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Abstract. This paper describes fully coupled advective-diffusive transport of a drug through a 
trabecular bone sample in a perfused bioreactor. We used the analogy between heat transfer 
and mass transfer in order to derive the effective transport properties of the porous material 
such as effective diffusion coefficient and permeability. This allowed employing the heat 
transfer equations in Abaqus and they were solved using the finite element (FE) method. The 
average velocity was calculated using the Darcy-Brinkman-Forchheimer equation. Simulation 
results suggest that effective diffusivity plays a major role in the spatio-temporal distribution 
of the drug in the bone sample. Bone permeability was found less effective on manipulating 
the spatial distribution of drug. The bioreactor perfusion rate played a major role in the 
distribution of the drug throughout the bone sample. Increased perfusion rate leads to 
clearance of the drug towards the outlet of the bioreactor. It was found that even for moderate 
bioreactor perfusion rates the drug was concentrated towards the outlet, while zero 
concentration of drug was observed around the inlet. The numerical simulations showed that 
the essential effects of local drug release in bone can be captured using fluid flow through 
porous media theory. Our simulation results revealed that drug delivery is a multi-factorial 
phenomenon. Therefore, a mathematical model can enhance our understanding of this 
complicated problem that is difficult to characterize using experimental techniques alone.  
 
1 INTRODUCTION 

Bone diseases, as a major health issue, cost both individual patients and society to be 
treated. To treat bone diseases, systemic drug administration can be utilized. However, the 
conventional systemic drug deliveries are accompanied with several limitations including lack 
of high efficacy, bioavailability and biodistribution in addition to other side effects on non-
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target tissues including drug overdose and toxicity [1]. Local drug delivery using drug-
releasing implants located inside bone is recognized as a promising strategy to address the 
limitations of systemic drug administration to bone. However, the studies of optimum drug-
release kinetics are not possible to perform using existing in-vitro drug releasing systems and 
2-D bone cell models without several trial and errors.  

Bone is a porous material consisting of a solid and a fluid phase. Local drug delivery in 
bone is dependent on the perfusion rate of the drug (i.e., advective transport) and the 
concentration gradient of drug (i.e., diffusive transport). Explanation of the bioreactor set up 
experimental methods have shown drug kinetics using nanotubes porous medium allows 
certain level of perfusion, however, it is somehow impractical to optimize drug delivery 
system with a number of aforementioned parameters, in an experimental setup. Several 
mathematical models have been developed to address drug release kinetic; however, the role 
of biochemical and biomechanical variables on drug release kinetics in a bioreactor has not 
been fully understood [1-3]. Mathematical models enable us to predict and optimize drug 
release kinetics in in-silico simulations using porous media theories. 

The aim of this work is to demonstrate the use of a 3-D bone bioreactor for studying the 
drug-release kinetics and distribution of drugs in the ex-vivo trabecular bone environment 
using finite element methods in Abaqus. A fully coupled fluid flow in a porous media with 
diffusion has been used to study the role of different design variables on drug distribution in a 
bioreactor. The role of the following variables on drug distribution was investigated in this 
study: permeability, perfusion rate, porosity, and effective diffusivity. The results of our 
simulations can be used for validation of 3D bioreactors and prediction of drug release and 
distribution under different design conditions. Therefore, we ultimately aim to develop a 
mathematical model to predict the combined role of aforementioned variables on the 
effectiveness of 3D bioreactor to design tissue engineered materials and to optimize local drug 
delivery systems. 

 

2 METHODS 
In order to simulate local drug transport in the trabecular bone bioreactor, the classic 

advection-diffusion equation for porous materials can be applied. In the following we will use 
the analogy between the heat and diffusion problem to address local drug delivery in a porous 
medium, i.e., trabecular bone sample. The mathematical analogy between the heat transfer 
equation and mass transfer equations was adopted to simulate drug release in a porous 
material [2]. For pure fluids the energy conservation equation reads: 

𝜌𝑐
𝜕𝑇
𝜕𝑡

= −∇ ∙ 𝐉! + Q̇ 
(1) 

Where 𝜌 is the fluid density, c is the specific heat capacity, T is fluid temperature, and Q is 
a heat source/sink term. The heat flux can be defined as: 

𝐉! = −𝑘 ∇𝑇 + 𝒗𝑇 (2) 

Where k is heat thermal conductivity and v is the prescribed convective velocity of the 
fluid.  

On the other hand, the mass balance equation can be written as: 



Hossein Mokhtarzadeh, Moom S. Aw and Kamarul A. Khalid. et al. 

 3 

𝜕𝑐
𝜕𝑡
= −∇ ∙ 𝐉! + S   

(3) 

 
Where c is the concentration of solute, and S is a mass source/sink term. The flux transport 

of solute can be expressed as: 
𝐉! = −𝐷 ∇c + 𝒗𝑐 (4) 

Where D is the solute diffusion coefficient and v the prescribed advective velocity of the 
fluid. In Eqn.(4) the first term on RHS represents Fick’s first law describing pure diffusion 
driven by a gradient in concentration, while the second term is forced advection due to fluid 
motion. Comparing the individual coefficients in Eqn. (1), (2) and Eqn. (3), (4) an analogy 
between heat and mass transfer can be identified. The corresponding variables in these 
equations are summarized in Table 1. 

 In the Section 2.2 we will give a similar analogy for heat and mass transfer through porous 
materials. 

 
Table 1: Comparison of heat and mass transfer parameters adopted from [2]  

 
Heat transfer Mass transfer 

Symbol Description Symbol Description 

T Temperature C Concentration 

ρ Density ρ Density 

K Thermal conductivity k mass diffusion coefficient 

c Specific heat capacity 1/ ρ (ρ times c) =1 

v Fluid velocity v Convection velocity 

Q̇ Heat generation rate per unit volume S Drug generation rate per unit volume 

2.1 Isothermal fluid flow in porous media 

In the following we assume that the fluid flow through the bone sample is incompressible 
(Eqn. (5)). In order to address the problem of fluid flow through the bone sample in the 
bioreactor we apply the Darcy-Brinkman- Forchheimer equation [4]. This equation is based 
on volume averaging of the Navier-Stokes equation applied to the fluid phase of the porous 
material [4]. This equation takes into account interactions of the fluid with the solid phase and 
also inertial effects. In case the latter effects can be neglected the classical Darcy law for fluid 
flow through a porous material is obtained. This equation is derived assuming that the 
porosity of the material is constant and that the permeability is isotropic:  

 
𝛻. 𝑣 = 0, (5) 

𝜌
𝜖
𝜕𝑣
𝜕𝑡
+ 𝒗.∇

𝑣
𝜖

= ∇. 𝑝 +
µμ
𝜖
  ∇.∇𝑣 +   

µμ
𝐾
𝑣 −   

𝜌𝐶!   
𝐾!/!  

|𝑣|𝑣  (1) 
(6) 
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v is the extrinsic average velocity vector (or Darcy velocity for pure Darcy flow regime), 
which is the average of both solid and fluid phase, p is the intrinsic average pressure (acting in 
the fluid phase), 𝜌 is the fluid density, µμ is fluid viscosity, 𝜖 and K are the porosity and 
permeability of the porous medium, respectively.  

In Eqn. (6) on the right hand side, the second, third and fourth terms are the Brinkman term 
(which considers the presence of solid boundaries), the Darcy drag term, and the Forchheimer 
drag term represented by 𝐶! (which considers inertial effects proportional to the square of 
velocity), respectively. Given that the fluid velocities in the bioreactor are relatively small the 
last term can be neglected, i.e., CF=0. Note that the velocity in the fluid phase can be 
estimated as vf=v/  𝜖.	
  

 

2.2 Advective-diffusive transport of drug in trabecular bone 
As already outlined at the beginning of this section we will make use of the mathematical 

analogy between heat and diffusive transport. The conservation of energy equation for non-
isothermal flows can be written as [4,5]:  

𝜌𝐶! !""
𝜕𝑇
𝜕𝑡

+ 𝜌𝐶! !""𝒗.∇𝑇 = ∇. 𝑘!""∇𝑇 + 𝑞!""!!!    
(7) 

(𝜌𝐶!)!"" = 1 − 𝜖 𝜌!𝐶!" + 𝜖 𝜌!𝐶!"  (8) 

𝑘!"" = 1 − 𝜖 𝑘! + 𝜖𝑘! (9) 

 
Whereby, (𝜌CP)eff specifies the constant pressure specific heat, while keff is the effective 

thermal conductivity of the porous material. Note that (𝜌CP)eff and keff are volume averages of 
the fluid and solid phase of the porous material respectively (Eqn. (6) and (7)). 𝑞!""!!!  represents 
a source/sink term and is the external heat supplied/extracted per unit volume. Note that this 
equation was derived assuming an isotropic material, negligible viscous dissipation, local 
thermal equilibrium and negligible heat transfer between the phases present in the porous 
medium. The second term on the left side of Eqn.(7) represents thermal convective flow, while 
the first term on the right side of Eqn.(7) represents conductive flow driven by gradients in 
temperature. Due to the coupling of Eqn. (6) and (7) the extrinsic average velocity vector v in 
Eqn.(7) is fully defined. Note that Eqn. (6) and (7) are semi coupled due to the fact that only 
Eqn.(6) influences Eqn.(7), but not vice versa.  
 
The diffusive pendant to the energy transport equation is the conservation of mass equation: 

𝜖
𝜕𝐶
𝜕𝑡

+ 𝒗.∇𝐶 = ∇. 𝐷!""∇𝑇 + 𝑆!""!!!  
(10) 

 
Where 𝜖 represents the porosity and Deff is the effective diffusion coefficient. 𝑆!""!!!  

represents a volumetric concentration source/sink term respectively. Note that the second term 
on the left side represents advective flow of the solute, while the first term on the right 
represents diffusive flow driven by gradients in concentration. Deff is the volume average of the 
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solute diffusion coefficient in the fluid phase and can generally be represented as a function of 
the porosity. Dividing Eqn. (7) by (𝜌CP)eff we obtain the following form of the conservation of 
energy equation: 
 

𝜖
𝜕𝑇
𝜕𝑡

+   𝒗.∇𝑇 = ∇. 𝑘!""∇𝑇/𝜌!𝐶!" + 𝑞!""!!!  
(11) 

 
Since mass transfer only occurs in the fluid phase we also assume that the corresponding heat 

transfer takes place only in the fluid phase of the material, hence, we set parameters in the 
solid phase to zero:     

𝐶!" = 𝑘𝑠 = 0 (12) 

 
Hence the effective specific heat capacity of the porous material can be expressed as: 

(𝜌𝐶!)!"" = 𝜖 𝜌!𝐶!"  

 

 

(13) 

Using the same analogy between temperature (T) and concentration (c) one obtains:  
𝐷!"" =   𝑘!""/𝜌!𝐶!"  (14) 

 

2.3 Simulation of fully coupled advection-diffusion problem 

We are using the Zetos 3D bioreactor for assessment of local drug delivery in trabecular 
bone. This bioreactor allows adjustment of the perfusion rate together with mechanical 
loading of the bone specimen. In the following we will assume that there is no mechanical 
loading of the bone specimen. Therefore, the only boundary condition characterizing the 
bioreactor is the perfusion rate which can be applied via pore pressure boundary conditions at 
the inlet and outlet. The advective-diffusion equations are solved in Abaqus 6.13-1 using the 
finite element (FE) method.  

 
Bovine trabecular bone samples with cylindrical geometry have been used in previous 

experiments for drug delivery studies in a bioreactor [6]. The bone marrow has been cleared 
from these samples before experiments providing a larger pore space for fluid transport. 
Nano-engineered Ti wires were inserted into the bone samples using a drill with prescribed 
calibre. These Ti wires contained a layer of TNT arrays which can be loaded with a design 
drug and modified to be released at a certain rate. Aw et al. described the details of the 
experiments in a previous study [6]. 

  
As described in the introduction, the aim of our study is to better characterise the design 

variables of the bioreactor (i.e., the perfusion rate) and the influence of the variability of bone 
samples (i.e., permeability and diffusivity). For the current study, we do not consider the rate 
of drug release as a design variable. This will be the subject of a future study. Hence in the 
following we have assumed a constant concentration of the drug at the needle surface.  
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To obtain the results efficiently the model was created in Abaqus as an input file. First, the 
trabecular bone geometry used in the previous study was reconstructed [6]. The following 
parameters were used for the geometry and it was meshed using a fluid element in Abaqus 
(i.e. FC3D8 fluid element): Needle diameter of 0.75 mm, bone cylinder diameter of 10 mm, 
bone height 5 mm. The mesh consisted of 4648 HEX8 elements and 9628 nodes. A 3D model 
was developed to simulate the 2D projection of the cylinder (Figure 1). In order to maintain 
the 2D boundary conditions, the fluid velocities on both sides out of the plane were set to be 
zero (i.e., symmetry condition). The top and bottom part of the model in Figure 1 was 
assumed to be the wall and there was only one inlet and outlet in the model. The inlet velocity 
(or pressure) was prescribed. This study uses the velocity boundary conditions for the inlet. 
The pore pressure at the outlet was set to be zero. For the bone sample, we assigned a 
porosity, effective diffusion coefficient, and permeability (see Eqn. 7 and 14). While Abaqus 
allows to use the Carman-Kozeny equation which relates the permeability to porosity, we 
have assigned this parameters independently in the current study [4].   

 
At the centre of the trabecular bone sample at the needle surface, a source of drug with a 

constant value (2 mg/cm3) as a boundary condition was applied. We used 2 hours as the 
simulation time. However, we have run simulations for 5 days which essentially showed no 
relative differences (results not shown in this paper). We observed that the short time scale of 
2 hours is sufficient to reach steady-state phase for the chosen parameters in some cases in 
current study (Figure 3). The main objective of this study was to investigate the effect of the 
trabecular bone sample characterised by porosity, effective diffusivity, hydraulic 
permeability, and perfusion rate on spatial and temporal distribution of drug in the bone 
sample.  

 
In fluid mechanics and transport of mass, the flow is categorized based on dimensionless 

quantities. Reynolds number (Re = VL/µ) demonstrates relative viscous and inertial flows, 
where V is the characteristic velocity, L is a representative length scale and µ is fluid’s 
kinematic viscosity. Also, Peclet number (Pe = VL/D!"")  describes the relative effect of 
advection and diffusion. For instance, Pe << 1 indicates that diffusion is dominant and vice 
versa.  Pe number will be used to compare different simulations.  

 
A separate python file was written to perform postprocessing of the numerical results. This 

file consisted of the definition of certain nodes to obtain a plot of the concentration versus 
time at these nodes (see dashed line in Figure 1 right). A MATLAB R2013a (8.1.0.604) 
function was used to solve the python file and the input files simultaneously for a parametric 
study in this investigation. The parameters used in this study are listed in Table 2.  

 
Parametric studies were conducted on porosity, effective diffusivity, hydraulic 

permeability, initial inlet velocity to better understand the role of these factors on spatial and 
temporal drug concentration within trabecular bone.  

3 RESULTS  

Figure 2 shows the contour plots of the concentration of drug for different time points (i.e., 
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columns) for three cases of bioreactor perfusion rates. Figure 2A and B show a fast perfusion 
rate and no perfusion rate (i.e. diffusion only case), while Figure 2C shows an average 
perfusion rate.  

 
 

 
Figure 1: The geometry of the model developed in Abaqus as projection of the 3D cylinder of bone sample in 
the experiment explained in previous study [6]. The results will be presented as contour plots and concentration 
along the dashed line above the needle (see Figures 3, 4 for contour plots). 

 
Table 2: Parameters used in this study. Each simulation used a set of variables for permeability (K), inlet 
velocity (V), effective diffusivity, fluid viscosity, and porosity. 

Simulation K V Deff 𝜌! Cfp Cs 𝜌! Csp 𝜖 µ 
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

Z100 1e-9 3e-4 1e-9 1000 1e-3 0 2300 0 0.7 4e-7 
Z101 1e-9 0 1e-9 1000 1e-3 0 2300 0 0.7 4e-7 
Z200 1e-10 3e-4 1e-9 1000 1e-3 0 2300 0 0.7 4e-7 
Z201 1e-10 0 1e-9 1000 1e-3 0 2300 0 0.7 4e-7 
Z300 1e-8 3e-4 1e-9 1000 1e-3 0 2300 0 0.7 4e-7 
Z301 1e-8 0 1e-9 1000 1e-3 0 2300 0 0.7 4e-7 
Z400 1e-10 3e-4 1e-10 1000 1e-3 0 2300 0 0.7 4e-7 
Z401 1e-10 0 1e-10 1000 1e-3 0 2300 0 0.7 4e-7 
Z500 1e-8 3e-4 1e-8 1000 1e-3 0 2300 0 0.7 4e-7 
Z501 1e-8 0 1e-8 1000 1e-3 0 2300 0 0.7 4e-7 
Z600 1e-8 1e-4 1e-8 1000 1e-3 0 2300 0 0.7 4e-7 
Z601 1e-8 0 1e-8 1000 1e-3 0 2300 0 0.7 4e-7 
Z700 1e-9 3e-4 1e-9 1000 1e-3 0 2300 0 0.6 4e-7 
Z701 1e-9 0 1e-9 1000 1e-3 0 2300 0 0.6 4e-7 
Z800 1e-9 3e-4 1e-9 1000 1e-3 0 2300 0 0.9 4e-7 
Z801 1e-9 0 1e-9 1000 1e-3 0 2300 0 0.9 4e-7 
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Cleary in Figure 2A, we observe that the drug is being transported in a narrow region 
towards the outlet of the bioreactor. This indicates that the advective driving force is large 
compared to the diffusive driving force contributing to drug transport in the bone sample 
which is expressed as large Peclet number, i.e., Pe >>1. Figure 2B shows the static case i.e. 
diffusion only with zero fluid. Finally, Figure 2C demonstrated that advection is still 
dominant since the majority of drug is released near the outlet. We expect that the latter case 
is what could happen in the actual experiments of the bioreactor. In terms of drug distribution, 
one can clearly observe that case 2B is able to distribute the drug into the entire bone region. 
On the other hand, even for the case of moderately perfusion in a bioreactor (Figure 2C), there 
is a tendency for the drug to be distributed in the downstream regions of the bone sample 
while the upstream region has zero drug concentration.  

 
Concentration	
  in	
  Z	
  100	
   Z	
  101	
   Z	
  600	
  

A	
   B	
   C	
  

	
   	
   	
  

	
   	
   	
  

	
   	
   	
  
Figure 2: Contour plots of drug concentration in the trabecular bone sample at discrete time points (vertical 
arrow on the right hand indicates discrete time points): A) high perfusion rate (Z100), B) no perfusion (static 
case), i.e., diffusion only (Z101), and C) moderate perfusion (Z 600) (time points, i.e., columns: initial t=~0 sec; 
final t=7200 sec in bottom row, and the second row is a time point between 0 and 7200 sec) 

 
Perfusion velocity did not significantly change following changes in permeability (Figure. 

3). While permeability was varied from 1e-10 to 1e-8 [m2] the perfusion rate tended to reach 
the same velocity above the needle loaded with the drug.  

 
It turned out that effective diffusivity has the most significant impact on drug distribution 

in the bone sample. Figure 3 shows that increased effective diffusivity could change drug 
distribution from transient to steady state (compare Z 300 to Z 501). For effective diffusion 
coefficient of 1.0e-10 or Z501, the simulation for the static case (diffusion only) showed that 
steady state was reached in 2 hours, but for the two other cases (Z301 and Z401) steady state 
was not reached. For the coupled advection-diffusion problem, the large coefficient diffusion 
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in Z500 strongly affects the concentration profile. This is an indication that Pe number has 
been reduced compared to the two other perfusion simulations i.e. Z300, and Z400. While 
these two latter cases had no influence on the drug distribution for perfusion flow but 
perfusion flow in Z500 led to a significant change in the concentration profile.  

 
 

 
Figure 3: Concentration versus distance from needle surface plots at the last time point (t=7200 sec or 2 hours): 
Z100 to Z 801 from left to right (see Table 2). Each plot shows static (i.e., diffusion only) and perfusion case.  

Although perfusion was almost constant due to changes in permeability, the changes in 
inlet velocity (or perfusion rate) resulted in significant differences in drug distribution and the 
shape of steady state. Figures 2 and 3 show that increased inlet velocity could wash away 
almost all the drug that is being released from the needle from the centre of trabecular 
bone. In addition, Figure 4 shows the significant effect of perfusion rate on the velocity 
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profile in horizontal direction for Z500 and Z600. 
 

 

 
Figure 4: horizontal velocity above the needle for two different perfusion rate (Z500 vs. Z600). This figure 
clearly shows the effect of flow rate on velocity profile that changes Pe number and the spatial and temporal 
drug concentration above the needle.  

4 DISCUSSION 

We investigated the effect of drug transport through a trabecular bone sample bioreactor 
characterised by porosity, effective diffusivity, hydraulic permeability, and perfusion rate on 
spatial and temporal distribution of drug in the bone sample using the FE method. The current 
model takes advantage of fully coupled fluid flow in a porous media to solve diffusion or 
advection/diffusion problem in the bone sample. The heat transfer analogy was used to model 
the diffusion problem. Our results showed that for the permeability range investigated no 
major changes in drug transport were observed. On the other hand, the effective diffusivity 
and perfusion rate has a significant effect on the spatio-temporal distribution of the drug.  

Changes in trabecular bone porosity also had minimal effect on the drug profile. In general, 
the permeability and porosity of a porous material are related. However, for the present study 
we investigated these variables separately. This could be a limitation of the present study. 

Permeability in cancellous bone of bovine was found to be anisotropic [7]. However, we 
assume that major perfusion occurs in 2D direction and the effect of perfusion in the direction 
perpendicular to the inlet and outlet is negligible. As a result, it is acceptable to consider the 
isotropic permeability in our simulations. In addition, to predict the role of permeability on 
fluid flow around the needle and on the drug release kinetics, we increased the permeability 
from 1e-10 m2 to 1e-8 m2. The results suggest that permeability may not play a major role in 
drug concentration profile. On the other hand, Darcy law suggest that an increase in 
permeability will directly increase flow rates, thereby, increasing the fluid velocity. The 
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reason for this discrepancy may be other non-Darcian terms in Eqn. 6 that influence velocity 
profile in the bone sample. Finally, it has also been shown that permeability is related to the 
Reynolds number which has to be considered in future studies [8].  

Effective diffusivity was found one of the major variables that influenced the diffusion 
only case and perfusion flow in the current study. Figure 3 (Z301 and Z501) shows that the 
increase in effective diffusivity could enhance the spatial distribution of the drug. In 
particular, Z501 simulation reached steady state in 2 hours while perfusion flow also 
increased drug concentration above the needle (Z500). This means that to design an optimized 
local drug delivery system in a bioreactor one needs to carefully consider the effect of fluid 
flow and diffusion properties of the drug. The drug diffusion also depends on microstructure 
of the bone matrix that would change porosity within a bone sample; however, current study 
has considered the same porosity across the trabecular bone sample. The effect of different 
porosity within a bone sample as well as changes in effective diffusion due to microstructure 
variations may reveal other aspects of combined role of pore size, pore size distribution and 
variation in effective diffusivity on drug release kinetics in future studies [9,10]. 

Finally, it was found that perfusion rate plays a major role on drug distribution even for the 
short 2 hours simulation time. However, it should be noted that the influence of perfusion rate 
changes Pe number in which effective diffusivity plays a major role. In order to address the 
role of these two variables in a more realistic simulation, accurate values from experiments 
and the natural variability among these variables are required. The information about these 
variables enables us to predict the optimal range for drug distribution which is the subject of a 
future investigation. In addition to the variables considered in this study, the role of needle 
size and needle’s placement angle in bone, bone sample size, mechanical loading should also 
be considered in future studies.   

This study involves a number of limitations. We developed a semi 3D model of trabecular 
bone sample as a slice of constant thickness of the 3D bone sample in the bioreactor. We did 
not aim to validate our results with the 3D experimental results obtained previously. This was 
due to the fact that we aimed to compare the role of different design variables on the spatio-
temporal concentration profile in the bone sample; therefore, a thorough validation of the 
model with experiments is required. It is also impractical to measure accurate inputs to the 
model such as pore pressure, inlet velocity, and other structural and fluid’s variables. 
Therefore, a comparative study was conducted to visualize the differences quantitatively. 
Another study is required to investigate the sensitive analyses of these variables on our 
findings. In current study, our simulations showed the results up to 2 hours. This can easily be 
extended to a larger time scale and can be compared with experimental studies using 
bioreactors with the aid of sufficient computational power.  

5 CONCLUSIONS 
The study of parameters characterizing the trabecular bone sample (porosity, effective 

diffusivity and permeability) and the perfusion rate of the bioreactor suggest that local drug 
delivery is a multifactorial problem. To design a proper drug delivery system for a porous 
material such as bone one has to take into account the combined effects of these variables to 
enhance the uniform distribution of drug across the bone sample. The current study clearly 
shows that computational modelling can be used as an in-silico tool to investigate the large 



Hossein Mokhtarzadeh, Moom S. Aw and Kamarul A. Khalid. et al. 

 12 

number of design variables. Once significant factors characterizing the problem have been 
identified targeted experiments can be performed.  
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