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Abstract 

The motivation for this study stems from two major concerns that are interlinked. First, the 

on-going food security crisis of African countries. Second, the negative impact greenhouse 

gas (GHGs) emissions from agriculture have on future food production which worsens the 

food insecurity problem. The conundrum SSA faces is the need to increase food output 

through productivity growth while minimizing GHG emissions. To measure changes in 

productivity growth and GHG emissions, this study evaluates agricultural performance of 18 

African countries by utilizing the Malmquist-Luenberger index to incorporate good and bad 

outputs for the years 1980 to 2012. The empirical evidence demonstrates that productivity is 

overestimated when not considering bad outputs in the production model. The analysis will 

also provide a better understanding of the effectiveness of previous mitigation methods which 

would then allow for appropriate course of action to achieve the twin objectives of increasing 

agriculture productivity while reducing GHG emissions. 
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1.  Introduction 

On 23rd August 2013, the delegates meeting on African Food security and Adaptation 

unanimously declared to end Africa’s food hunger crisis by the year 2025 through an 

Ecosystems Based Approach (EBA). This approach is based on developing sustainable food 

production systems that would also enable farmers to adapt to climate change (UNEP, 2013). 

The declaration emerged because of the growing food crises in many African countries and 

due to the deteriorating natural environment which has a major impact on agricultural 

production.  

Food insecurity is an ongoing problem for many African countries attributed to 

frequent droughts and low food output that does not correspond with the heightened food 

demands. In recent years, food insecurity has reached critical levels as reported in the food 

insecurity and global hunger index (GHI) reports (FAO, IFAD, and WFP., 2014, Singh et al. 

2016, Harrigan, 2014). The hunger levels worldwide remain high with close to one billion 

people being food insecure and malnourished (Misselhorn et al. 2012). Some fifty two 

countries are identified to have a serious or ‘alarming’ GHI values in the 2015 GHI report, 

majority being located in Africa and South Asia thus making food security a major concern 

for policy makers (Von Grebmer et al. 2015).Thus, in order to avert the food insecurity crises 

and also meet the global demand for food, efforts that will double food output by 2050 such 

as through improved productivity become necessary (Pratt and Yu, 2008). Increased 

agricultural productivity efforts such as intensification also has the benefit of reducing 

pressure on marginal lands (Baiphethi and Jacobs, 2009). 

However, intense cultivation can lead to unintended costs for example due to loss of 

biodiversity, emission of greenhouse gases (GHG) and loss of soil nutrients. It is well-

documented that agricultural activities such as land cultivation or deforestation discharges 

substantial amounts of GHGs such as methane (CH4), carbon dioxide (CO2) and nitrous oxide 
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(N2O) to the atmosphere (Sonnemann et al. 2012, Benioff et al. 2013, Jia et al. 2012, Cole et 

al. 1997, IPCC 2001, Paustian et al. 2004, Ciais et al. 2013). Sejian and Naqvi (2012) noted 

that agriculture contributed 25.5% of global GHG emissions, of which 60% are from 

anthropogenic sources and 18% from animal husbandry. Tubiello et al. (2014) observed that 

Africa is the third largest GHG emitter in agriculture and accounts for 15% of global 

agriculture GHG. AGRA (2014) projected that African agriculture GHG emissions will 

increase by 30% between 2010 and 2030. Agriculture GHG emissions emanate mainly from 

ruminant enteric fermentation, poor manure management, poor management of agricultural 

soils and through rice farming which leads to nitrogen loss, energy loss and loss of organic 

matter thus undermining efficiency and productivity (Gerber et al. 2013). Clay (2011), 

Thornton (2012) and Vermeulen et al. (2012) raised concerns that the focus on raising farm 

output has increased the carbon footprint of agriculture and led to increasing frequency and 

severe weather events which affects farm output. The impact on food security from extreme 

weather events would thus require farmers to switch to farming practices that are adaptive 

and mitigate climate change such as drought resistant crops.  

The extant literature on agriculture productivity is vast with the bulk focusing on good 

outputs only. Standard measures of productivity ignore bad outputs although the production 

process described earlier yields both good outputs such as food, fibre and other raw materials 

and bad outputs or by-products such as GHGs, toxic wastes and soil erosion. To achieve 

sustainable long-term growth in agriculture, the production model must incorporate good 

output and bad output simultaneously in the estimation.  

To measure productivity change the study utilises the Malmquist-Luenberger index 

(henceforth MLI), developed by Chung, Färe, and Grosskopf (1997). The MLI estimates the 

directional distance function hence allowing bad outputs to be incorporated in the production 

function. In the literature several studies employ the MLI to assess productivity at firm level 
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or across countries. Such studies
1
 include Jeon and Sickles (2004); Yörük and Zaim (2005); 

Oh (2010) and Oh and Heshmati (2010) on OECD countries; Kumar (2006) and Kumar and 

Managi (2010) on developed and developing countries; Pathomsiri et al. (2008) and Yu et al. 

(2008) on the airport sector; Lee et al. (2015) on airlines; Färe et al. (2001) and Weber and 

Domazlicky (2001) on manufacturing; Zhang et al. (2011) on China’s provinces; He et al. 

(2013) on iron and steel industry; Färe et al. (2007) and Wang et al. (2013) on energy. For 

agriculture, only a handful of studies exist in the last fifteen years. These studies include Ball 

et al. (2001); Kuosmanen (2005); Färe et al. (2006); and Piot-Lepetit and Le Moing (2007). 

To the best of our insight, no studies exist for African agriculture that incorporate both good 

and bad outputs. In the absence of empirical evidence, it makes it difficult for policy-makers 

to ascertain how the degrading ecosystems due to bad outputs from agriculture is likely to 

impact negatively on future food production. It also makes it difficult to put in place feasible 

approaches that would help mitigate and help farmers adopt better farming practices. The 

current study thus aims to measure African agriculture TFP while incorporating bad outputs 

using the ML index. The study uses carbon dioxide, nitrogen oxide, and methane to represent 

bad outputs and crop and livestock output to represent good outputs.  

This study becomes important in the wake of the 2015 Paris climate change talks that 

emphasized on the world shifting towards a low carbon pattern in the energy, transport, 

agriculture and forestry systems. Incorporating emissions in the measurement of agricultural 

performance of African agriculture will thus provide the real productivity change because it 

considers how farmers allocate the scarce resources to produce more food while minimising 

the bad outputs. Progress is being made by many countries to cut down on emissions. For 

example, countries such as the US are making efforts to promote “climate smart agriculture” 

while Australia farmers are practising the Carbon Farming Initiative (CFI) that reduces 

                                                 
1 For brevity purpose, we list several studies here mainly to illustrate the adaptability of the ML index. 
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emissions and or captures and holds carbon in the soils or vegetation. In African countries, 

such as Malawi and Zambia are promoting “climate smart agriculture” through agroforestry 

and conservation agriculture to promote small holder productivity agricultural systems 

(Kaczan et al. 2013).  

Thus, incorporating bad outputs would provide policy makers in Africa with useful 

information in determining appropriate mitigation and adaptation approaches in changing 

conditions of farming practices and ecosystems. Incorporating bad outputs will help answer 

the questions whether there are differences in productivity when accounting for bad outputs 

in African agriculture and whether some countries are more productive when emissions are 

accounted for. 

The paper is divided into the following sections: Section 2 outlines the Malmquist 

luenberger productivity index. Section 3 and 4 provides the data sources and the results of the 

analysis respectively. The conclusion and policy recommendations are provided in section 5.  

 

2.  Empirical model: Malmquist Luenberger productivity index 

Estimating TFP change of African agriculture is based on the framework developed by 

Chung, et al. (1997). The approach adopts the directional distance function to represent the 

production technology which models the reduction of bad outputs while expanding on 

production of good outputs. The other advantages of utilizing the directional distance 

function framework over other frameworks include the fact that the framework does not 

require the designation of a specific function form neither information on the shadow prices. 

The input-output distance function in respect to period t and t+1 is specified as follows: 

𝐷⃗⃗ 0
𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡: 𝑔) = sup⁡{𝛽: (𝑦𝑡 , 𝑏𝑡) + 𝛽𝑔 ∈ 𝑃(𝑥𝑡)}   (1) 

where 𝐷⃗⃗  represents the directional output distance function which represents the production 

technology while “g” denotes the vector of directions for scaling the outputs, and g = (y, -b). 
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In this case, y denotes good outputs while b denotes bad outputs thus g = (1, -1) which 

implies the good outs expand while bad outputs are reduced. 𝛽 denotes the rate at which the 

good outputs and bad outputs can expand or contract respectively. For more details see 

(Chung, et al., 1997; Färe, Grosskopf, & Pasurka Jr, 2001; Färe, et al., 2007; Kumar, 2006). 

The Malmquist-Luenberger index for period t and t+1 given the number of DMUs, is as 

follows: 

𝑀𝐿𝑡
𝑡 =

⁡[1+𝐷0⃗⃗⃗⃗  ⃗
t
(𝑥t,⁡𝑦t,𝑏t;⁡𝑦t,−𝑏t)]⁡⁡⁡

[1+𝐷0⃗⃗⃗⃗  ⃗
t
(𝑥t+1,⁡𝑦t+1,𝑏t+1;⁡𝑦t+1,−𝑏t+1)]

      (2) 

𝑀𝐿𝑡
𝑡+1 =

⁡[1+𝐷0⃗⃗⃗⃗  ⃗
t+1

(𝑥t,⁡𝑦t,𝑏t;⁡𝑦t,−𝑏t)]⁡⁡⁡⁡⁡

[1+𝐷0⃗⃗⃗⃗  ⃗
t+1

(𝑥t+1,⁡𝑦t+1,𝑏t+1;⁡⁡𝑦t+1−𝑏t+1)]
      (3) 

The geometric mean of equations 2 and 3 yields the Malmquist Luenberger 

productivity index as follows: 

𝑀𝐿𝑡
𝑡+1 = [

⁡(1+𝐷0⃗⃗⃗⃗  ⃗
t
(𝑥t,⁡𝑦t,𝑏t;⁡𝑦t,−𝑏t))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1+𝐷0⃗⃗⃗⃗  ⃗

t
(𝑥t,⁡𝑦t,𝑏t;⁡𝑦t⁡−𝑏t))

(1+𝐷0⃗⃗⃗⃗  ⃗
t
(𝑥t+1,⁡𝑦t+1,𝑏t+1;⁡𝑦t+1,−𝑏t+1))(1+𝐷0⃗⃗⃗⃗  ⃗

t+1
(𝑥t+1,⁡𝑦t+1,𝑏t+1;⁡⁡𝑦t+1−𝑏t+1))

]1/2 
(4) 

The ML index for each period is thus decomposed into efficiency and technical change 

components as follows; 

𝑀𝐿𝐸𝐹𝐹𝐶𝐻𝑡
𝑡+1 = [

⁡(1+𝐷0⃗⃗⃗⃗  ⃗
t
(𝑥t,⁡𝑦t,𝑏t;⁡𝑦t,−𝑏t))

(1+𝐷0⃗⃗⃗⃗  ⃗
t
(𝑥t+1,⁡𝑦t+1,𝑏t+1;⁡𝑦t+1,−𝑏t+1))

]1/2   (5) 

𝑀𝐿𝑇𝐸𝐶𝐻𝑡
𝑡+1 = [

⁡(1+𝐷0⃗⃗⃗⃗  ⃗
t+1

(𝑥t,⁡𝑦t,𝑏t;⁡𝑦t,−𝑏t))⁡(1+𝐷0⃗⃗⃗⃗  ⃗
t+1

(𝑥t+1,⁡𝑦t+1,𝑏t+1;⁡𝑦t+1,−𝑏t+1))

(1+𝐷0⃗⃗⃗⃗  ⃗
t
(𝑥t,⁡𝑦t,𝑏t;⁡𝑦t,−𝑏t))⁡(1+𝐷0⃗⃗⃗⃗  ⃗

t
(𝑥t+1,⁡𝑦t+1,𝑏t+1;⁡𝑦t+1,−𝑏t+1))

]
1/2

  (6) 

  

The efficiency change represents the output changes between the periods while 

technical change represents the shift in the technology frontier. 

If 𝑥𝑡 = 𝑥𝑡+1, 𝑦𝑡 = 𝑦𝑡+1,⁡ and 𝑏𝑡 = 𝑏𝑡+1 it implies that there are no feasible changes 

in input or output quantities between periods, suggesting that the 𝑀𝐿𝑡
𝑡+1 TFP index is equal to 
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1 (Färe, Grosskopf, & Pasurka Jr, 2001). When TFP improves, the 𝑀𝐿𝑡
𝑡+1 TFP index 

becomes greater than one and vice versa when a decline occurs. A 𝑀𝐿𝑇𝐸𝐶𝐻𝑡
𝑡+1 score of 

greater than one suggests a positive change of the production frontier in favour of good 

output while decreasing the bad output and vice versa. A 𝑀𝐿𝐸𝐹𝐹𝐶𝐻𝑡
𝑡+1 score that is greater 

than one suggests that the firm’s performance is located nearer to the frontier in period t+1 

while a score less than one suggests that the performance of the firm is located further from 

the frontier. 

 The Malmquist Luenberger index is computed by solving the four distance functions 

specified in the linear programme. Subject to the time periods (denoted as t….T) and number 

of countries (denoted as k = 1……...K), the input-output model is specified as follows: 

𝑃(𝑥) = (𝑦, 𝑏): ∑ 𝑧𝑘𝑦𝑘𝑚
𝑡𝐾

𝑘=1 ≥ 𝑦𝑘𝑚
𝑡    𝑚 = 1,……… . ,𝑀 (7) 

∑𝑘=1
𝐾 𝑧𝑘

𝑡𝑏𝑘𝑗
𝑡 = 𝑏𝑗

𝑡     𝑗 = 1,……… . , 𝐽  

∑𝑘=1
𝐾 𝑧𝑘

𝑡𝑥𝑘𝑛
𝑡 ≤ 𝑥𝑛

𝑡
     𝑛 = 1,……… . , 𝑁  

𝑧𝑘 ≥ 0       𝑘 = 1,……… . , 𝐾  

The output set satisfies the assumption of CRS which indicates that inputs and outputs 

will be increasing at the same rate and under the assumption that inputs are strongly 

disposable: 

P(λx) = λP(x), λ > 0⁡        (8) 

𝑥′ ≥ x ⇒ P(𝑥′) ⊇ P(x)        

The assumption for the inputs and good outputs inequalities is that of free disposability 

while it will be costly to dispose of bad outputs. The Malmquist Luenberger index is 

computed using the directional distance functions by solving the following four linear 

programme problems: 
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𝐷0
𝑡⃗⃗ ⃗⃗ (xt,k′

, yt,k′
, 𝑏𝑡,k′

; ⁡𝑦𝑡,k′
, −𝑏𝑡,k′

) ⁡= ⁡Max⁡𝛽     (7) 

Subject to: 

∑𝑘=1
𝐾 𝑧𝑘

𝑡𝑦𝑘𝑚
𝑡 ⁡≥ (1 + β)⁡𝑦k′m

𝑡     𝑚 = 1,……… . ,𝑀 (10) 

∑𝑘=1
𝐾 𝑧𝑘

𝑡𝑏𝑘𝑖
𝑡 = (1 − β)⁡𝑏k′i

𝑡     𝑗 = 1,… .…… . , 𝐽  

∑𝑘=1
𝐾 𝑧𝑘

𝑡𝑥𝑘𝑛
𝑡 ≤ 𝑥k′n

𝑡      𝑛 = 1,……… . , 𝑁  

𝑧𝑘
𝑡 ≥ 0       𝑘 = 1,……… . , 𝐾  

In this study, a two-year window reference technology is employed whereby for 

example the frontier for 1981 would be constructed using data for 1980 and 1981 and so 

forth. For comparison two models are computed i.e. one model with only good output and the 

other with jointly estimates good and bad output.  

  

3. Data sources 

The study utilises data from Food and Agriculture Organization of the United Nations 

statistical database (FAOSTAT, 2014) to analyse TFP of African agriculture for eighteen 

African countries. The concepts and measurement used by the FAO remain consistent across 

countries thus allowing international comparison. A balanced
2
 panel dataset that covers the 

period from 1980 to 2012 was used for the following countries: Burundi, Cameroon, Côte 

d’Ivoire, Gabon, Gambia, Ghana, Kenya, Libya, Madagascar, Malawi, Mozambique, Niger, 

Nigeria, Sudan (former), Tanzania, Togo, Tunisia and Zambia. Thirty-six other African 

countries are excluded due to technical requirement for a balanced panel of data. 

The output variables consisted of crop and livestock output which represent the good 

output; and three bad outputs which include carbon dioxide, methane and nitrous oxide 

                                                 
2 Balanced data refers to the fact that all countries have data for all years 
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emissions. The disaggregation of the data into crop and livestock output is an advantage since 

it gives performance benchmarks that are more accurate than the aggregated which 

sometimes gives potentially misleading and even inaccurate estimates (Zhu, 2016). Crop and 

livestock output was based on gross production value expressed in constant 2005 

international dollars as provided in Rao (1993) detailed description and assessment of the 

data aggregation. The bad outputs were the agriculture GHG measured in metric tonnes. The 

FAOSTAT GHG data is based on country-level estimates following FAOSTAT activity data 

computed using Tier 1 which complies with the 2006 Intergovernmental Panel on Climate 

Change (IPCC) Guidelines for National GHG Inventories. The four inputs consist of land, 

labour, farm capital and materials (fertilizer). Land is the number of hectares of land (which 

include amount of arable land, land under permanent crops and land under pasture). Labour is 

defined as the total population that actively participates and earn either a wage, salary, 

commission, piece rate or pay in kind in agriculture. Gross capital stock is defined as the total 

physical assets for land development, livestock (fixed assets and inventory), machinery and 

equipment and livestock structures measured in 2005 constant prices. This study uses capital 

stock as an input instead of tractors the reason being, there is low tractor use among small-

scale farmers in Africa and the FAO data does not provide a balanced panel dataset in almost 

all countries due to missing values. To compare across countries, the data was deflated using 

the World Bank purchasing power parity conversion factors. Gross capital stock however 

ends in 2007. To estimate 2008 to 2012 capital stock figures, we follow (Kumar, 

Stauvermann, & Samitas, 2016) and extrapolate annual growth rates for agriculture value 

added for each country as a proxy for capital growth. Agriculture value added were drawn 

from Worldbank (2014) database. The annual growth in agriculture was used because the 

patterns of growth of farm capital stock for each country seemed very close to the annual 



10 

 

growth rate for the agriculture value added trends. Fertilizer is the quantity of all fertilisers 

used measured in tonnes.  

The summary statistics of the data used is provided in Table 1. The Malmquist 

Luenberger index were obtained using the Max DEA pro version 6.0 program. CRS 

assumption to the production technology in most cases is imposed when using an aggregate 

of different countries since capturing the difference in scale becomes irrelevant (Coelli & 

Rao, 2005). Thus, since the countries endowments’ such as the land size, population and the 

available natural resources remain as given hence could not be deciding factors, the CRS 

assumption to the underlying technology was more appropriate than the VRS assumption. 

CRS was also preferred because Malmquist-type TFP estimates tend to be biased under VRS 

technology as observed by Grifell-Tatjé and Lovell (1995).  

 

 

 

Table 1: Descriptive statistics (1980-2012 average) 

Variable Mean Min Max STDEV 

Crops (2005 international $) 2,851,025.0 51,834.0 33,900,000.0 5,109,033.0 

Livestock (2005 international $) 777,653.6 16,415.0 5,516,586.0 1,016,063.0 

CO2 emissions (1,000 metric tons) 14,925.4 86.9 110,220.3 20,541.7 

CH4 emissions (1,000 metric tons of CO2 equivalent) 7,963.4 30.2 59,866.2 11,297.2 

N2O emissions (1,000 metric tons CO2 equivalent) 6,813.9 55.6 50,094.2 9,330.9 

Capital stock (2005 international $) 186,764.0 53.7 4,056,013.0 470,965.7 

Total agricultural land (1,000 ha) 26,673.1 495.0 136,698.0 29,971.4 

Total agricultural population (1,000) 4,263.9 60.0 17,851.0 3,928.1 

Fertilizer (metric tons) 211,621.6 100.0 62,151,574.0 2,549,453.0 

Source: FAOSTAT (2014).  

 

     

4.  Results 

4.1 Productivity change 
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Table 2 presents productivity change estimates for five models. Model 1 presents the 

standard Malmquist productivity index (MI). Model 2 presents the MLI when CO2 is 

considered. Model 3 presents the MLI when CH4 is considered. Model 4 presents the MLI 

when N2O is considered. Model 5 presents the MLI when all three bad outputs are 

considered. We include MI to show the discrepancy in estimating productivity when bad 

outputs are not considered. All the models registered positive productivity change. Model 1 

exhibited an increase of 1.5%. Models 2, 3 and 4 had positive average annual productivity 

changes of 0.3%, 1.2%; and 1.2%, respectively. Model 5 showed an average annual 

productivity change of 1.4%. These estimates show that agriculture output can be increased 

while reducing GHG emissions at the same rate.    

The annual change in model 1 varied across countries. In model 1, majority (fourteen) 

of the countries experienced positive change which is consistent with studies such as Alene, 

2010; Avila and Evenson, 2010; and Nin-Pratt and Yu, 2012. Only four countries (Burundi, 

Gabon, Niger and Zambia) exhibited negative change. In models 2, 3 and 4; we observe that 

the number of countries exhibiting increasing MLI falls to ten, twelve, and eleven, 

respectively. Under model 5, twelve countries exhibited increasing MLI.  

Countries such as Cameroun, Gambia, Kenya, Malawi and Tanzania exhibited 

positive productivity change when bad output was incorporated in all the models due to 

positive shift in technical change while Gabon, Libya and Madagascar experienced negative 

productivity change when bad output was considered in all the models which suggests the 

countries’ lack of initiative of adopting technology to curb emissions. For example, 

Tanzania’s vision 2025 spells out its agenda for agriculture growth and managing of 

resources as a key driver to sustainable agriculture (URT, 2001., 2003). The Tanzanian 

agriculture sector development strategy promote conservation agriculture to make land more 

productive. Several programmes initiated by the governments such as reforestation, 



12 

 

agroforestry, protecting the water catchments and improved land husbandry have helped the 

countries curb land degrading activities (Shetto & Lyimo, 2001). The top rice producing 

countries in Africa Madagascar recorded a decline in TFP change in the presence of CH4 

emissions which suggests high CH4 emissions from the paddy fields.  Livestock remains the 

largest contributor of N2O emissions which emanate from paddocks, ranges, and pastures 

(Hickman et al., 2011). Thus, countries such as Sudan (Former) that has the 2
nd

 largest 

livestock herd after Ethiopia had declined TFP change in the presence of N2O emissions due 

to high emissions from the livestock sector. Libya and Tunisia with known high global CO2 

emission also had declined TFP change in the presence of CO2 emissions. 

 

4.2 Efficiency and technical change 

 

The MI and MLI efficiency and technical change components of productivity are 

presented in Table 2. In model 1, average technical change was 1.9% while efficiency change 

was -0.4% indicating the former as the main driver for MI growth. Decomposing efficiency 

change into pure technical efficiency and scale efficiency, we observe no change in scale 

efficiency although pure technical efficiency declined by 0.4% which suggest failure to use 

inputs efficiently. We note that Ghana, Malawi, Mozambique and Tanzania regressed in pure 

technical efficiency. As noted by Pauw and Thurlow (2011), Tanzania’s output growth was 

attributed to land expansion driven by large-scale farmers especially after the 1990s. 

Chilonda et al. (2011) noted that agriculture land productivity in Mozambique declined 

between 2002 and 2008 due to little or no change in yield although the land area under 

farming increased (Benson, Mogues, & Woldeyohannes, 2014).  

For models 2, 3, 4 and 5; technical change on average improved by 0.3%, 1.1%, 

1.2%, and 1.3%, respectively, while efficiency change remained constant for all four models. 

We observe that pure technical efficiency was the main driver for the declining efficiency 
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change while scale efficiency improved suggesting countries attempting to adopt technology 

and/or mitigation activities. Madagascar has been identified as one country which practises 

conservation. Instead of replenishing the nitrogen losses that occur through erosion, leaching 

or harvest with external nitrogen inputs, it uses supplementary feed (nitrogen inputs) to 

increase dairy output. Tanzania in its ‘Vision 2025’ identifies managing resources as a key 

driver to achieving sustainable agriculture productivity (URT, 2001., 2003). Since the late 

1980s, the Tanzanian government has implemented programmes aimed at improving land 

productivity such as reforestation, agroforestry, protecting the water catchment areas and 

encouraging better land husbandry (Shetto and Owenya, 2007).
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Table 2: Malmquist index (MI) and Malmquist Luenberger index (MLI) and its components across countries 

Country 
Model 1: MI Model 2: MLI (CO2 emissions) Model 3: MLI (CH4 emissions) 

effch tech pech sech proch effch tech pech sech proch effch tech pech sech proch 

Burundi 1.000 0.972 1.000 1.000 0.972 1.000 1.005 1.000 1.000 1.005 1.000 1.005 1.000 1.000 1.005 

Cameroon 1.000 1.036 1.000 1.000 1.036 1.000 1.008 1.000 1.000 1.008 1.000 1.056 1.000 1.000 1.056 

Côte d’Ivoire 1.000 1.023 1.000 1.000 1.023 1.000 0.981 1.000 1.000 0.981 1.000 1.006 1.000 1.000 1.006 

Gabon 1.000 0.983 1.000 1.000 0.983 1.000 0.955 1.000 1.000 0.955 1.000 0.936 1.000 1.000 0.936 

Gambia 0.984 1.024 1.000 0.984 1.008 0.997 1.020 0.743 0.997 1.016 0.997 1.032 0.731 0.997 1.029 

Ghana 0.998 1.009 0.997 1.001 1.007 1.000 0.988 0.973 1.000 0.988 1.001 0.987 0.977 1.001 0.988 

Kenya 1.000 1.011 1.000 1.000 1.011 1.000 1.035 1.000 1.000 1.035 1.000 1.137 1.000 1.000 1.137 

Libya 1.000 1.038 1.000 1.000 1.038 1.000 0.982 1.000 1.000 0.982 1.000 0.970 1.000 1.000 0.970 

Madagascar 1.000 1.026 1.000 1.000 1.026 1.000 0.930 0.977 1.000 0.930 1.000 0.998 0.974 1.000 0.998 

Malawi 1.010 1.017 1.007 1.003 1.027 1.006 1.002 0.907 1.000 1.008 1.005 1.005 0.928 1.000 1.010 

Mozambique 0.974 1.040 0.971 1.004 1.013 0.998 1.005 0.744 1.002 1.003 1.000 1.005 0.740 1.003 1.005 

Niger 1.000 0.995 1.000 1.000 0.995 1.000 1.047 1.000 1.000 1.047 1.000 0.905 1.000 1.000 0.905 

Nigeria 1.000 1.049 1.000 1.000 1.049 1.000 1.018 1.000 1.000 1.018 1.000 1.048 1.000 1.000 1.048 

Sudan (former) 1.000 1.033 1.000 1.000 1.033 1.000 1.034 1.000 1.000 1.034 1.000 0.935 1.000 1.000 0.935 

Togo 1.010 1.012 1.000 1.010 1.023 1.008 0.982 0.813 1.008 0.989 1.007 1.006 0.821 1.007 1.014 

Tunisia 1.000 1.037 1.000 1.000 1.037 1.000 0.945 1.000 1.000 0.945 1.000 1.000 1.000 1.000 1.000 

Tanzania 0.982 1.023 0.981 1.002 1.005 0.997 1.132 0.932 1.005 1.129 0.997 1.214 0.929 1.005 1.210 

Zambia 0.975 1.019 0.978 0.997 0.994 0.999 1.000 0.691 1.003 0.999 0.999 1.000 0.690 1.004 1.000 

Geomean 0.996 1.019 0.996 1.000 1.015 1.000 1.003 0.926 1.001 1.003 1.000 1.011 0.926 1.001 1.012 

Note: effch = efficiency change; tech=technical change; pech=Pure technical efficiency change; sech = scale efficiency change; and proch= productivity change. 
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Table 2: Continued 

Country Model 4: MLI (N2O emissions)  Model 5: MLI (CO2, CH4 & N2O) 

 effch tech pech sech proch effch tech pech sech proch 

Burundi 1.000 1.004 1.000 1.000 1.004 1.000 1.004 1.000 1.000 1.004 

Cameroon 1.000 1.061 1.000 1.000 1.061 1.000 1.132 1.000 1.000 1.132 

Côte d’Ivoire 1.000 1.010 1.000 1.000 1.010 1.000 1.004 1.000 1.000 1.004 

Gabon 1.000 0.993 1.000 1.000 0.993 1.000 0.964 1.000 1.000 0.964 

Gambia 0.997 1.009 0.756 0.997 1.005 0.998 1.028 0.819 0.998 1.026 

Ghana 1.000 0.976 0.972 1.000 0.976 1.000 1.002 0.985 1.000 1.002 

Kenya 1.000 1.110 1.000 1.000 1.110 1.000 1.118 1.000 1.000 1.118 

Libya 1.000 0.973 1.000 1.000 0.973 1.000 0.978 1.000 1.000 0.978 

Madagascar 1.000 0.968 0.982 1.000 0.968 1.000 0.985 0.987 1.000 0.985 

Malawi 1.007 1.001 0.885 1.000 1.007 1.004 1.004 0.944 1.000 1.008 

Mozambique 0.998 1.005 0.748 1.002 1.002 0.998 1.004 0.796 1.001 1.003 

Niger 1.000 0.979 1.000 1.000 0.979 1.000 0.892 1.000 1.000 0.892 

Nigeria 1.000 1.027 1.000 1.000 1.027 1.000 1.037 1.000 1.000 1.037 

Sudan (former) 1.000 0.961 1.000 1.000 0.961 1.000 0.973 1.000 1.000 0.973 

Togo 1.008 1.003 0.800 1.008 1.011 1.006 1.005 0.855 1.006 1.011 

Tunisia 1.000 1.001 1.000 1.000 1.001 1.000 0.996 1.000 1.000 0.996 

Tanzania 0.998 1.154 0.926 1.006 1.152 0.998 1.147 0.947 1.004 1.145 

Zambia 0.999 0.999 0.693 1.003 0.998 1.000 0.999 0.758 1.003 1.000 

Geomean 1.000 1.012 0.925 1.001 1.012 1.000 1.013 0.946 1.001 1.014 
 

 

4.3  Comparing productivity change between MI and MLI models 

Table 3 presents the difference in productivity change between MI and MLI models 

which indicate how TFP changes when including CO2, CH4, N2O or the three gases in the 

production function. A positive (negative) change between the MI and MLI estimates 

indicates a(an) decline (increase) in TFP or increase (decrease) in the bad outputs. The TFP 

change difference involved subtracting TFP change of bad output from TFP change of good 

output.   

Comparing Model 1 versus the other models, TFP declined by 1.2%, 0.2% and 0.2% in 

the presence of CO2, N2O and CH4 emissions respectively which imply that TFP change 

when good output only was factored was more than when considering bad output in the 

analysis. Cameroun, Côte d’Ivoire, Libya, Madagascar, Togo and Tunisia had the highest TFP 

change decline when factoring CO2 in the analysis with a gap of 2.8%, 4.2%, 5.6%, 9.6%, 



16 

 

3.4% and 9.2%, respectively. The results reaffirm the findings of Canadell et al. (2009) that 

countries like Libya remain top CO2 emitters in Africa. Burundi, Kenya, Niger and Tanzania 

had the highest TFP change increase of 3.3%, 2.4%, 5.2% and 12.4% respectively when 

considering CO2 which suggests that these countries are low CO2 emitters. 

Comparing Model 1 versus Model 3, 4 and 5 exhibited similar outcomes in productivity 

change gap. Only six countries had positive TFP change when including N2O and CH4 

emissions in the analysis with Libya, Niger and Sudan (Former) showing the highest TFP 

decline of 6.8%, 9% and 9.8% respectively in the presence of N2O emissions. In the presence 

of CH4 emissions, Libya, Madagascar and Sudan (Former) had the highest productivity 

decline of 6.5%, 5.8% and 7.2% respectively, while when including the three bad outputs in 

the analysis, Libya, Niger and Sudan (Former) had the highest productivity change decline of 

6%, 10.3% and 6% respectively.  

  

4.4  Comparing technical change and efficiency change between MI and MLI models 

Examining Model 1 and Model 2, technical change revealed a positive gap in many of 

the countries when including CO2 with a decline of 1.6%. The results thus imply a negative 

shift in production possibilities frontier towards producing more bad output and less good 

output. The efficiency change improved by 0.4% although pure technical efficiency declined 

by 6.4% when factoring CO2 emissions. Comparing Model 1 with models 3 and 4, technical 

change showed a positive gap of 0.6% each, efficiency change improved by 0.4% while pure 

technical efficiency change declined by 6.4 and 6.5% in each model respectively. Comparing 

Model 1 and Model 5, the technical change indicated a positive gap of 0.4% with 0.4% 

improvement in efficiency change while pure technical efficiency declined by 4.7%.  

The results suggest that increased emissions (CO2, CH4 and N2O) contributed to 

declining technical change and pure efficiency change. Efficiency change improved in all the 
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models which was attributed to improved scale efficiency change whereas pure technical 

efficiency change worsened. The decline in pure technical efficiency indicates that there is a 

direct link between GHG emissions and efficient resource use. The declining technical 

change imply that countries may not be adopting technologies that reduce emissions. 

Livestock production systems (including producing and processing of feeds) and ruminants’ 

enteric fermentation are identified as the two primary sources of agriculture greenhouse gases 

which contribute immensely to the sector’s emissions by approximately 45 and 39 percent 

respectively (Gerber et al., 2013). Hence interventions to reduce greenhouse gases should 

target on technologies and measures that enhance livestock productivity. In countries, such as 

Ghana, Zambia and Malawi, synthetic nitrogen fertilizer is applied intensively because of 

their national fertilizer subsidy programmes to small-scale farmers. As noted by Crawford, 

Jayne, and Kelly (2006), subsidized inputs crowd out the private sector deliveries and 

discourages investments into new private fertilizer sales networks. Subsidized inputs are also 

misallocated due to overuse which does not raise crop productivity.  
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Table 3: Comparison of mean productivity changes between ML and MLI models 

Country 
Model 1 vs Model 2 Model 1 vs Model 3 Model 1 vs Model 4 

effch tech pech sech proch effch tech pech sech proch effch tech pech sech proch 

Burundi 0.000 -0.033 0.000 0.000 -0.033 0.000 -0.033 0.000 0.000 -0.033 0.000 -0.032 0.000 0.000 -0.032 

Cameroon 0.000 0.028 0.000 0.000 0.028 0.000 -0.020 0.000 0.000 -0.020 0.000 -0.025 0.000 0.000 -0.025 

Côte d’Ivoire 0.000 0.042 0.000 0.000 0.042 0.000 0.017 0.000 0.000 0.017 0.000 0.013 0.000 0.000 0.013 

Gabon 0.000 0.028 0.000 0.000 0.028 0.000 0.047 0.000 0.000 0.047 0.000 -0.010 0.000 0.000 -0.010 

Gambia -0.013 0.004 0.257 -0.013 -0.008 -0.013 -0.008 0.269 -0.013 -0.021 -0.013 0.015 0.244 -0.013 0.003 

Ghana -0.002 0.021 0.024 0.001 0.019 -0.003 0.022 0.020 0.000 0.019 -0.002 0.033 0.025 0.001 0.031 

Kenya 0.000 -0.024 0.000 0.000 -0.024 0.000 -0.126 0.000 0.000 -0.126 0.000 -0.099 0.000 0.000 -0.099 

Libya 0.000 0.056 0.000 0.000 0.056 0.000 0.068 0.000 0.000 0.068 0.000 0.065 0.000 0.000 0.065 

Madagascar 0.000 0.096 0.023 0.000 0.096 0.000 0.028 0.026 0.000 0.028 0.000 0.058 0.018 0.000 0.058 

Malawi 0.004 0.015 0.100 0.003 0.019 0.005 0.012 0.079 0.003 0.017 0.003 0.016 0.122 0.003 0.020 

Mozambique -0.024 0.035 0.227 0.002 0.010 -0.026 0.035 0.231 0.001 0.008 -0.024 0.035 0.223 0.002 0.011 

Niger 0.000 -0.052 0.000 0.000 -0.052 0.000 0.090 0.000 0.000 0.090 0.000 0.016 0.000 0.000 0.016 

Nigeria 0.000 0.031 0.000 0.000 0.031 0.000 0.001 0.000 0.000 0.001 0.000 0.022 0.000 0.000 0.022 

Sudan (former) 0.000 -0.001 0.000 0.000 -0.001 0.000 0.098 0.000 0.000 0.098 0.000 0.072 0.000 0.000 0.072 

Togo 0.002 0.030 0.187 0.002 0.034 0.003 0.006 0.179 0.003 0.009 0.002 0.009 0.200 0.002 0.012 

Tunisia 0.000 0.092 0.000 0.000 0.092 0.000 0.037 0.000 0.000 0.037 0.000 0.036 0.000 0.000 0.036 

Tanzania -0.015 -0.109 0.049 -0.003 -0.124 -0.015 -0.191 0.052 -0.003 -0.205 -0.016 -0.131 0.055 -0.004 -0.147 

Zambia -0.024 0.019 0.287 -0.006 -0.005 -0.024 0.019 0.288 -0.007 -0.006 -0.024 0.020 0.285 -0.006 -0.004 

Geomean -0.004 0.016 0.064 -0.001 0.012 -0.004 0.006 0.064 -0.001 0.002 -0.004 0.006 0.065 -0.001 0.002 

Note: effch = efficiency change; tech=technical change; pech=Pure technical efficiency change; sech = scale efficiency change; and proch= productivity change. 



 

19 

 

Table 3: Continued 

Country Model 1 vs Model 5  

 effch tech pech sech proch 

Burundi 0.000 -0.032 0.000 0.000 -0.032 

Cameroon 0.000 -0.096 0.000 0.000 -0.096 

Côte d’Ivoire 0.000 0.019 0.000 0.000 0.019 

Gabon 0.000 0.019 0.000 0.000 0.019 

Gambia -0.014 -0.004 0.181 -0.014 -0.018 

Ghana -0.002 0.007 0.012 0.001 0.005 

Kenya 0.000 -0.107 0.000 0.000 -0.107 

Libya 0.000 0.060 0.000 0.000 0.060 

Madagascar 0.000 0.041 0.013 0.000 0.041 

Malawi 0.006 0.013 0.063 0.003 0.019 

Mozambique -0.024 0.036 0.175 0.003 0.010 

Niger 0.000 0.103 0.000 0.000 0.103 

Nigeria 0.000 0.012 0.000 0.000 0.012 

Sudan (former) 0.000 0.060 0.000 0.000 0.060 

Togo 0.004 0.007 0.145 0.004 0.012 

Tunisia 0.000 0.041 0.000 0.000 0.041 

Tanzania -0.016 -0.124 0.034 -0.002 -0.140 

Zambia -0.025 0.020 0.220 -0.006 -0.006 

Geomean -0.004 0.004 0.047 -0.001 0.000 

 

4.5 Hypothesis testing 

 

Table 4 provides the results of a Kruksal Wallis Test that tests the null-hypothesis of 

whether productivity measures and its components between the MI and MLI models remains 

the same across countries. The MI and the MLI productivity changes seem not to be different 

since the results fail to reject the null hypothesis in all the models. The null hypothesis is also 

not accepted for the efficiency change and scale efficiency components for all the models. 

However, the results reject the null hypothesis that pure technical efficiency remains the same 

across countries for the CO2 and CH4 included models while for technical change measure, 

the null hypothesis is rejected in the in CO2 and N2O models. This implies that the difference 

in productivity growth rates between the MI and MLI measures for these models depend on 

respective growth of the good and bad outputs with efficiency and technical change 

explaining the change. Considering GHG emissions are due to poor manure management, 
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burning, manure and synthetic fertilizer application and inefficient energy use it is not 

surprising that when these activities are not handled efficiently, resources will be shifted 

towards production of bad outputs.     

Table 4: Hypothesis testing using Kruskal Wallis test of the means (by countries) 
 Model 2 Model 3 Model 4 Model 5 

Null hypothesis p value Result p value Result p value Result p value Result 

MLI=MI 0.117 Accepted 0.282 Accepted 0.114 Accepted 0.217 Accepted 

MLPECH=MPECH 0.043 Rejected 0.043 Rejected 0.051 Accepted 0.061 Accepted 

MLTECH=MTECH 0.037 Rejected 0.093 Accepted 0.038 Rejected 0.090 Accepted 

MLEFFCH=MEFFCH 0.619 Accepted 0.358 Accepted 0.606 Accepted 0.450 Accepted 

MLSECH=MSECH 0.970 Accepted 0.740 Accepted 0.970 Accepted 1.000 Accepted 
Note: MLI=Malmquist Luenberger Index; MLPECH = Malmquist Luenberger Pure technical efficiency; MLTECH = Malmquist 

Luenberger Technical Change; MLEFFCH = Malmquist Luenberger Efficiency Change; MLSECH = Malmquist Luenberger 

Scale Efficiency; MI=Malmquist Index; MPECH = Malmquist Pure technical efficiency; MTECH=Malmquist Technical Change; 

MEFFCH= Malmquist Efficiency Change and MSECH = Malmquist Scale Efficiency. 

 

 

5. Conclusions 

This study employed the MLI to measure the agricultural productivity of 18 African 

countries by incorporating good and bad outputs. From the analysis, the Malmquist index 

which does not consider bad output in the production model was found to overestimate the 

productivity growth rates. The results also suggest African countries were not successful in 

raising productivity and reducing GHG emissions. 

In terms of policies, the analysis from the study provide the following. Policies that 

educate farmers to use appropriate amounts of synthetic fertilizers and encourage efficient 

use of nutrients (manure and fertilizer) to help reduce N2O. Policies that improves manure 

management practices and help recover and recycle nutrients include appropriate storage, 

management and application of manure. Policies aimed at efficient use of energy such as 

reducing fossil fuel use and adopting cleaner energy (i.e. solar uptake) can contribute towards 

mitigation of GHG emissions. Policies that encourage adopting improved crop varieties and 

livestock breeds can also reduce GHG emissions. Appropriate technologies and practices 

such as the use of safe feeding technologies directed at animal and herd farming can reduce 

methane gas emissions. Policies that encourage better water and fertilizer management 
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practises e.g. the system of rice intensification (SRI) in rice cultivation which aims to grow 

rice using less water, fertilizer and pesticides can help to reduce the emissions from rice 

farms. Lastly, government efforts should aim at packaging subsidies such as seed and 

fertiliser subsidies in a way that will promote their efficient use and sustain an efficient input 

market.  
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