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Bone remodeling is a process involving removal of mature bone tissue and subsequent formation of new
bone tissue. This process is driven by complex actions of biological cells and biochemical factors, and it is
sensitive to the loads applied onto the skeleton. Herein, we develop a mathematical framework describ-
ing this process at the (macroscopic) level of cortical bone, by combining, for the first time, bone cell pop-
ulation kinetics with multiscale bone mechanics. Key variables are concentrations of biological cells
(osteoclasts, osteoblasts and their progenitors) and biochemical factors (RANK, RANKL, OPG, PTH, and
TGF-b), as well as mechanical strains, both at the (‘‘macroscopic’’) level of cortical bone and at the
(‘‘microscopic’’) level of the extravascular bone matrix. Multiscale bone mechanics delivers, as a function
of the vascular porosity, the relation between the macroscopic strains resulting from the loads, and the
microscopic strains, which are known to modulate, either directly, or via poromechanical couplings such
as hydrostatic pressure or fluid flow, the expression or proliferation behavior of the biological cells resid-
ing in, or attached to the extravascular bone matrix. Hence, these microscopic strains enter the biochem-
ical kinetics laws governing cell expression, proliferation, differentiation, and apoptosis. Without any
additional phenomenologically motivated paradigm, this novel approach is able to explain the experi-
mentally observed evolutions of bone mass in postmenopausal osteoporosis and under microgravity con-
ditions: namely, a decrease of bone loss over time.

� 2012 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction osteoblasts, and reside in lacunar pores inside the bone tissue.
Bone remodeling is a process involving removal of mature bone
tissue and subsequent formation of new bone tissue. This process
allows for removal of microcracks endangering the mechanical
integrity of the system, as well as for provision of mineral homeo-
stasis in the skeleton [1–4]. Bone remodeling is undertaken by
teams of biological cells. Once activated, osteoclasts remove bone
tissue, leaving a cavity, which is thereafter filled by another cell
type, osteoblasts. More precisely, the latter lay down osteoid, a
material mainly composed of type I collagen that becomes miner-
alized over time. The tuned cooperation of osteoclasts and osteo-
blasts often leaves spatial patterns in histological sections of
cortical bone, called, after Frost [5], bone multicellular units
(BMUs). The aforementioned tuning, however, is largely influenced
by a third cell type, osteocytes [6–10], which originate from buried
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They maintain, via long cell processes, connections with the cells
at the bone matrix surfaces, as well as with other osteocytes, thus
making up a large network. Osteocytes respond to both biochemi-
cal factors (e.g. hormones and local cytokines) and mechanical
stimuli (induced by deformation of the bone matrix), both of which
are subsequently ‘‘translated’’ into biochemical signals regulating
the behavior of cells within BMUs.

An imbalance between bone resorption and bone formation
(triggered by perturbance of biochemical and/or mechanical regu-
lation mechanisms) can lead to significant structural changes with-
in bone and so (adversely) affect its load-carrying capacity.
However, despite intensive research activity for decades, current
understanding of BMU regulation and associated changes in
mechanical properties of bone is still fragmented due to complex
(feedback-type) interrelationships between bone cells and struc-
tural features of bone. Given this inseparable interplay, identifying
mechanisms which coordinate the cell behaviour in BMUs and pre-
dicting changes in mechanical properties of bone requires a syner-
gistic approach combining mathematical modeling and
experimental testing [11,12].

Most of previous mathematical models have focused on
describing the mechanical properties of bone using numerical ap-
proaches, such as the Finite Element method or molecular dynam-
 license.

http://dx.doi.org/10.1016/j.cma.2012.10.015
mailto:stefan.scheiner@tuwien.ac.at
http://dx.doi.org/10.1016/j.cma.2012.10.015
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


182 S. Scheiner et al. / Comput. Methods Appl. Mech. Engrg. 254 (2013) 181–196
ics simulations [13–18]. As a computationally very efficient com-
plement to these techniques, Hellmich and co-workers have pro-
posed analytical and semi-analytical models for estimating bone
stiffness, bone strength, and poroelastic properties of bone, based
on the concept of multiscale continuum micromechanics [19–
22]. These models take the hierarchical organization of bone into
account, and are based on the volume fractions of the different
bone constituents, their mechanical properties and their mechani-
cal interactions.

In standard micromechanical applications, the constituent vol-
ume fractions are known as input values. However, during bone
metabolism, the volume fractions change, and the question arises
how to determine these changes. In order to answer this question,
which is at the very focus of this paper, we note that the aforemen-
tioned volume fractions are either directly linked to chemical
processes (such as biomineralization, when hydroxyapatite crys-
tals precipitate inside a network of collagen molecules [23]) or
to cellular activity (such as bone remodeling, when e.g. the volume
fraction of bone tissue inside a piece of cortical bone changes); and
that recently, the challenge of mathematically describing the
biology and biochemistry of bone remodeling has been quite
successfully met [24–26], in the framework of bone cell population
models (BCPMs). Such models allow for estimation of temporal
changes in bone cell numbers during bone remodeling, interpret-
able in terms of the corresponding evolution of the bone volume
over time. While such BCPMs were previously used to give
valuable information on the effects of bone disease and/or thera-
peutic treatment scenarios, one key novelty of the present paper
is to use the output of BCPMs as input for bone micromechanics
formulations.

However, also the (local) mechanical environment of osteocytes
governs bone remodeling. Properties quantifying this mechanical
environment can be derived from multiscale micromechanical
models. This relates to the second key novelty of this paper,
namely the extension of state-of-the-art BCPMs to micromechani-
cally quantified strain stimuli.

With these conceptual novelties at hand, we address a funda-
mental question in bone biology:

Can bone remodeling, often associated to some ‘‘mechanostat-
paradigm’’ with corresponding tuning parameters [27–29], be ex-
plained solely by combined effects of multiscale mechanics and
bone cell population kinetics, which are exclusively based on phys-
ical properties such as chemical concentrations, volume fractions,
geometrical shapes, and mechanical properties?

An attempt of a quite comprehensive answer to this question is
made hereafter, within the following structure of the remaining
paper: first, we introduce the mathematical systems biology of
bone, starting from the work of Pivonka et al. [25,26], and extend-
ing it to mechanoregulatory feedback control (Section 2). Then, we
introduce a continuum micromechanics representation adopted
from Hellmich et al. [30], in order to scale elasticity and strains
from the level of the extravascular bone matrix to that of cortical
bone1 and vice versa (Section 3). The micromechanics formulation
is fed with composition quantities derived from the systems biology
approach, which, in turn, is provided with mechanical stimuli gained
from the micromechanics model. We then apply the coupled
approach to biochemical and mechanical conditions typical for
postmenopausal osteoporosis (Section 4) and microgravity exposure
(Section 5), and discuss key sensitivity features (Section 6). After
emphasizing the potentials and limitations of the presented
approach (Section 7), we conclude the paper in (Section 8).
1 In this paper, we restrict ourselves to cortical bone, due to its major importance in
providing sufficient load-carrying capacity. However, extension of the coupled
approach proposed here to trabecular bone is straightforward; it merely requires
recalibration of underlying parameters.
2. Mathematical systems biology of bone

Adopting the choice made by Pivonka et al. [25,26], we explic-
itly consider the following types of bone cells (see Fig. 1): uncom-
mitted osteoblast progenitors cells, also referred to as bone
marrow stromal cells or mesenchymal stem cells (abbreviated to
OBu); osteoblast precursor cells, also referred to as preosteoblasts
(OBp); active osteoblasts (OBa); osteoclast precursor cells, also re-
ferred to as preosteoclasts (OCp); and active osteoclasts (OCa). As
an original contribution of the present work, we extend the ap-
proach of [25,26] to mechanoregulation. Hence, the following
equations for the evolutions of the aforementioned bone cell pop-
ulations (expressed in terms of molar concentrations Ci) contain
not only biochemical, but also mechanobiological activator and
repressor functions.

2.1. Evolution of osteoblasts

The evolution of the osteoblast precursor cells is quantified by
the following kinetics law:

dCOBp

dt
¼ DOBu COBup

TGF-b
act;OBu

þ POBp COBp P
mech
act;OBp

�DOBp COBpp
TGF-b
rep;OBp

: ð1Þ

In this mathematical formulation, we explicitly consider that the
population of osteoblast precursor cells in a piece of cortical bone
increases due to differentiation (with maximum differentiation rate
DOBu ) of uncommitted osteoblast progenitor cells – this differentia-
tion is promoted by transforming growth factor b, TGF-b [3,31],
quantified by activator function pTGF-b

act;OBu
, see Eq. (A.1) in Appendix

A. Furthermore, the population of osteoblast precursor cells de-
creases due to differentiation (with maximum differentiation rate
DOBp ) of osteoblast precursor cells into active osteoblasts – this dif-
ferentiation is inhibited by TGF-b [3,31], as quantified by repressor
function pTGF-b

rep;OBp
, see Eq. (A.2) in Appendix A.

As a conceptual novelty, we introduced, in Eq. (1), an additional
term, which is related to proliferation of osteoblast precursor cells
(with maximum proliferation rate POBp ), promoted by mechanical
strains in the extravascular bone matrix, as quantified through
the activator function Pmech

act;OBp
. Current literature suggests at least

two mechanisms by which osteoblast precursor cells may respond
to mechanical stimuli: (i) directly via cell stretching due to matrix
deformation and/or fluid flow [32,33], and (ii) indirectly via bio-
chemical signals (such as sclerostin) derived from osteocytes
[6,34–36]. Both of these mechanisms are thought to regulate pre-
osteoblast proliferation. For the purpose of our study we do not
further specify which of these mechanisms prevails, but employ
a phenomenological activator function Pmech

act;OBp
to regulate prolifer-

ation of preosteoblasts. As a straightforward scalar measure for the
strains in the extravascular matrix, we choose the strain energy
density (SED) in the extravascular bone matrix, Wbm – this choice
is inspired by classical contributions to the field of mechanobiology
[37–39]. The SED Wbm at the bone matrix level depends on the
loading of the considered piece of cortical bone, as well as on this
piece’s microstructure and its vascular porosity – these relations
can be quantified by means of the micromechanics representation
given in Section 3. Also, we restrict ourselves to explicit consider-
ation of strain amplitudes only, thereby taking a (constant) physi-
ologically relevant frequency [6,40] as granted.

According to Eq. (1), the maximum proliferation rate POBp is re-

lated to the maximum value of Pmech
act;OBp

;maxðPmech
act;OBp

Þ ¼ 1, and this

maximum rate is attained upon sufficient mechanical activation of
the osteoblasts. Low straining reduces the proliferation rate by
some 25% to 50% according to the experiments of Jones et al.
[41] and Kaspar et al. [42]; and this is considered by setting the

minimum value of Pmech
act;OBp

, related to a threshold SED �Wbm, only



Fig. 1. (a) Sketch of the bone cell population model and involved differentiation, proliferation and apoptosis pathways, as well as the biochemical regulators (þ/
�. . .biochemical activation/repression), see Section 2 and Appendix A for details; (b) micromechanical representation of cortical bone (picture reproduced from
www.bme.ccny.cuny.edu) with constituents ‘‘vascular pores’’ and ‘‘extravascular bone matrix’’ and corresponding volume fractions fvas and fbm, requiring fulfillment of the
separation of scales-requirement: dRVE � ‘RVE � fL; Pg, with dRVE ¼ 50 . . . 80� 10�6 m and ‘RVE ¼ 1 . . . 3� 10�3 m, see Section 3.1 for details; (c) mechanoregulatory
feedback: the concentrations of active osteoblasts and active osteoclasts, COBa and COCa , govern the change of fvas and fbm (see Section 3.2), which, under the prevailing
mechanical loading, leads to cell-affecting changes in strain energy density Wbm, see Sections 2 and 3 for details, in particular Eqs. (2), (5), (14), and (15).
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above which increased proliferation of preosteoblasts is activated,

to minðPmech
act;OBp

Þ ¼ �Pmech
act;OBp

¼ 0:5. Between minimum and maximum

proliferation rate, we here introduce a linear relation, somehow
reminiscent of the work by Sanz-Herrera et al. [43],

Pmech
act;OBp

¼ �Pmech
act;OBp

1þ k
Wbm

�Wbm

� 1
� �� �

; ð2Þ

which is valid for �Wbm 6 Wbm 6 Ŵbm, with Ŵbm ¼ f �Wbm½1� �Pmech
act;OBp

ð1� kÞ�=ðk �Pmech
act;OBp

Þg; k being an ‘‘anabolic strength parameter’’. Fur-

thermore, Pmech
act;OBp

¼ �Pmech
act;OBp

if Wbm 6
�Wbm, and Pmech

act;OBp
¼ 1 if

Wbm P Ŵbm, see Fig. 2(a). Parameter k determines the slope of func-
tion Pmech

act;OBp
¼ Pmech

act;OBp
ðWbmÞ; k ¼ ðdPmech

act;OBp
=dWbmÞ=ð �Pmech

act;OBp
= �WbmÞ, thus,

k defines for which increase of Wbm, associated to a corresponding

increase of the mechanical load, Pmech
act;OBp

¼ 1 is reached, e.g. k ¼ 1

implies that increasing the SED by 100% (with respect to the thresh-

old value �Wbm), i.e. Ŵbm= �Wbm ¼ 2, is required for maximizing the

proliferation activator function, from �Pmech
act;OBp

to maxðPmech
act;OBp

Þ ¼ 1,

whereas k ¼ 4 implies that maxðPmech
act;OBp

Þ is already reached for an

increase of Wbm by 25%, i.e. Ŵbm= �Wbm ¼ 1:25. Computational studies
presented later in this paper, see Sections 4 and 6, show that setting
k ¼ 1:25 allows us to simulate the physiological behavior of bone
during osteoporosis and disuse scenarios.

The evolution of active osteoblasts is quantified through the fol-
lowing kinetics law:
dCOBa

dt
¼ DOBp COBpp

TGF-b
rep;OBp

�AOBa COBa ; ð3Þ

considering that the population of active osteoblasts is increased by
differentiation (with maximum differentiation rate DOBp ) of
osteoblast precursor cells (which is inhibited by TGF-b, as described
before), and that the population is reduced by active osteoblast
apoptosis (with apoptosis rate AOBa ).

2.2. Evolution of osteoclasts

The evolution of active osteoclasts is quantified through the fol-
lowing kinetics law:

dCOCa

dt
¼ DOCp COCppRANKL

act;OCp
�AOCa COCap

TGF-b
act;OCa

; ð4Þ

i.e. we explicitly consider that active osteoclast apoptosis (with
maximum apoptosis rate AOCa ) is activated by TGF-b [44], see Eq.
(A.3) in Appendix A. On the other hand, the population of active
osteoclasts increases due to differentiation of osteoclast precursor
cells (with maximum differentiation rate DOCp ), activated by RANKL
(i.e., the ligand of RANK – the receptor activator of nuclear factor
kappa b). The corresponding activator functions, pRANKL

act;OCp
and

pTGF-b
act;OCa

, respectively, are defined in Appendix A, in Eqs. (A.5) and
(A.3), respectively.

As a novel feature with respect to the formulation of Pivonka
et al. [25,26], we here consider production of RANKL through the



(a)

(b)

Fig. 2. Model implementation of mechanoregulation: (a) mechanical proliferation
activator function Pmech

act;OBp
, defined by Eq. (2), plotted for three different anabolic

strength parameters k; k1 < k2 < k3; and (b) mechanically regulated dosage of
RANKL, PRANKL;ebm

, defined by Eq. (5), plotted for three different inhibition param-
eters j;j1 < j2 < j3.
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osteocytes residing in the lacunar pores which are uniformly dis-
tributed throughout the extravascular bone matrix. The biochemi-
cal activity of the latter is again linked to mechanical straining of
the extravascular bone matrix, in at least three different ways: (i)
the osteocytes are directly strained, (ii) they are subjected to
hydrostatic pressure, and (iii) the fluid around them starts to flow.
All three effects have been shown to affect the biochemical behav-
ior of the osteocytes: Cyclic hydraulic pressure has been shown to
decrease the RANKL/OPG ratio expressed by osteocytes [45]. Direct
straining in the physiological range of thousand microstrains,2 as
well as exposure to pulsating fluid flow, promote nitric oxide (NO)
production by the osteocytes [49,50], and NO is known to decrease
the RANKL/OPG ratio expressed on bone marrow stromal cells
[51,52]. This overall inhibition of RANKL through bone matrix strains
is considered here by means of the RANKL dosage term PRANKL, enter-
ing Eq. (A.7) and thus regulating pRANKL

act;OCp
through Eqs. (A.5) and (A.6).

In our model, PRANKL is chosen to be of the form

PRANKL ¼ PRANKL;ebm
¼ j 1�Wbm

�Wbm

� �
; ð5Þ

with a (non-zero) inhibition parameter j if Wbm < �Wbm, and
total inhibition related to j ¼ 0 if Wbm P �Wbm, see Fig. 2(b). Eq.
2 Note that physiological strains defined at the level of extravascular bone matrix
are increased by a factor of around three when reaching the local osteocyte level
[46,47], and also strain amplification mechanisms for fluid drag-induced movements
have been proposed [48].
(5) expresses mathematically that any straining restricts ‘‘external’’
RANKL production by osteocytes and bone marrow stromal cells
[53], and the latter is totally stopped once the aforementioned crit-
ical (threshold) value �Wbm of the SED is reached. Experiment-based
determination of the exact value of j is difficult (if not impossible),
due to the involved uncertainties and the discrepancies between
realizable experimental models and the physiology of human bone.
However, experimental studies [54] allow us to infer that RANKL
doses, for physiologically relevant disuse scenarios, relating to j
varying between 103 and 105 pM/day, are able to facilitate the
activity of osteoclasts. Numerical studies on mechanoregulation
during a disuse scenario (see Section 5) showed that setting
j ¼ 105 pM/day gives rise to a model-predicted porosity evolution
which agrees with physiological observations.

We note in passing that Eqs. (2) and (5) may be replaced by
appropriate Hill-type (logistic) functions, if deemed favorable. As
mentioned before, Wbm is accessible from a micromechanical rep-
resentation of cortical bone, which is presented next.

3. Microstructure-based scaling of elasticity and strains in
cortical bone

As basis for the following developments, we adopt the micro-
mechanical representation of bone proposed by Hellmich et al.
[30], see Section 3.1 for details. As an original contribution of the
present work, we couple the volume fractions entering the afore-
mentioned micromechanical model, to the osteoblastic and osteo-
clastic cell populations (see Section 3.2), and we use the
micromechanical model not only for homogenization from the
sub-millimeter to the millimeter scale, but also for concentration
from the millimeter scale down to the scale of extravascular bone
matrix, as described in Sections 3.3 and 3.4.

3.1. Representative volume element and micromechanical
representation of cortical bone

In order to establish the relation between the ‘‘macroscopic’’
strains acting on a piece of cortical bone and the ‘‘microscopic’’
strains in the extravascular matrix (the latter strains stimulating,
through different mechanisms including fluid flow, the osteocytes
embedded in this matrix), we employ the concept of continuum
micromechanics [55–58], where a material is understood as a
macro-homogeneous, but micro-heterogeneous body filling a rep-
resentative volume element (RVE) with characteristic length
‘RVE; ‘RVE � dRVE; dRVE representing the characteristic length of inho-
mogeneities within the RVE, see Fig. 1(b), and ‘RVE � fL;Pg;L rep-
resenting the characteristic length of the geometry and P
representing the characteristic length of the loading of a structure
built up by the material defined on the RVE. In general, the micro-
structure within one RVE is so complicated that it cannot be de-
scribed in complete detail. Therefore, quasi-homogeneous
subdomains with known physical properties are reasonably cho-
sen. They are called material phases. The homogenized (upscaled)
elastic behavior of the material on the observation scale of the RVE,
i.e. the relation between homogeneous deformations acting on the
boundary of the RVE and resulting macroscopic (average) stresses,
can then be estimated from the elastic behavior of the material
phases, their volume fractions within the RVE, their characteristic
shapes, and their interactions.

We choose the characteristic length of the RVE such that corti-
cal bone is reasonably represented as two-phase composite mate-
rial [30]: Fluid-filled, vascular pore space is morphologically
approximated by cylindrical inclusions in the extravascular (solid)
bone matrix, see Fig. 1(b). The overall constitutive behavior is
anisotropic, stemming, on the one hand, from (i) the anisotropic
orientation of the pore space [21,59,60], and, on the other hand,
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from (ii) the anisotropic constitutive behavior of the extravascular
bone matrix [61–63].

3.2. Biologically driven evolution of the vascular porosity

First, we note that the characteristic time of primary minerali-
zation (i.e. of the transformation of unmineralized osteoid laid
down by the osteoblasts to mineralized bone tissue) is of the order
of days [64–66], whereas mechanobiologically triggered or influ-
enced metabolic processes last months to years [67–69]. I.e. the
volume fraction of osteoid as compared to mineralized bone is al-
ways negligibly small, and, when focussing on the mathematical
modeling of the latter, we can consider the primary mineralization
process as instantaneous. Hence, in the time frames considered in
the present paper, osteoblasts instantaneously form extravascular
bone matrix, which is consistent with the micromechanical repre-
sentation of cortical bone as a two-phase composite of extravascu-
lar bone matrix with vascular pores inbetween. The mechanical
behavior of such a material is strongly governed by the phase vol-
ume fractions fi, the definition of which (fi ¼ Vi=V total, with Vi as the
volume of species i, and V total as the total volume, V total ¼

P
iV i)

stipulates that the sum of all volume fractions equals one at all
times, i.e.

fvas þ fbm ¼ 1; ð6Þ

with fvas ¼ fvasðtÞ as the volume fraction of vascular pore space and
fbm ¼ fbmðtÞ as the volume fraction of extravascular bone matrix. We
now seek evaluation of the bone cell concentrations provided by the
bone cell population model, Ci ¼ CiðtÞ, compare Eqs. (1)–(4), in
terms of corresponding temporal evolutions of the bone constituent
volume fractions. The volume fraction of pore space increases due
to actively resorbing osteoclasts and decreases due to active osteo-
blasts producing extravascular bone, thus

dfvas

dt
¼ kresCOCa � kformCOBa ; ð7Þ

with kres as the resorption rate quantifying how much bone is
resorbed by active osteoclasts per unit time, and with kform as the
formation rate quantifying the amount of bone matrix formed by
active osteoblasts per unit time. Resorption and formation rates
are considered as time-invariant, intrinsic, and species-specific cell
properties. The volume fraction of extravascular bone matrix, in
turn, decreases due to bone resorption, and increases due to bone
formation, thus

dfbm

dt
¼ �kresCOCa þ kformCOBa : ð8Þ

Differentiation of Eq. (6) with respect to time yields
dfvas=dt ¼ �dfbm=dt. This requirement is fulfilled, as can be easily
shown by comparison of Eqs. (7) and (8). Thus, if the volume frac-
tions are known at a certain point in time, the subsequent temporal
evolution of fvas and fbm can be tracked by integration of Eqs. (7) and
(8).

3.3. Stiffness homogenization

Considering the aforementioned morphology of the RVE of cor-
tical bone, the homogenized fourth-order stiffness tensor of corti-
cal bone, Chom

cort , provided by continuum micromechanics, reads as

Chom
cort ¼

X
r

frcr : Aest
r ; ð9Þ

where cr is the microscopic fourth-order stiffness tensor of constit-
uent r; r ¼ vas;bm, and Aest

r is the estimate of the corresponding
fourth-order strain concentration tensor, relating macroscopic and
microscopic second-order strain tensors [58]. Aest

r can be estimated
based on Eshelby’s classical matrix-inclusion problem [70,71], by
means of the Mori–Tanaka scheme [72,73],

Aest
r ¼ Iþ Pbm

r : ðcr � cbmÞ
� ��1

:
X

s

fs Iþ Pbm
s : ðcs � cbmÞ

� ��1

( )�1

; ð10Þ

where index r denotes either of the two phases, and the summation
over index s includes both of them, s ¼ vas;bm. Furthermore, I is
the fourth-order unit tensor with its components defined through
the Kronecker delta, dij ¼ 1 for i ¼ j and zero otherwise, as
Iijkl ¼ 1=2ðdikdjl þ dildjkÞ, and Pbm

r is the fourth-order Hill-tensor of
phase r embedded in a matrix with stiffness cbm. For a detailed
explanation how the Hill tensor of a cylindrical phase (such as vas-
cular pore space) is calculated, see [30,74].

Evaluation of Eqs. (9) and (10) requires knowledge of phase vol-
ume fractions fr and phase stiffness tensors cr . The volume frac-
tions are known from the bone cell population model whereas
reasonable choice of the phase stiffness tensors requires some
more explanation. The vascular pore space is assumed to be filled
with water-like fluid (from a mechanical point of view). In the
framework of a micromechanical model of bone poroelasticity
Hellmich and Ulm [20] showed that (i) assuming undrained condi-
tions is adequate for physiological conditions with reasonably high
loading frequencies, and (ii) considering water-type pore fluid, for
undrained conditions, as elastic material with negligible shear
stiffness is an appropriate approximation. Thus, the stiffness tensor
of the vascular porosity reads

cvas ¼ kH2OJþ lH2OK; ð11Þ

with kH2O ¼ 2:3 GPa as the bulk modulus, and lH2O ¼ 0 as the shear
modulus of water; J is the volumetric part of the fourth-order unit
tensor I, and K is its deviatoric part, K ¼ I� J. The components of J

are defined by Jijkl ¼ 1=3dijdkl. Still, we also performed all simula-
tions reported in this paper under the assumption of the opposing
limit case, that of drained conditions (kH2O ¼ lH2O ¼ 0): None of
the simulation results were affected by this change. Hence, the
poromechanical state of the vascular pore space is irrelevant for
the systems biology-micromechanics interactions reported in this
paper.

The stiffness tensor of the extravascular bone matrix, cbm, on
the other hand, is defined in the line of Fritsch and Hellmich [21];
based on the ultrasonics tests by Ashman et al. [75] conducted on
human femurs, cbm reads in compressed notation (see Appendix B)

cbm ¼

18:5 10:3 10:4 0 0 0
10:3 20:8 11:0 0 0 0
10:4 11:0 28:4 0 0 0

0 0 0 12:9 0 0
0 0 0 0 11:5 0
0 0 0 0 0 9:3

0BBBBBBBB@

1CCCCCCCCA
GPa: ð12Þ
3.4. Strain concentration and microscopic strain energy density

The macroscopic stress tensor acting on cortical bone, Rcort, is
related to the corresponding macroscopic strain tensor, Ecort, via
the macroscopic stiffness tensor obtained from Eq. (9), through a
linear elastic constitutive law,

Rcort ¼ Chom
cort : Ecort () Ecort ¼ Chom

cort

� 	�1
: Rcort: ð13Þ

The strains experienced by the extravascular bone matrix affect the
activity of the osteocytes residing in that matrix (see Section 2.2), as
well as the osteoblasts located at extravascular pore surfaces (see



Fig. 3. Non-zero components of strain concentration tensor Aest
bm (with symmetries

Aest
bm;ijkl ¼ Aest

bm;jikl ¼ Aest
bm;ijlk ¼ Aest

bm;jilk) as function of vascular porosity fvas, according to
Eqs. (10)–(12): (a) diagonal and (b) non-diagonal components Aest

bm;ijkl; (c) compo-
nents of the symmetric microscopic strain tensor ebm, according to Eq. (14), evaluated
for Ehyd

cort (thick graphs), as well as Eshear;12
cort ;Eshear;13

cort , and Eshear;23
cort (thin graphs).
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Section 2.1). Using the previously described micromechanical mod-
el for bone stiffness we can express the strain tensor of the extra-
vascular bone matrix (corresponding to a macroscopic load Rcort)
via the strain concentration tensor Aest

bm defined by Eq. (10),

ebm ¼ Aest
bm : Ecort ¼ Aest

bm : Chom
cort

� 	�1
: Rcort

� �
: ð14Þ

Note that the microscopic strain tensor can be alternatively
determined based on stress concentration tensor
Best

bm;B
est
bm ¼ cbm : Aest

bm : ðChom
cort Þ

�1, through the concentration relation
rbm ¼ Best

bm : Rcort, and subsequent application of the linear elastic
constitutive law on the microscopic observation scale,
ebm ¼ ðcbmÞ�1 : rbm.

As introduced in Section 2.1, we consider the microscopic SED
as scalar representation of the 3D microscopic strain state driving
mechanoregulatory responses. The microscopic SED, experienced
by the extravascular bone matrix reads as

Wbm ¼
1
2
ebm : cbm : ebm; ð15Þ

with ebm following from micromechanics-based strain concentra-
tion, according to Eq. (14). It is one of the key features of this paper
that mechanoregulation is considered on the microscopic observa-
tion scale of extravascular bone matrix (which hosts the mechano-
sensing and -transducing osteocytes), rather than on the
macroscopic observation scale of cortical bone. The consequences
of the observation scale on which mechanosensing is considered,
are significant and will be highlighted in Sections 3.5, 3.6, and 4.

Summarizing, the functional argument of mechanoregulatory
functions Pmech

act;OBp
and PRANKL;ebm

, namely the microscopic SED Wbm,
has been obtained through a sequence of mean-field homogeniza-
tion, Eqs. (9) and (10), linear elasticity, Eq. (13), strain concentra-
tion, Eq. (14), and a classical relation of continuum mechanics,
Eq. (15), which eventually enables us to appropriately transfer
the 3D macroscopic loading state to a corresponding scalar
quantity representing the local strain state of the extravascular
bone matrix, see Fig. 1(c) for a schematic sketch of the mechan-
oregulatory feedback.

3.5. Porosity-dependent micro–macro strain relations

It is evident from Eq. (14) that the strain concentration tensor
Aest

bm solely governs the difference between macro- and microscopic
strain states. For the special case of zero vascular porosity (fvas ¼ 0)
the macroscopic and microscopic strain states are identical. How-
ever, for physiologically observed vascular porosities (fvas > 0),
ebm and Ecort significantly deviate from each other. In the following,
this fvas-dependent difference between ebm and Ecort is illustrated
through parametric studies, including computation of the compo-
nents of Aest

bm, for vascular porosities ranging within fvas ¼ ½0; 0:5�,
by means of Eqs. (10)–(12). Fig. 3(a) and (b) show the significant
non-linearity of Aest

bm with respect to fvas. With increasing porosity,
the numerical values of the diagonal components of Aest

bm (which
are equal to one for fvas ¼ 0) are decreasing, see Fig. 3(a). The same
trend is observed for some of the non-diagonal components of Aest

bm,
see Fig. 3(b), accounting for the morphological change of cortical
bone with increasing porosity.

Insertion of these results into Eq. (14) reveals the dependence of
ebm on the corresponding macroscopic strain tensor Ecort. To further
investigate this dependence numerically, Eq. (14) is evaluated for typ-
ical macroscopic strain states, namely for a hydrostatic strain state
(represented by strain tensor Ehyd

cort), and the states of pure shear
(represented by strain tensors Eshear;12

cort ;Eshear;13
cort , and Eshear;23

cort ). The strain
tensors are defined as Ehyd

cort ¼ 1� 10�4;Eshear;12
cort ¼ ðe1 � e2 þ e2

�e1Þ � 10�4;Eshear;13
cort ¼ ðe1 � e3 þ e3 � e1Þ � 10�4, and Eshear;23

cort ¼
ðe2 � e3 þ e3 � e2Þ � 10�4, with 1 as the second-order unit tensor
with components dij (dij ¼ 1 for i ¼ j and zero otherwise), with
e1; e2, and e3 as the unit vectors of a Cartesian coordinate system,



Fig. 4. Ratio Wbm=Wcort as function of the vascular porosity fvas , computed for
hydrostatic stress Rhyd

cort, stress states of pure shear Rshear;12
cort ;Eshear;13

cort , and Rshear;23
cort , as

well as uniaxial stress Runi;33
cort .
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and with symbol � denoting the dyadic product of two vectors. For
Ehyd

cort, the strain transfer from the observation scale of cortical bone
to the observation scale of extravascular bone matrix differs signifi-
cantly between the strain tensor components. E.g., for fvas ¼ 0:5, com-
ponent Ecort;33 of the macroscopic strain tensor is sensed by the
extravascular bone matrix without any attenuation, ebm;33 ¼ Ehyd

cort;33,
whereas component Ecort;22 is significantly reduced, ebm;22 �
0:35Ehyd

cort;22, see the thick graphs in Fig. 3(c). Thus, a macroscopically
hydrostatic strain state is associated with a non-hydrostatic micro-
scopic strain state. Also the strain states of pure shear differ signifi-
cantly from each other between macro- and microscopic
observation scales, see the thin graphs in Fig. 3(c). Except for
component ebm;33, all components of ebm exhibit a striking non-linear
dependence with respect to fvas (if the corresponding components of
Ecort are held constant).

The results of the parametric studies presented in this section
clearly underpin the importance of estimating the components of
the anisotropic strain state that is experienced by the extravascular
bone matrix, on the basis of which mechanoregulatory quantities
(such as Wbm) are computed, by means of a sound multiscale mod-
el. The conceptual advantage of a multiscale model over macro-
scopic models becomes particularly prominent when large
porosity ranges have to be considered (as is the case for certain
bone disease patterns). It is expected that then macroscopic mod-
els fail to appropriately estimate the (porosity-dependent) evolu-
tion of microscopic mechanoregulatory quantities following
increased or decreased formation of vascular pore space due to
bone remodeling events.

3.6. Porosity-dependent micro–macro energy relations

While the parametric studies in Section 3.5 show to which ex-
tent the strains occurring on the microscopic observation scale of
extravascular bone matrix can deviate from the strains experi-
enced, for exactly the same mechanical loading, on the macro-
scopic observation scale of cortical bone, the deviation between
the microscopic SED, Wbm, defined through Eq. (15), and the corre-
sponding macroscopic SED, Wcort, defined analogously through
Wcort ¼ ðEcort : Chom

cort : EcortÞ=2, has not been discussed yet. In order
to further corroborate the relevance of the multiscale approach
proposed in this paper, we will now compare Wbm to Wcort. To ad-
dress the question under which circumstances the difference be-
tween Wbm and Wcort becomes significant, Wbm and Wcort are
computed for porosities ranging within fvas ¼ ½0;0:5�, and for differ-

ent macroscopic stress states: hydrostatic stress Rhyd
cort, pure shear

stress states Rshear;12
cort ;Rshear;13

cort , and Rshear;23
cort , all of which are defined

analogously to the corresponding strain states discussed in Sec-
tion 3.5, as well as the state of uniaxial stress
Runi;33

cort ¼ Rcort;33e3 � e3. For each value of fvas the macroscopic stiff-

ness tensor, Chom
cort , is estimated by means of Eqs. (9)–(12). Based

on Chom
cort and based on the considered macroscopic stress tensors,

whose non-zero components are arbitrarily varied extensively in
order to cover a wide range of stress magnitudes, the correspond-
ing macro- and microscopic strain tensors, Ecort and ebm, are deter-
mined, via Eqs. (13) and (14). These serve then as basis for
calculation of Wbm and Wcort.

For each of the five considered stress states, the ratio Wbm=Wcort

turns out to be constant across all stress magnitudes, see Fig. 4,
where stress state-specific Wbm=Wcort-curves are depicted as func-
tions of fvas. The graphs in Fig. 4 explicitly show that using Wcort

as mechanoregulatory control variable instead of Wbm may lead,
depending on the prevailing stress state, to significant misestima-
tions. This is indicated by Wbm=Wcort – 1 for fvas > 0. Fig. 4 also re-
veals that accounting for the porosity-dependent deviation of Wbm

from Wcort by empirically defined laws rather than by a sound mul-
tiscale model is a source of potentially severe errors, due to the
additional dependence of Wbm on the prevailing stress state (com-

pare the distinctively different trends of Wbm=Wcort for Rhyd
cort and

Runi;33
cort , or the somewhat unexpected trend of Wbm=Wcort for

Rshear;12
cort with Wbm 6 Wcort for 0 6 fvas 6 0:38 and Wbm > Wcort

otherwise).

4. Significance of mechanoregulation in postmenopausal
osteoporosis

Postmenopausal osteoporosis (PMO) is a bone disease eventu-
ally leading to an adverse increase of the bone porosity over time
which implies a higher fracture risk. According to experimental
observations on the pathophysiology of PMO, the disease is accom-
panied by significant changes within the RANK-RANKL-OPG sys-
tem. Lemaire et al. [24] suggested that these changes can be
(computationally) driven in simplified fashion by prescription of
excess PTH. In this section, we investigate the effects of the
mechanical feedback on the progress of PMO, with PMO being in-
duced via dosage term PPTH;PMO ¼ 5� 104 pM/day, see Appendix A
for how PPTH;PMO is mathematically considered in the bone cell pop-
ulation model.

In the following, we will study several scenarios in all of which
production of additional PTH is initiated at t ¼ 0. To this end, com-
putational simulations are performed, based on the following
parameters (if not explicitly defined differently):

	 The initial volume fraction of vascular pore space fvas, relating to
healthy cortical bone, is set to fvas;ini ¼ 0:05, thus
fbm;ini ¼ 1� 0:05 ¼ 0:95, compare Eq. (6).
	 A constant loading of the RVE of cortical bone is prescribed,

Rnormal
cort;ij ¼ �30 MPa if ij ¼ 33, and zero otherwise.

	 For calibration of the maximum proliferation rate, POBp , we
compare the steady state of the preosteoblast evolution, Eq. (1),
DOBu COBup
TGF-b
act;OBu

þ POBp COBp
�Pmech

act;OBp
�DOBp COBpp

TGF-b
rep;OBp

¼ 0;

with the corresponding steady state related to the original mod-
el disregarding mechanosensing, see [25],

DPivonka
OBu

COBup
TGF-b
act;OBu

�DOBp COBpp
TGF-b
rep;OBp

¼ 0;

with DPivonka
OBu

as the maximum differentiation rate of osteoblast
progenitor cells, as calibrated by Pivonka et al. [25]. Since both
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above equations, for the considered steady state, describe zero
gain/loss of the preosteoblast concentration, we can equate
them, and so straightforwardly derive an equation for calibra-
tion of POBp ,

POBp ¼
DPivonka

OBu
COBup

TGF-b
act;OBu

COBp
�Pmech

act;OBp

aPOBp
: ð16Þ

Factor aPOBp
, in the sequel called ‘‘preosteoblastic proliferation

fraction’’ allows us to prescribe the fraction of preosteoblast gain
by proliferation to preosteoblast gain by differentiation,
DOBu ¼ ð1� aPOBp

ÞDPivonka
OBu

. Considering physiologically normal
conditions, we assign, for provision of new preosteoblasts, a
minor fraction to proliferation, aPOBp

¼ 0:1; nevertheless, this
minor fraction turns out to play a significant role, as discussed
in Section 6 (see also Fig. 8), see also reference [76].
	 The numerical values of all as yet not defined parameters can be

found in Appendix A.

Note that Section 6 is devoted to studying variations of above de-
fined parameters.

A number of PMO-scenarios is studied subsequently: Scenario 1
represents non-mechanoresponsive osteoblast proliferation
(k ¼ 0), scenario 2 represents highly mechanoresponsive osteo-
blast proliferation (k ¼ 25), while scenario 3 represents moderately
mechanoresponsive osteoblast proliferation (k ¼ 1:25). In scenario
1, where the mechanoregulatory feedback is switched off by set-
ting k ¼ 0, implying that the osteoblast proliferation term, see Eq.
(1), cannot counteract the catabolic effects of additional production
of PTH, bone resorption response is unbounded, see Fig. 5. After a
new, disease-related steady state of bone cell concentrations is
reached, fbm decreases linearly with time. Maintaining the addi-
tional, PMO-related PTH-production long enough would eventually
lead to a negative bone matrix volume fraction. Clearly, such a re-
sponse is neither physiological nor physically reasonable, and
underlines the importance of activating the mechanical feedback
for simulation of bone remodeling.

In scenario 2, with k > 0, the mechanobiological feedback
coupling is activated. Directly after initiation of the additional
PTH-production, initiated at t ¼ 0, a steep increase of fvas is
observed. This rapid bone loss leads to a strong increase of the
Fig. 5. Numerical simulation of the temporal evolutions of the bone matrix volume
fractions, fbm, for five scenarios and comparison with experimental findings by
Bonnet and Ferrari [77]; scenario 1: k ¼ 0, scenario 2: k ¼ 25, and scenario 3:
k ¼ 1:25 (scenarios 1–3 are based on Wbm as control variable for mechanoregula-
tion); scenario 4: k ¼ 1:25 and Wcort is used as control variable for mechanoregu-
lation; scenario 5: k ¼ 1:25;Wcort is used as control variable for mechanoregulation,
and Chom

cort ¼ Chom
cort ðt ¼ 0Þ ¼ Chom

cort ½fvasðt ¼ 0Þ; fbmðt ¼ 0Þ ¼ 1� fvasðt ¼ 0Þ�.
microscopic SED which switches on mechanoregulation,
Pmech

act;OBp
> �Pmech

act;OBp
, leading to increased proliferation of osteoblast

precursor cells. Consequently, the resorption process is steadily
reduced until a new equilibrium between bone resorption and
bone formation is reached at fbm � 0:94, with balanced (but
increased) bone turnover, see Fig. 5. The time required to reach
the new steady state is less than 100 d. Note that keeping up the
PTH-production does not lead to further increase of fvas.

While scenario 2 reflects the influence of the implemented ana-
bolic mechanoregulatory mechanism in a qualitatively plausible
way, the proliferation-induced compensation of additional PTH-
production occurs much too fast (relative to clinical observations).
To induce more realistic model predictions in scenario 3, parame-
ter k is set to k ¼ 1:25. The model predictions are compared to the
experimental findings by Bonnet and Ferrari [77], who investigated
the bone mass evolution (averaged over the whole skeleton with-
out distinction between different types of bones and without spec-
ification of the major features of genetic predisposition) during the
lifetime of women. Due to the smeared data acquisition it is not
possible to carry out experimental validation in a strict sense
which would require individual model re-calibration for different
types of bone or for different ethnic groups. Nevertheless, compar-
ison of the experimentally obtained bone loss interpreted in terms
of a corresponding evolution of the bone matrix volume fraction
with the computational results shows that, at least qualitatively,
the model adequately resembles the in vivo observed porosity in-
crease in patients suffering PMO, see Fig. 5.

Tying in with the study presented in Section 3.6, two further sce-
narios are simulated, aiming at revealing how the computational
results are changed if the mechanical feedback is introduced using
the macroscopic SED. Scenario 4 is based on macroscopically con-
trolled mechanoregulation, i.e. in Eq. (2) Wbm is substituted by Wcort,
with k ¼ 1:25 and with Wcort estimated on the basis of the actual mac-
roscopic bone stiffness, Chom

cort ¼ Chom
cort ðfvas; fbm ¼ 1� fvasÞ according to

Eq. (9). Scenario 5 investigates the impact of not updating Chom
cort

based on the changing bone constituent volume fractions, thus
Chom

cort ¼ Chom
cort ðt ¼ 0Þ ¼ Chom

cort ½fvasðt ¼ 0Þ; f bmðt ¼ 0Þ ¼ 1� fvasðt ¼ 0Þ�.
The computed evolutions of fbm reconfirm that considering Wcort in-
stead of Wbm as mechanoregulatory argument leads to significant
misestimation of the mechanoregulatory response, even if the stiff-
ness of bone is continuously updated, compare the graphs in Fig. 5
representing scenarios 3 and 4. This behavior stems from the differ-
ent extent of osteoblast proliferation between the microscopic and
macroscopic approaches. In the present study, for fvas > 0 the
numerical value of Wbm is higher than the numerical value of Wcort

(compare Fig. 4) and provokes thus a higher numerical value of
Pmech

act;OBp
via Eq. (2), leading to a higher concentration of active oste-

oblasts via Eq. (1) and thus to more bone formation via Eq. (8),
which eventually implies faster ‘‘interception’’ of the biochemically
induced catabolic regime. Furthermore, the fbm-evolution obtained
for scenario 5 clearly shows the importance of a sound estimation
tool for the porosity-dependent macroscopic stiffness tensor, see
Fig. 5. Neglecting the stiffness decrease due to the biochemically in-
duced porosity increase implies disabling the mechanoresponsive-
ness of osteoblast proliferation, thus coinciding with scenario 1
(k ¼ 0).

5. Significance of mechanoregulation in microgravity-induced
disuse

Now, the model response to mechanical disuse and reuse is
investigated: Normal loading is again specified by

Rnormal
cort;ij ¼ �30 MPa if ij ¼ 33 and zero otherwise, and a disuse load-

ing regime is simulated with Rdisuse
cort;33 ¼ �25 MPa for 0 6 t 6 2000 d

(after disuse the loading is set back to Rnormal
cort;33 and the system is



(a)

(b)

(c)

Fig. 6. Numerical results for a disuse-scenario, characterized by
Rcort;33 ¼ Rdisuse

cort;33 ¼ �25 MPa for 0 6 t 6 2000 d, by and Rcort;33 ¼ Rnormal
cort;33 ¼ �30 MPa

for t > 2000 d; j ¼ 105 pM/day: evolutions of (a) microscopic strain energy density
Wbm, normalized with respect to �Wbm, (b) bone cell concentrations Ci, normalized
with respect to the initial cell concentrations Ci;ini , and (c) vascular porosity fvas for
kres ¼ 200 pM�1 day�1 (black graph) and kres ¼ 500 pM�1 day�1 (grey graph).
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observed for further 3000 d). Inhibition parameter j, see Eq. (5)
and Fig. 2(b), decisively influencing the catabolic model response
to a disuse scenario, is set to j ¼ 105 pM/day – this value has
turned out to allow for adequate simulation of bone loss due to de-
creased mechanical loading. Furthermore, we choose to set

fvas;ini ¼ 0:05; k ¼ 1:25; aPOBp
¼ 0:1, and �Pmech

act;OBp
¼ 0:5; see Section 6

for studies on variations of these parameters.
Evaluating the model accordingly leads, after initiation of the

disuse scenario at t ¼ 0, to a corresponding drop of the microscopic
strain energy density, Wbm, see Fig. 6(a). This deviation from the

initial loading conditions (Wbm < �Wbm) leads to additional produc-
tion of RANKL via Eq. (5), initiating a catabolic remodeling regime
with ðCOCa=COCa ;iniÞ > ðCOBa=COBa ;iniÞ, see Fig. 6(b). Amplification of
the osteoclast activity entails a corresponding increase of the vol-
ume fraction of vascular pore space, obtained through Eq. (7), see
Fig. 6(c). This increase leads to softening of the RVE of cortical
bone; i.e. the macroscopic stiffness, accessible via Eqs. (9)–(12), de-
creases. As the prescribed macroscopic loading Rdisuse

cort is assumed to
be constant, decreasing stiffness leads to increasing deformation,
and thus to an increasing SED, following Eqs. (13) and (14). Over
time, the coupled model approaches a new steady state, with
equilibrated bone turnover (kresCOCa ¼ kformCOBa ) corresponding to
adaption of the bone constituent volume fractions to the mechan-
ical disuse. This is observed after � 1000 d, indicated by an after-
wards constant volume fraction of vascular pore space, see the

black graph in Fig. 6(c), by an equilibrated SED (Wbm ¼ �Wbm), see
Fig. 6(a), which results in ‘‘shutting off’’ the disuse-related addi-
tional production of RANKL, and consequently by decrease of the
cell concentrations to the initial level (Ci=Ci;ini ¼ 1), see Fig. 6(b).

After returning to the original macroscopic load at t ¼ 2000 d,
Rcort;33 ¼ Rnormal

cort;33 , deformation increases abruptly (thus
Wbm > �Wbm), leading to activation of increased preosteoblast prolif-
eration via Eq. (2). The chosen time frame of 5000 d is however too
short to capture the return to the original mechanical steady state
(with fvas ¼ fvas;ini ¼ 0:05). In qualitative terms, the results indicated
by the black graphs in Fig. 6 clearly resemble the mechanoregula-
tory behavior observed for bone subjected to disuse scenarios,
compare e.g. the investigations of Vico and co-workers during
and after space flight [68,78]. In essence, exposure to microgravity,
entailing a reduced loading acting upon bone, leads to adaption of
bone mass towards a new equilibrium after a certain period of
time. When subjected again to terrestrial gravity, bone responses
by recovering, i.e. by adjusting its mass to the original level. Inter-
preted in terms of bone constituent volume fractions, this is ex-
actly the behavior predicted by the above simulation, see Fig. 6.

Comparison of the model predictions with experimental results
shows the importance of thorough species-dependent model cali-
bration. E.g. measurements conducted on cosmonauts after a six
month-exposure to microgravity [68] shows a loss of the bone
mineral density in cortical bone of not more than 2.5% (observed
in the distal radius) and 4.3% (observed in the distal tibia), respec-
tively. I.e. the experimentally observed average bone loss rate
amounted to 0.42%/month (distal radius) and 0.72%/month (distal
tibia), respectively. The computationally predicted bone loss rate,
0.48%/month, see the black graph in Fig. 6(c), fits well for this
experimental data range. On the other hand, microgravity experi-
ments on other species, e.g. on rats [78], showed much higher bone
loss rates. Most likely, this more responsive behavior can be as-
signed to a species-dependent, increased resorption activity of ac-
tive osteoclasts. To highlight this effect, a second disuse-study is
carried out, with the resorption (and also the formation) rate being
increased by factor 2.5, i.e. kres ¼ 500 ðpM dayÞ�1. The grey graph in
Fig. 6(c) shows that this measure leads to a dramatic acceleration
of the resorption response, with mechanical adaption being fin-



Fig. 8. Sensitivity of fvas to parameters aPOBp
and �Pmech

act;OBp
, governing the extent and

flexibility of osteoblast proliferation; grey/black lines indicate varying values of
aPOBp

(with �Pmech
act;OBp

¼ 0:5) and �Pmech
act;OBp

(with aPOBp
¼ 0:1).
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ished much faster. Hence, the model response can be adjusted to
different species (and bone tissues), by adjustment of the underly-
ing parameters. However, the focus of this paper is not on re-cali-
brating the bone cell population model, but on highlighting the
capabilities of the mechanoregulatory mechanisms introduced in
Sections 2.1 and 2.2 – the former endeavor is thus not further pur-
sued in this paper.

6. Sensitivities of the mechanoregulatory parameters

In the following, the sensitivity of the model output to varia-
tions of single parameters is investigated. If not explicitly specified
differently, model parameters are chosen as defined in Sections 4
and 5.

Investigation of inhibition parameter j and of anabolic strength
parameter k: First, the sensitivity of the computed bone constituent
volume fractions to the parameters governing the mechanorespon-
siveness of the model, i.e. to the inhibition parameter j and to the
anabolic strength parameter k, is investigated. Parameter j gov-
erns the maximum, mechanically induced ‘‘external’’ dose of
RANKL, see Eq. (5). The model is evaluated for four values of
j;j1 ¼ 102 pM=day; j2 ¼ 103:5 pM=day; j3 ¼ 104:5 pM=day, and
j4 ¼ 106 pM=day. As anticipated, a low value of j induces a slow
increase of fvas during disuse, due to the weak additional, disuse-re-
lated stimulation of osteoclast differentiation. Increasing j leads to
much faster bone loss, thus the disuse-related steady state compo-
sition (see Section 5 for a detailed discussion) is also approached
faster, see the graphs in the dark grey area in Fig. 7. The capacity
of the RANK-RANKL-OPG system to promote the differentiation
of osteoclasts is however limited, i.e. further increase of j, e.g.
j� j4, does not yield a corresponding increase of the slope of
fvasðtÞ in the disuse regime. Hence, further acceleration of the cata-
bolic response to disuse cannot be achieved by increasing j.

The sensitivity of increased osteoblast proliferation to increased
loading, on the other hand, is controlled by parameter k, see Eq. (2).
The recovery of the vascular porosity, after switching off disuse, to-
wards the original value at t ¼ 0 (again, see Section 5 for a detailed
discussion of disuse–reuse-scenarios) can be accelerated by
increasing k, see the graphs in the light grey area in Fig. 7, obtained
through evaluation of the model for k1 ¼ 1; k2 ¼ 2; k3 ¼ 4, and
k4 ¼ 10. Due to reaching the upper limit of
Fig. 7. Sensitivity of fvas to j and k, according to Eqs. (2) and (5), with
j1 ¼ 102 pM d�1, j2 ¼ 103:5 pM=day; j3 ¼ 104:5 pM/day, and j4 ¼ 106 pM/day
(and k ¼ 25), as well as k1 ¼ 1; k2 ¼ 2; k3 ¼ 4, and k4 ¼ 10 (and j ¼ 105 pM/day);
the dark/light grey area indicates the time frame for which results of the j-/k-study
are presented.
Pmech
act;OBp

;max Pmech
act;OBp

¼ 1 (see Fig. 2), the anabolic capacity of osteo-
blast proliferation is limited, thus choosing k� k4 does not lead to
a correspondingly faster re-establishment of fvas;ini (see e.g. the ini-
tially coinciding slopes of the graphs related to k3 and k4 in the
light grey area in Fig. 7).

Investigation of preosteoblastic proliferation fraction aPOBp
and of

the minimum value of the preosteoblast activator function Pmech
act;OBp

:
The second study is devoted to examining the role of the parame-
ters that are central for calibration of proliferation rate POBp ; aPOBp

and �Pmech
act;OBp

, see Eq. (16). Factor aPOBp
controls how many osteoblast

precursors are supplied by differentiation of osteoblast progeni-
tors, and how many by proliferation of osteoblast precursors. The
minimum value of the preosteoblast proliferation activator func-
tion Pmech

act;OBp
at steady-state conditions, �Pmech

act;OBp
, determines the

capacity to induce mechanically triggered bone formation. The
simulations, carried out for aPOBp

¼ f0; 0:125;0:2g and
�Pmech

act;OBp
¼ f0:5;0:7;0:8g show that increasing aPOBp

leads to deceler-
ation of bone resorption during disuse, and to acceleration of bone
formation during recovery from disuse, see Fig. 8. While varying
�Pmech

act;OBp
has no influence whatsoever on bone resorption, increasing

�Pmech
act;OBp

leads to slowing down bone formation, due to narrowing
down the margin between �Pmech

act;OBp
and max Pmech

act;OBp
¼ 1, see also

Fig. 2(a). Decreasing �Pmech
act;OBp

below 0.5 becomes only relevant for
a significantly increased loading. However, such substantial load
increase can be considered as physiologically implausible and is
thus not investigated here.

The results depicted in Figs. 7 and 8 also illustrate that both the
slopes of a catabolic regime (with dfvas=dt > 0) and of an anabolic
regime (with dfvas=dt < 0) are bounded by a certain limiting value.
A further study (not presented in this paper) of the combined effect
of j and aPOBp

on the time span after which the disuse-related

‘‘steady state’’ porosity is reached shows that, for the given
mechanical loading regime, the lower limit of completed catabolic
mechanical adaption is � 270d, corresponding to an average bone
loss rate of 1.81%/month (if kres is not increased as shown in Sec-
tion 5). Increasing the responsiveness of the system, beyond this
limit, thus requires incorporation of additional (biochemical)
mechanoregulatory mechanisms, allowing to further increase ra-
tios COCa=COBa (during disuse) and COBa=COCa (during overuse),
respectively.

Investigation of initial porosity fvas;ini and of loading magnitude
Rdisuse

cort;33: The analysis so far has demonstrated how porosity increase



Fig. 9. The porosity relating to the disuse steady state, f disuse
vas , as function of the

initial porosity, fvas;ini , and of the 33-component of the macroscopic stress tensor
during disuse, Rdisuse

cort;33; simulations are carried out for two stress tensors represent-
ing normal loading, Rnormal;uni

cort ¼ ½0;0;0; 0;0;0; 0;0;�30�MPa (black graph) and
Rnormal;3D

cort ¼ ½4;2;7; 2;�10;�3; 7;�3;�30�MPa (grey graph).
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and decrease are influenced by the underlying parameters,
j; k; aPOBp

, and �Pmech
act;OBp

. The disuse-related steady state value of
fvas; f disuse

vas , has turned out to be not affected by variations of those
parameters, with f disuse

vas � 0:21. In the last study of this section,
the parameters for which f disuse

vas is sensitive are investigated: the
initial volume fraction of the vascular porosity, fvas;ini; the magni-
tude of disuse, e.g. Rdisuse

cort;33 for uniaxial loading; and the direction
of the applied loading. In detail, simulations are performed for
fvas;ini ¼ ½0;0:2�, for Rdisuse

cort;33 ¼ ½�30;�25�MPa, and for two different
macroscopic stress tensors representing normal loading, namely
uniaxial compression Rnormal;uni

cort ¼ ½0;0;0; 0;0;0; 0;0;�30�MPa,
and a general three-dimensional stress state
Rnormal;3D

cort ¼ ½4;2;7; 2;�10;�3; 7;�3;�30�MPa. The simulations
show that the maximum porosity increase during disuse,
f disuse
vas � fvas;ini, decreases with increasing fvas;ini and with increasing
Rdisuse

cort;33 (and thus with increasing jRnormal
cort;33 � Rdisuse

cort;33j), see Fig. 9.
Furthermore, the distinctive difference between the black
graph (representing the results for Rnormal;uni

cort ) and the grey graph
(representing the results for Rnormal;3D

cort ) highlights that not only a
simplified scalar variation (e.g. of the stress in the main load direc-
tion) but the component-wise change of the 3D stress tensor has to
be considered for profound prediction of mechanical adaption of
bone. This behavior conforms with experimental observations that
different parts of bone, subjected to different stress states, exhibit
different bone remodeling responses to mechanical stimuli [79]. In
more detail, Carter [79] states that ‘‘the magnitudes, orientations,
and sense (tension or compression) of [. . .] strains vary markedly
throughout the skeleton. It is probable, therefore, that the strain/
remodeling response of bone is site specific’’. Variations in strain/
remodeling response due to variations in magnitude and orienta-
tion of strains applied onto cortical bone are reflected in the differ-
ence between black and grey graphs in Fig. 7.

7. Discussion of potentials and limitations of the presented
approach

In the presented approach, one single value �Wbm of the strain
energy density relating to a bone turnover in equilibrium is chosen.
This is still reminiscent of the approach of Beaupré et al. [80],
where, below an attractor state strain energy density WAS, tissue
resorption is triggered, and at strain energies exceeding this state,
bone tissue is laid down. In our approach, the mechanical strains
(still quantified in terms of the strain energy density) are directly
related to biochemical and biological events as recorded in systems
biology, and the latter, through a cascade of events which we mod-
el in a reductionist fashion, finally lead to bone formation or
resorption. In more detail, we introduce into our model two dis-
tinct pathways, one catabolic and one anabolic one, which – when
acting together – form something comparative to a regulatory
mechanism. This we regard as an original feature of our model,
incorporating explicitly system biological features into the
mechanoregulatory loop. Still, our variable �Wbm takes somehow
the role of the attractor state – though, in principal, it may well
be different for anabolic and catabolic events. The more precise
identification of strain thresholds beyond or within which bio-
chemical events are recorded is a very fascinating topic, which
we plan to look into in the near future.

The illustrative examples given in the previous sections refer to
physiologically normal as well as to reduced loading conditions.
The use of the presented model for cases of overloading may be
questionable since phenomena such as microdamage growth are
not explicitly accounted for. Respective mechanobiological formu-
lations, covering also events of ‘‘stress fractures’’, have been pro-
posed [81,82]. While McNamara and Prendergast [82] do not
distinguish between porosity- and damage-driven stiffness reduc-
tion, Garcı́a-Aznar et al. [81] adopt in their approach classical dam-
age mechanics, based on a scalar damage variable which is still not
directly related to the cortical microstructure. As interesting con-
ceptual alternative, our present micromechanical approach may
be conceptually extended towards the introduction of microcracks
as an additional material phase [83,84]. As for propagation of
cracks, which could finally lead to fatigue failure, the number of
load cycles would appear as a very important model parameter,
which would drive crack propagation, and therefore increase the
stress or strain states experienced by the osteocytes. In other
words, load history would become an important factor as ‘‘mechan-
ical stimulus’’. This is conceptually similar to the stimulus variables
accounting for load cycles, as introduced by Carter and colleagues
in the 1980’s [85,86]. These aspects are beyond the scope of the
present contribution, marking a clear limitation of the present
approach.

We note that the micromechanical representation in Fig. 1(b)
does not represent the entirety of cortical microstructural fea-
tures, such as the branching network of Haversian systems
[87], also referred to as Haversian and Volkmann’s canals [88].
However, the chosen degree of abstraction (i.e. cylinders instead
of oriented branches) still allows for satisfactory prediction of
vascular porosity-dependent elastic properties, as was shown
in numerous published works over more than 30 years, includ-
ing [59,89–97].
8. Conclusions

The presented methodology provides biophysically reasonable
estimates of the stiffness changes of cortical bone (and thus of its
load-carrying capacity), driven by biochemically and/or mechani-
cally regulated bone cell activities. This is achieved through cou-
pling of a bone cell population model with a continuum
micromechanics model of bone stiffness, via a strain energy den-
sity-based feedback loop implemented on the observation scale
of extravascular bone matrix, which controls both bone resorption
and bone formation responses. The implemented approach in-
volves a number of notable original aspects: (i) for the first time,
state-of-the-art models of bone biology and bone mechanics are
fully coupled; (ii) osteoblast proliferation is taken into account,
based on experimental evidence, governed by the prevailing
mechanical loading; (iii) production of RANKL is considered as
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being modulated by the prevailing mechanical loading, also based
on experimental evidence; and (iv) the strain energy density expe-
rienced by the extravascular bone matrix (i.e. on the observation
scale of the relevant cellular events involved in bone remodeling)
is used as mechanoregulatory quantity. The performed numerical
simulations gave insights into a variety of aspects related to bone
remodeling and mechanical feedback control. In particular, the fol-
lowing observations have been made:

	 It is essential to consider the microscopic strain energy density,
Wbm, as functional argument for mechanoregulation, on the
observation scale of extravascular bone matrix (which hosts
the mechanosensing and -transducing osteocytes).
The significance of using the microscopic strain energy density,
Wbm, as functional argument for the proposed mechanoregula-
tory mechanisms, rather than the macroscopic strain energy
density, Wcort, has turned out to strongly depend on actual
vascular porosity fvas and stress state Rcort. While for low
porosities (i.e., close to zero) Wcort and Wbm are virtually
identical, for higher porosities strong deviations between
these quantities are found; particularly for high porosities
which might be associated with severe bone loss (such as in
cancer or advanced osteoporosis) or in trabecular bone, Wcort

significantly underestimates Wbm.
	 Proliferation of osteoblast precursors has been identified as

powerful mechanism for modulating bone remodeling towards
an anabolic regime. Careful calibration of the involved parame-
ters is crucial. Especially ratio aPOBp

, governing the magnitude of
osteoblast proliferation, exerts a major influence on the accu-
racy of the computed bone remodeling response.
	 Simulations of postmenopausal osteoporosis (PMO) showed

that using the bone cell population model without consider-
ation of mechanoregulatory feedback leads to continuous,
unbounded bone loss. Such behavior is of course not observed
in vivo. Experiments rather show an initial phase of rapid bone
loss followed by a second phase of moderate, decreasing bone
loss. An active mechanoregulatory feedback reduces the high
bone loss rate observed directly after initiation of PMO and
allows for computation of bone volume fraction evolutions over
time resembling corresponding experimental results.
	 Simulations of a mechanical disuse- and reuse-regime showed

that the model is capable of (qualitatively) reproducing phys-
iologically observed key features, such as rapid bone loss due
to unloading and slower bone gain after re-establishment of
the normal mechanical loading. Calibration of the catabolic
mechanoregulatory function via parameter j allows for adjust-
ment of the time it takes until a new steady state, related to
mechanical disuse, is reached. However, the catabolic regula-
tory function pRANKL

act;OCp
which upregulates the differentiation

from osteoclast precursors to active osteoclasts is limited,
pRANKL

act;OCp
¼ ½0;1�, i.e. increasing of PRANKL;ebm

beyond a certain
limit value does not lead to further acceleration of the corre-
sponding bone resorption response. This limitation can be
overcome by modifying the resorption rate of active osteo-
clasts kres.

The numerical results indicate that the proposed approach cap-
tures key features of mechanoregulation of bone remodeling. Nev-
ertheless, several aspects have to be revisited in future research. In
particular, (i) explicit introduction of osteocytes and the major sig-
naling pathways between osteocytes and bone-forming/-resorbing
cells, and (ii) further improvement of the model as to the different
mechanism by which the mechanical loading is sensed, is
envisaged to provide new insights on mechanoregulation of bone
remodeling, eventually allowing for further experimental
validation of the model and utilization as interpretative and pre-
dictive instrument.
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Appendix A. Functions and parameters governing the bone cell
population model

Hereafter, we will briefly present the mathematical framework
required to evaluate the governing differential Eqs. (1), (3), and (4);
a detailed elaboration can be found in [25,26]. In order to take into
account the influence of the biochemical environment on cell dif-
ferentiation and apoptosis processes, activator and repressor func-
tions are included in the model, defined according to the concept of
the so-called Hill functions [98]. The activator and repressor func-
tions related to the influence of TGF-b read

pTGF-b
act;OBu

¼ CTGF-b

KTGF-b
act;OBu

þ CTGF-b
; ðA:1Þ

pTGF-b
rep;OBp

¼
KTGF-b

rep;OBp

KTGF-b
rep;OBp

þ CTGF-b

; ðA:2Þ

and

pTGF-b
act;OCa

¼ CTGF-b

KTGF-b
act;OCa

þ CTGF-b
; ðA:3Þ

with CTGF-b as the concentration of TGF-b, and with KTGF-b
act;OBu

;KTGF-b
rep;OBp

,

and KTGF-b
act;OCa

as equilibrium dissociation constants related to the ac-
tion of TGF-b binding to its receptors on the involved cell types.
The actual concentration of TGF-b is based on considering the re-
lease of the TGF-b stored in bone during resorption, and application
of the principle of mass action kinetics, yielding

CTGF-b ¼
akresCOCa þ STGF-beDTGF-b

; ðA:4Þ

where a is a constant quantifying the content of TGF-b in the bone
matrix, STGF-b is a sink/source term for TGF-b, and eDTGF-b is the con-
stant degradation rate of TGF-b.

The activator function related to binding of RANKL to RANK,
promoting osteoclast differentiation, is defined as

pRANKL
act;OCp

¼ C ½RANKL-RANK�

Kd;½RANKL�RANK� þ C ½RANKL-RANK�
; ðA:5Þ

with C½RANKL-RANK� as the concentration of the RANK-RANKL complex,
and Kd;½RANKL�RANK� as the corresponding equilibrium dissociation
binding constant. The former follows from

C½RANKL-RANK� ¼ Ka;½RANKL-RANK�CRANKLCRANK; ðA:6Þ

with Ka;½RANKL-RANK� as the equilibrium association binding constant
related to binding of RANKL to RANK, CRANK as the concentration
of RANK which is defined through a constant production rate intrin-
sic to osteoclast precursor cells [25,26], and CRANKL as the concentra-
tion of RANKL available for combination with RANK found on the
membranes of osteoclast precursor cells, turning them into active



Table 1
Parameters governing the bone cell population model, defined through Eqs. (1)–(8)
and (A.1)–(A.13).

Parameter Numerical value Unit

AOBa 2:1107� 10�1 d�1

AOCa 5:6487� 10�4 d�1

Cmax
OPG 2� 108 pM

DPivonka
OBu

7� 10�2 d�1

DOBp 1:6570� 10�1 d�1

DOCp 2:1� 100 d�1

eDOPG 3:5� 10�1 d�1

eDPTH 8:6� 101 d�1

eDRANKL 1:0132� 101 d�1

eDTGF-b 1� 100 d�1

kres 2� 100 (pM day)�1

KTGF-b
act;OBu

5:6328� 10�4 pM

KPTH
act;OB 1:5� 102 pM

KTGF-b
act;OCa

5:6328� 10�4 pM

Kd;½RANKL�RANK� 5:6797� 100 pM

KPTH
rep;OB 2:226� 10�1 pM

KTGF-b
rep;OBp

1:7543� 10�4 pM

Ka;½RANKL�OPG� 1� 10�3 pM�1

Ka;½RANKL�RANK� 3:4118� 10�2 pM�1

NOB
RANKL 2:703� 106 –

pOPG
OB 1:625� 108 pM d�1

a 1� 10�2 –

bPTH 2:5� 102 pMd�1

bRANKL 1:6842� 102 pM d�1
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osteoclasts. This availability, in turn, is governed by the binding of
already produced RANKL through RANK and osteoprotegerin
(OPG), the latter being released by osteoblasts, and by the produc-
tion of RANKL itself,

CRANKL ¼
Cmax

RANKL
bRANKL þ PRANKL

bRANKL þ eDRANKLCmax
RANKL

1þ Ka;½RANKL-OPG�COPG þ Ka;½RANKL-RANK�CRANK
: ðA:7Þ

In Eq. (A.7), Ka;½RANKL-OPG� denotes the equilibrium association con-
stant for binding of OPG to RANKL, COPG is the concentration of
OPG (following from the principle of mass action kinetics), bRANKL

is the intrinsic RANKL production rate, PRANKL is the (‘‘external’’) dos-
age of RANKL, eDRANKL is the constant degradation rate, Cmax

RANKL is the
maximum concentration of RANKL (also referred to as effective car-
rying capacity). Cmax

RANKL is assumed to be regulated by PTH, through
the following relation:

Cmax
RANKL ¼ NOBp

RANKLCOBp þ NOBa
RANKLCOBa

� 	
pPTH

act;OB; ðA:8Þ

where NOBp
RANKL ¼ NOBa

RANKL ¼ NOB
RANKL are the maximum numbers of

RANKL receptors on osteoblast precursors and active osteoblasts,
and pPTH

act;OB is an activator function related to the presence of PTH,
reading

pPTH
act;OB ¼

CPTH

KPTH
act;OB þ CPTH

: ðA:9Þ

In Eq. (A.9), KPTH
act;OB denotes the RANKL production-relevant equilib-

rium dissociation constant related to binding of PTH to its receptors
expressed on osteoblasts, and CPTH denotes the concentration of
PTH, determined by

CPTH ¼
bPTH þ PPTH;deDPTH

; ðA:10Þ

with bPTH as intrinsic PTH production rate, PPTH;d as PTH dosage
term, and eDPTH as constant PTH degradation rate.

Furthermore, the expression given by Eq. (A.7) includes the con-
centration of OPG, which is given by

COPG ¼
ðbOPG þ POPG;dÞCmax

OPG

bOPG þ eDOPGCmax
OPG

; ðA:11Þ

where bOPG is the intrinsic OPG production rate, POPG;d is the OPG
dosage term, eDOPG is the constant OPG degradation rate, and Cmax

OPG

is the maximum OPG concentration. The production rate of OPG,
in turn, is also regulated by PTH,

bOPG ¼ pOPG
OBp

COBppPTH
rep;OB þ pOPG

OBa
COBapPTH

rep;OB

� 	
; ðA:12Þ

where pOPG
OBp
¼ pOPG

OBa
¼ pOPG

OB are proportionality constants quantifying
the OPG production of osteoblast precursors and active osteoblasts,
and pPTH

rep;OB is the repressor function related to OPG production if
PTH binds to osteoblasts. pPTH

rep;OB is defined by

pPTH
rep;OB ¼

KPTH
rep;OB

KPTH
rep;OB þ CPTH

; ðA:13Þ

with KPTH
rep;OB denoting the OPG production-relevant equilibrium dis-

sociation constant related to binding of PTH to its receptors ex-
pressed on osteoblasts.

Table 1 summarizes the parameters needed for numerical eval-
uation of the equations presented in this paper, as calibrated in
aforementioned papers. The bone formation rate kform is calibrated
such that for the previously defined bone resorption rate, kres, stea-
dy-state cell concentrations, dCOBp=dt ¼ dCOBa=dt ¼ dCOCa=dt ¼ 0,
imply a balanced bone turnover; i.e. fvas ¼ const: and fbm ¼ const:
in Eqs. (7) and (8): kform ¼ kresCOCa=COBa .

Furthermore, the steady state of the bone cell population model
follows the work of Pivonka et al. [25], related cell concentrations
amount to COBu ¼ 0:01pM, COBp ¼ 0:001pM, COBa ¼ 0:0005pM,
COCp ¼ 0:001pM, and COCa ¼ 0:0001pM. Note that COBu and COCp

are presumed to be constant and hence not state variables of our
model.

Appendix B. Tensor notation

For numerical evaluation of equations involving tensor
operations, compression of second- and fourth-order tensors,
respectively, into equivalent 6� 1-vector and 6� 6-matrix nota-
tions, respectively, has turned out to be useful. This compressed
notation is also referred to as Kelvin- or Mandel-notation
[99,100]. Accordingly, a symmetric second-order tensor, e.g. strain
tensor e, can be alternatively specified by

e ¼ e11 e22 e33

ffiffiffi
2
p

e23

ffiffiffi
2
p

e13

ffiffiffi
2
p

e12

h iT
: ðB:14Þ

On the other hand, a symmetric fourth-order tensor, e.g. stiffness
tensor c, reads in compressed notation

c ¼

c1111 c1122 c1133

ffiffiffi
2
p

c1123

ffiffiffi
2
p

c1113

ffiffiffi
2
p

c1112

c2211 c2222 c2233

ffiffiffi
2
p

c2223

ffiffiffi
2
p

c2213

ffiffiffi
2
p

c2212

c3311 c3322 c3333

ffiffiffi
2
p

c3323

ffiffiffi
2
p

c3313

ffiffiffi
2
p

c3312ffiffiffi
2
p

c2311

ffiffiffi
2
p

c2322

ffiffiffi
2
p

c2333 2c2323 2c2313 2c2312ffiffiffi
2
p

c1311

ffiffiffi
2
p

c1322

ffiffiffi
2
p

c1333 2c1323 2c1313 2c1312ffiffiffi
2
p

c1211

ffiffiffi
2
p

c1222

ffiffiffi
2
p

c1233 2c1223 2c1213 2c1212

0BBBBBBBBB@

1CCCCCCCCCA
:

ðB:15Þ
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Appendix C. Notation

Abbreviations

3D
 three-dimensional

BCPM
 bone cell population model

BMU
 basic multicellular unit

OBa
 active osteoblasts

OBp
 committed osteoblast precursor cells

OBu
 uncommitted osteoblast progenitors

OCa
 active osteoclasts

OCp
 committed osteoclast precursor cells

ODE
 ordinary differential equation

OPG
 osteoprotegerin

PMO
 postmenopausal osteoporosis

PTH
 parathyroid hormone

RANK
 receptor activator of nuclear factor kappa b

RANKL
 ligand of RANK

RVE
 representative volume element

SED
 strain energy density

TGF-b
 transforming growth factor-b
Latin symbols

aPOBp
preosteoblastic proliferation fraction
Aest
r
 estimate of the strain concentration tensor of

phase r

Aest

bm
 estimate of the strain concentration tensor of
the extravascular bone matrix
AOBa
 apoptosis rate of active osteoblasts

AOCa
 maximum apoptosis rate of active osteoclasts

COBa
 molar concentration of active osteoblasts

COBp
 molar concentration of osteoblast precursor

cells

COBu
 molar concentration of uncommitted

osteoblast progenitor cells

COCa
 molar concentration of active osteoclasts

COCp
 molar concentration of osteoclast precursor

cells

COPG
 molar concentration of OPG

Cmax

OPG
 maximum molar concentration of OPG

CPTH
 molar concentration of PTH

CRANK
 molar concentration of RANK

CRANKL
 molar concentration of RANKL

Cmax

RANKL
 maximum molar concentration of RANKL

C½RANKL-RANK�
 molar concentration of the RANK-RANKL

compound

CTGF-b
 molar concentration of TGF-b

cbm
 microscopic stiffness tensor of extravascular

bone matrix

cvas
 microscopic stiffness tensor of vascular pore

space
Chom
cort
homogenized macroscopic stiffness tensor of
cortical bone
dRVE
 characteristic length of the heterogeneities
within the RVE
eDOPG

constant degradation rate of OPG
eDPTH
 constant degradation rate of PTH
eDRANKL

constant degradation rate of RANKL
eDTGF-b

constant degradation rate of TGF-b
DOBu
 maximum differentiation rate of
uncommitted osteoblast progenitor cells
DOBp
 maximum differentiation rate of osteoblast
precursor cells
DOCp
 maximum differentiation rate of osteoclast
precursor cells
fbm
 volume fraction of the extravascular bone
matrix
fvas
 volume fraction of the vascular pore space

e1; e2; e3
 unit vectors

Ecort;ii
 Young’s moduli of cortical bone in i-direction,

i ¼ 1;2;3

Ecort
 macroscopic strain tensor of cortical bone
Ehyd
cort
macroscopic hydrostatic strain tensor
Eshear;ij
cort
macroscopic pure shear strain tensors,
ij ¼ 12;13;23
I
 fourth-order unit tensor

J
 volumetric part of I
kform
 bone formation rate

kH2O
 bulk modulus of water

kres
 bone resorption rate

Kd;½RANKL�RANK�
 equilibrium dissociation binding constant for

binding of RANKL to RANK

KPTH

act;OB

RANKL production-relevant equilibrium
dissociation constant related to binding of
PTH to its receptors expressed on osteoblasts
KPTH
rep;OB
OPG production-relevant equilibrium
dissociation constant related to binding of
PTH to its receptors expressed on osteoblasts
Ka;½RANKL�RANK�
 equilibrium association binding constant for
binding of RANKL to RANK
Ka;½RANKL�OPG�
 equilibrium association binding constant for
binding of RANKL to OPG
KTGF-b
i

equilibrium dissociation constant related to
TGF-b-binding to its receptors, i = [act,OBu],
[rep,OBp], [act,OCa]
K
 deviatoric part of I
NOB
RANKL
maximum number of RANKL receptors on
osteoblasts
POPG;d
 OPG dosage term

PPTH;d
 PTH dosage term

PRANKL;ebm
‘‘external’’ RANKL-dose induced by
mechanical loading
pOPG
OB
proportionality constant quantifying the OPG
production of osteoblasts
Pbm
r

Hill tensor of phase r embedded in a matrix
with stiffness cbm
POBp
 maximum proliferation rate of osteoblast
precursor cells
‘RVE
 characteristic length of an RVE

L
 characteristic length of the geometry of a

structure built up by a material defined on the
RVE
P
 characteristic length of the loading of a
structure built up by a material defined on the
RVE
STGF-b
 sink/source term of TGF-b

t
 time variable

Vi
 volume of phase i within an RVE

V total
 total volume of an RVE
Greek symbols

a
 constant quantifying the content of TGF-b in

the bone matrix

bOPG
 intrinsic OPG production rate

bPTH
 intrinsic PTH production rate

bRANKL
 intrinsic RANKL production rate
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dij
 Kronecker delta

ebm
 microscopic strain tensor of the extravascular

bone matrix

j
 RANKL production inhibition parameter

k
 anabolic strength parameter

lH2O
 shear modulus of water
pPTH
act;OB
activator function of effective carrying
capacity of RANKL following the action of PTH
pPTH
rep;OB
repressor function of OPG production
following the action of PTH
pRANKL
act;OCp
activator function of osteoclast differentiation
following the action of RANKL
pTGF-b
act;OBu
activator function of osteoblast differentiation
following the action of TGF-b
pTGF-b
act;OCa
activator function of osteoclast differentiation
following the action of TGF-b
pTGF-b
rep;OBp
repressor function of osteoblast
differentiation following the action of TGF-b
Pmech
act;OBp
activator function of osteoblast proliferation
following the mechanical loading
�Pmech
act;OBp
minimum value of Pmech
act;OBp
Rcort
 macroscopic stress tensor of cortical bone

Rdisuse

cort

macroscopic stress tensor of cortical bone
under disuse conditions
Rhyd
cort
macroscopic stress tensor of cortical bone
representing hydrostatic loading
Rnormal
cort
macroscopic stress tensor of cortical bone
under normal conditions
Rshear;ij
cort
macroscopic stress tensor of cortical bone
representing pure shear loading,
ij ¼ 12;13;23
Runi
cort
macroscopic stress tensor of cortical bone
representing uniaxial loading
Wbm
 microscopic SED of extravascular bone matrix

�Wbm
microscopic SED of extravascular bone matrix

relating to �Pmech
act;OBp

and PRANKL;ebm
¼ 0
Wcort
 macroscopic SED of cortical bone
Mathematical symbols and operators

�
 dyadic product

:
 second-order tensor contraction

dð
Þ=dt
 derivative of quantity ð
Þ with respect to time

variable t

�;�
 symbols for ‘‘much smaller than’’ and ‘‘much

greater than’’, respectively
½
�T
 transpose of matrix ½
�
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