rewrite Eq.5 as follows:

(1 + ε)ωTω − 2K2ε

M∑
i=1

‖αixi‖2
M∑
i=1

‖αixi‖2 (7)

≤ (A(ω)T (A(ώ) ≤

(1− ε)ωTω + 2K2ε

M∑
i=1

‖αixi‖2
M∑
i=1

‖αixi‖2

following the same procedure and substituting ω =
∑M

i=1 βiyivi in Eq. 3 we have:

(1 + ε)ωTω − 2K2ε

M∑
i=1

‖βivi‖2
M∑
i=1

‖βivi‖2 (8)

≤ (A(ω)T (A(ώ) ≤

(1− ε)ωTω + 2K2ε

M∑
i=1

‖βivi‖2
M∑
i=1

‖βivi‖2

In order to compare the bounds in Eq. 8 and Eq. 10 we only need to compare:

M∑
i=1

‖αixi‖2,
M∑
i=1

‖βivi‖2

To do so, from the definition we have:

M∑
i=1

‖αixi‖2
M∑
i=1

‖αixi‖2 =

M∑
i=1

|αi|‖xi‖2
M∑
i=1

|αi|‖xi‖2

M∑
i=1

‖βivi‖2
M∑
i=1

‖βixi‖2 =

M∑
i=1

|βi|‖vi‖2
M∑
i=1

|βi|‖vi‖2

and since
∑M

i=1 |αi| = 1,
∑M

i=1 |βi| = 1,
∑M

i=1 ‖xi‖ = ‖X‖F ,
∑M

i=1 vi = ‖V‖F , therefore we
have:

(1 + ε)ωTω − 2K2ε‖X‖2F ≤ (A(ω)T (A(ώ) ≤ (1− ε)ωTω + 2K2ε‖X‖2F (9)

and:

(1 + ε)ωTω − 2K2ε‖V‖2F ≤ (A(ω)T (A(ώ) ≤ (1− ε)ωTω + 2K2ε‖V‖2F (10)

and in order to compare the bounds we need to compare the Frobenius norm of the set of input
examples, X,V
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2 `2−norm vs. Nuclear norm
In this section we study the effect of nuclear norm minimization on the `2-norm.

In this section our goal is to show if ‖V‖∗ ≤ ‖X‖∗, then ‖X‖2 ≤ ‖V‖2 where V = X ◦ τ
and τ is a set of transformation that only applies on the indexes and makes the rank of V as small as
possible. In other words we want to show if:

ŕ ≤ r =⇒ ‖V‖∗ ≤ ‖X‖∗ =⇒
ŕ∑

i=1

σ́i ≤
r∑

i=1

σi (11)

then:

‖X‖2 ≤ ‖V‖2 =⇒ σ1 ≤ σ́1 (12)

where rank(X) = r, rank(V) = ŕ and σi, σi are the i-th singular values of V and X .
In order to see the relation between the `2−norm and the nuclear norm we can rewrite Eq. 11 as

follows:

‖X‖∗ = σ1 + σ2 + . . .+ σr = C, ‖V‖∗ = σ́1 + σ́2 + . . .+ σ́r = C − ε (13)

where ε is the difference between ‖X‖∗ and ‖V‖∗. By substituting C from the left hand side in Eq. 13
to the right hand side in Eq. 13 we have:

σ́1 + σ́2 + . . .+ σ́ŕ = σ1 + σ2 + . . .+ σr − ε (14)

For comparison, we consider the worst case scenario in which σ1 = σ2 = . . . = σr and σ́1 = σ́2 =
. . . = σ́ŕ, therefore:

ŕσ́1 = rσ1 − ε (15)

substituting σ́1 = kσ1 in the above equation yields:

ŕkσ1 = rσ1 − ε =⇒ k =
rσ1 − ε
ŕσ1

(16)

in order to see when k ≥ 1 and the ‖X‖2 ≤ ‖V‖2 we have:

rσ1 − ε ≥ ŕσ1 =⇒ ε ≤ (r − ŕ)σ1 (17)

where (r − ŕ) ≥ 0. Fig. 1 visualizes the `2-norm vs. the nuclear norm. The details of datasets and
implementations can be found in [Abbasnejad et al.2015, Abbasnejad et al.2016, Abbasnejad and
Teney2015]

3



rank(X) = 2 rank(X) = 1 0 50 100 150 200 250 300 350 400

Rank maximization
0

1000

2000

3000

4000

5000

6000

7000

N
or
m
 a
m
pl
itu

de

l_2 vs Nuclear norms
Nuclear norm
l_2 norm

Figure 1: ‖X‖2 vs ‖X‖∗ for different r = rank(X)
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