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Abstract— Domestic service robots such as lawn mowing and 
vacuum cleaning robots are the most numerous consumer 
robots in existence today. While early versions employed 
random exploration, recent systems fielded by most of the major 
manufacturers have utilized range-based and visual sensors and 
user-placed beacons to enable robots to map and localize. 
However, active range and visual sensing solutions have the 
disadvantages of being intrusive, expensive, or only providing a 
1D scan of the environment, while the requirement for beacon 
placement imposes other practical limitations. In this paper we 
present a passive and potentially cheap vision-based solution to 
2D localization at night that combines easily obtainable day-time 
maps with low resolution contrast-normalized image matching 
algorithms, image sequence-based matching in two-dimensions, 
place match interpolation and recent advances in conventional 
low light camera technology. In a range of experiments over a 
domestic lawn and in a lounge room, we demonstrate that the 
proposed approach enables 2D localization at night, and analyse 
the effect on performance of varying odometry noise levels, 
place match interpolation and sequence matching length. 
Finally we benchmark the new low light camera technology and 
show how it can enable robust place recognition even in an 
environment lit only by a moonless sky, raising the tantalizing 
possibility of being able to apply all conventional vision 
algorithms, even in the darkest of nights. 

I. INTRODUCTION 

With the advent of domestic robots such as robotic lawn 
mowers and autonomous vacuum cleaners we have only 
recently seen widespread penetration of robots in the house, 
even though personal robots have been on the market since 
the early 1950s [1]. While these tasks may seem to be 
relatively simple, for a robot they involve a number of 
challenging problems including navigation. Current 
navigation solutions [1] combine 1D range sensors or high 
quality cameras with SLAM [2], or ignore the problem by 
implementing random movement behaviours instead. 

Over the past decade, vision has become the new 
mainstream sensor for robotic navigation and object 
classification, due to the rapid increase in camera capabilities 
and computer processing power. Vision systems provide a 
variety of cues about the environment, such as motion, 
colour, and shape, all with a single sensor, and has 
advantages over other sensors including low cost, small form 
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factor and low power consumption [3], all relevant 
characteristics in the context of cheap domestic service 
robots. However, vision-based solutions face multiple 
challenges including dealing with camera viewpoint and 
lighting changes or low light, conditions which are common 
in domestic situations especially if circumstances dictate that 
robots should operate at night in an unobtrusive manner.  

 
Figure 1: This paper presents a sequence-based place recognition 
algorithm for two-dimensional localization of outdoor (a-d) and indoor 
(e-h) service robots under challenging night-time conditions. For the 
first time, we extend the SeqSLAM algorithm to two-dimensions and 
combine it with place match interpolation in order to enable place 
recognition in two-dimensions at night-time. 

This paper presents a new 2D localization system for low 
cost service robots operating both indoors and outdoors, 
based on low resolution, contrast-enhanced image 
comparison, sequence-based image comparison in two 
dimensions, and place match interpolation (Figure 1). The 
research significantly extends an initial indoors-only proof of 
concept study with perfect odometry [4], by evaluating the 
effectiveness of the system in two service robot scenarios; on 
a domestic home lawn (turf) and inside in a living room 
environment, analysing the effects of varying odometry 
noise, the effect of place match interpolation, and introducing 
new camera technology that enables place recognition in a 
natural environment lit only by a moonless sky. We also 
make all the datasets and code freely available online. 

The paper proceeds as follows. In Section II we provide a 
short literature review on autonomous domestic service 
robots, place recognition approaches for robots, and discuss 
the nature of the vision invariance problem. In Section III we 
provide an overview of the approach taken, while Section IV 
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summarises the experimental setup. Section V presents the 
results, with discussion in Section VI. 

II. BACKGROUND 

Since the 1980s domestic robots have been the subject of 
intense development, with a focus on ground-based robots 
such as autonomous lawn mowers and vacuum cleaners. 
However, it has only been in the past decade that service 
robots have become widespread on the consumer market, 
with iRbot, for example, selling an estimated 6 million 
“Roomba” robots between 2002-2010 [1]. Only simple 
reactive behaviours such as “edge-following” and “spiral” 
were implemented on the early systems, while more recent 
robots implement more sophisticated technologies, including 
navigation and path planning techniques [1]. Currently 
autonomous lawn mowers use a variety of technologies 
including wireless beacons, below surface boundary wires 
that emit electromagnetic signals, GPS, laser scanners, and 
even radio technologies [5]. Modern robotic vacuum cleaners 
today utilize IR, 2D and/or ceiling facing cameras to help 
navigate and localize within an environment. These 
inclusions of more advanced technologies have further 
increased the marketability of such devices by improving task 
efficiency and lowering operational times and energy 
consumption. 

These improvements have come as a result of the robotic 
systems now including IR, 2D laser scanners, and/or cameras 
to help map and navigate an area [1], in conjunction with 
Simultaneous Localization And Mapping (SLAM) 
algorithms. SLAM is the process of learning an unknown 
environment while simultaneously localizing a robot’s 
position. A multitude of mature vision-based SLAM systems 
are available including MonoSLAM [2], FrameSLAM [6], V-
GPS [7], Mini-SLAM [8] and several others [9-16]. However 
aspects of the problem remain unsolved, such as robustly 
performing place recognition and loop closure in the face of 
varying illumination. 

Varying illumination and poor lighting are particularly 
relevant problems for domestic service robots. Firstly, typical 
homes undergo significant and often unpredictable lighting 
changes, due not only to day-night cycles and weather 
variation but also the unpredictable nature of humans 
modifying the environment, such as by turning lights on and 
off [17]. In addition, service robots are often required to work 
in environments at night-time when they are unoccupied by 
humans. In domestic settings, it is desirable that these 
systems work in as unobtrusive a manner as possible, ruling 
out active emittance of light or clicking sonars. The research 
presented in this paper attempts to address this challenge of 
developing a cheap vision-based passive solution to 2D 
localization for indoor and outdoor domestic service robots. 

III. APPROACH 

In this section we provide a high level overview of the 
system architecture (Figure 2). Our approach in this work is 
based on the assumption that a domestic service robot would 
occasionally be run during the day in good lighting and with 
a source of motion information (from either wheel encoders 
or visual odometry), enabling the robot to gather a reference 
map of day-time images against which night-time 

localization can be performed. This approach is a reasonable 
one, as it is likely that current domestic robots that utilize 
camera-based systems are fully capable of generating a day-
time map, such as the Dyson 360 Eye robot vacuum cleaner.  

 
Figure 2: System architecture overview diagram. Reference images 
acquired in good lighting conditions are mapped to a co-ordinate frame. 
During night-time operation, a query image is compard with all day-
time reference images to generate a heat map, which is interpolated to 
find the best place match. 

A. Image Set Acquisition 

The first step in the process is gathering a reference map 
of the environment during the day-time, consisting of a 
topological map and associated camera images at each of the 
map nodes. We designed a path through the environment 
with labelled markers for the purpose of ground truthing, and 
followed this path with a camera, taking images at equally 
spaced intervals (Figure 3), or by taking a video while 
walking at a constant velocity. A second set of images was 
also acquired along a different, only partially overlapping 
path through the environment, which served as our query / 
test dataset. All acquired images were also manually mapped 
to a set of co-ordinates for the purpose of later analysis. 

B. Image Set Preparation 

Images were pre-processed using histogram equalization, 
cropping slightly to remove unwanted features (i.e. the robot 
or camera mount) and resolution reduced. Finally, patch 
normalization was performed to reduce the effects of local 
variations in illumination, such as patches of sunlight on the 
floor which disappear at night. The patch normalized pixel 
intensities, I’, are given by: 
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where  and  are the mean and standard deviation of 
pixel values in a patch of size  surrounding , . 

C. Image Set Comparison and Score Matrix 

Images from each query/test dataset were compared to all 
images in the reference datasets using a rotation-invariant 
matching process. Each query image was compared using a 
sum of absolute differences to every image stored in the 
reference map, at all possible image rotations. The difference 
score for the kth rotation, C(k), is given by: 
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where  and  are the size of the patch normalized image in 
the vertical and horizontal directions, respectively. ,  is 
the cropped, down-sampled and patch normalized reference 
set image, ,  is the cropped, down-sampled and patch 
normalized query set image at the th rotation,  and  is the 
number of pixel offset rotations. The difference scores 
between a query image and all the reference images were 
stored within an image difference matrix. 

D. Heat Map Generation and Best Match Location 

To exploit the two-dimensional nature of the environment 
and enable sequence-matching in two dimensions, a place 
match heat map was generated for each query image. To 
generate the heat map, the minimum rotated matching score 
between the given query image and all reference images was 
found:  
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where  represents the ith reference image compared to the 
current query image, and where  represents the 
scores for the current query image against the ith reference set 
image for all relative image rotations. For visualization 
purposes, the values within this minimum score matrix were 
then inverted so that the maximum value “hot spot” 
corresponded to the best match. 

To generate a continous heat map even with irregular 
reference map image locations, image comparison scores 
were linearly interpolated across a regular overlaid grid to 
generate the heat map. Figure 9 shows an example of the 
resultant regular heat map, showing the response for 
comparison of a query image against all reference map 
images. The reference image locations are also plotted with 
green circles, with the circle size being directly proportional 
to the matching score for each location. Finally, the 
interpolated best match position P was found by finding the 
maximum matching score within the heat map: 
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The closest best match reference image was then also 
determined by finding the closest reference image location to 
the interpolated location. 

E. Sequence Matching in 2D 

Based on the success of sequence-based matching in 
varying lighting conditions in 1-dimension [16, 18], we 
developed a two-dimensional sequence matching approach 
utilizing the heat map. Sequence-based heat maps were 
generated based not only on the current matching scores, but 
also on the n previous matching scores, depending on the 
number of frames used in the sequence. 

To generate the sequential heat map, the previous 
interpolated heat map is taken and translated the same 
distance as the shift in the query image location from the 
previous query location and then summed with the current 
query image heat map. For these experiments we used 
simulated odometry with varying noise models; for a live 
robot implementation this data would come directly from 
either the robot’s wheel encoders or a visual odometry 
system, or both. The best match position and closest 
reference image match were then found using the same 

process as for the single frame matching method. All code 
and datasets are freely available at the following link: 
https://wiki.qut.edu.au/display/cyphy/Datasets 

IV. EXPERIMENTAL SETUP 

This section describes the experimental setup, dataset 
acquisition and pre-processing, ground truth creation and key 
parameter values. All processing was performed on a 
Windows 7 64-Bit machine running Matlab 2014. 

A. Camera Equipment 

A Sony A7s with a panoramic lens attachment and Ricoh 
Theta M15 camera were utilized for the garden and lounge 
room experiments respectively (Figure 3). The Sony camera 
is a full-frame DSLR with very large pixel wells, enabling 
images to be gathered in the garden environment at extremely 
low lighting conditions in which a standard camera would 
fail. The Ricoh Theta is a spherical camera that consists of 
two back-to-back fish eye lenses mounted on a slim body 
which collect full-field of view imagery.  

Although these cameras are not cheap at individual retail 
prices (in the hundreds to low thousands of dollars range), we 
note that the subsequent experiments demonstrate that only 
about 1000 pixels of resolution are required. The A7s sensor 
comprises 12,000,000 pixels – it is likely a mass production 
process could generate tiny 1000 pixel sensor arrays (with the 
same pixel well size) for a tiny fraction of the full frame 
sensor array price.  

 
Figure 3: (a) The Sony A7s camera with panoramic lens attachment, 

used in the Garden experiments. (b) The Ricoh Theta camera mounted 
on the robot vacuum cleaner used in the living room experiments. 

B. Datasets 

Seven datasets were collected in order to run several 
experiments. Three datasets were taken within the garden 
environment (Figure 4), two were collected within a living 
room within a Brisbane townhouse (Figure 5), and two were 
collected along a creekside path (Figure 6). 

 
Figure 4: (a) The garden area (illuminated with camera flash) with the 
white square indicating the area mapped, and (b) the path and image 
locations for the daytime reference set (red) as well as the night time 
reference (green) and query sets (blue) in the garden environment. 



 

 

The first dataset, the daytime reference set, consisted of 
24 images in total, over the 7 by 5 metre garden area. The 
second and third sets, the night time reference and query sets, 
were taken at night time, with the reference set following the 
same path as the daytime dataset, while the query set 
followed an alternative path. There were 53 and 41 images 
within each of the night sets respectively. The night time 
images did not necessarily overlap precisely with the 
reference images, creating a viewpoint invariance problem in 
addition to the lighting condition-invariance problem. 

 
Figure 5: (a) The Living Area environment and (b) the path and image 
locations for the daytime reference set (red) as well as the night time 
query set (blue). 

The fourth and fifth datasets were taken within a Brisbane 
townhouse living area. The fourth image set was taken at 52 
locations during the day, while the fifth set was taken at 32 
query locations in low-light conditions.  

The final two datasets were taken along a Creekside 
pathway during the day-time and in the middle of the night 
(Figure 6). This environment was chosen because it was 
mostly completely unlit, with only a moonless sky for 
illumination. The A7s camera was set to capture video at 10 
frames per second at ISO409600 with a lens F stop of 2.0. A 
summary of all datasets is shown in Table I. 

 
Figure 6: The creek dataset, which involved (a) two 500 metre traverses 
along a predominantly unlit Creekside path in bushland with only a 
moonless sky for illumination. Sample (b) day-time frame and (c) 
night-time frame. 

C. Parameter Values 

Parameter values are given in Table I. These parameters 
were heuristically determined over a range of development 
datasets and then applied to all the experimental datasets. 
Table III shows the three Gaussian noise models used when 
simulating odometry, all noise models had a mean of 0. 

Figure 7 shows a visualization of the noise models when 
applied to a simulated mobile robot. 

TABLE I 

DATASET SUMMARY 

Name Size Frames Description 

Garden Day 
Reference 7x5 m 24 Daytime reference set, taken in a backyard 

lawn early morning 

Garden 
Night 

Reference 
7x5 m 53 

Night time image set, taken in a backyard 
lawn late at night, and followed the same 
path as daytime reference set. 

Garden 
Night Query 7x5 m 41 

Night time image set, taken in a backyard 
lawn late at night, and followed an 
alternative path compared to the other 
image sets. 

Living Day 
Reference 6x3 m 52 

Reference set was taken during the 
daytime, with all house lights on, and taken 
at ground truthed points. 

Living 
Night Query 6x3 m 32 

Night-time query set was taken during the 
evening, with two small lamps and oven 
light on, and were taken at random 
locations throughout the reference set area.

Creek Day 
Reference 500 m 272 Reference set taken during a normal day 

with pedestrians and cyclists 

Creek Night 
Query 500 m 315 

Night-time query set taken with no lighting 
along the majority of the path, on a 
moonless night 

TABLE II 

PARAMETER LIST 

Parameter Value Description 

Rx,Ry 48,24 Whole image matching resolution
Psize 4 Patch-normalization radius

Interpolated 
Grid Size 100,100 The grid size of the interpolated heat map. 

TABLE III 

NOISE MODELS 

Model Distance Standard Deviation 
(metres) Heading Standard Deviation (radians)

0 0 0
1 0.1 0.02
2 0.25 0.05
3 0.5 0.1

 
Figure 7: Example short-term trajectories using the three noise models 
applied when simulating odometry noise. Noise model 1 (red), noise 
model 2 (green), and noise model 3 (blue). 

V. RESULTS 

In this section we present the results of the place 
recognition experiments. This section is split into 5 parts; 



 

 

 The Garden Reference place recognition results – 
which show the image matching results between the 
garden daytime reference set and the garden night-
time reference set, including an analysis of the 
effect of varying odometry noise and place match 
interpolation. 

 The Garden Query results – which show the image 
matching results between the garden daytime 
reference set and the garden night-time query set, 
involving greater camera viewpoint change, 
including an analysis of the effect of varying 
odometry noise and place match interpolation. 

 The Living Area results – which show matching 
performance between the daytime reference set and 
night-time query set with viewpoint change, 
including an analysis of the effect of varying 
odometry noise. 

 The Creek place recognition experimental results in 
near complete darkness 

 A comparison of low light camera technology 
capabilities from 4 years ago to today 

There is also a video accompanying the paper illustrating 
the results. 

A. Garden Reference Results 

The results of the Garden reference image matching and 
place recognition results can be found in the following 
figures. Figure 8a shows a night time reference set image and 
its unsuccessful best reference set matched image for single 
frame matching (Figure 8b), as well as the image it correctly 
matches to once SeqSLAM is applied (Figure 8c). 

  
Figure 8: (a) The 12th night-time image from the night reference set. 
Using single image matching, it is incorrectly matched to the 8th 
reference image from the daytime reference set. (c) Using 3 frame 2D 
SeqSLAM, it is correctly matched to the 6th reference image from the 
daytime reference set.  

Figure 9 shows an example of the place match heat maps 
produced for single frame matching and 7 frame SeqSLAM 
matching for a particular query image. The reference image 
locations closest to the query image location (the red-cross) 
have the maximal matching scores, as indicated by the size of 
the green circles, but the interpolated place match is more 
accurate using the sequence-based approach (Figure 9b). 
Visually it can be seen that the areas within the heat map 
around the true location of the query image become more 
prominent in the SeqSLAM heat map compared to the single 
frame heat map. 

Figure 10 shows the distance error, in the form of box 
plots, using 2D SeqSLAM with sequence lengths from 1 to 
10 frames. The distance error is the Euclidian distance 
between the interpolated location, (the “hotspot”), and the 
query image’s true location. These box plots highlight the 
improvement of the place recognition algorithm as the 
matching sequence lengths increase. Figure 11 shows the 
effect of odometry noise on the 7 frame 2D SeqSLAM 
implementation, showing  a graceful degradation in accuracy 
as noise increases. Finally, Figure 12 highlights the 
improvement in place recognition accuracy when place 
match interpolation is used for the 7 frame SeqSLAM 
implementation. 

Figure 13 shows an image of the Garden environment 
taken in the same conditions as in which the Night Reference 
and Query sets were taken, except using the Ricoh Theta 
camera instead of the low light Sony A7s camera. As can be 
seen by both the original and the brightened image, the 
camera is unable to capture any usable information, 
highlighting the importance of large pixel wells for capturing 
maximal light. 

 
Figure 9: The heat maps for comparison of the 12th image in the night-
time Garden reference set to all images in the day-time reference set. (a) 
shows the heat map for single frame matching; while (b) is for 7 frame 
2D SeqSLAM. The red-cross shows the ground truth of the query 
image, while the green cross shows the best matched reference image, 
and the black cross indicates the best interpolated position (the “hot 
spot” in the heat map). The green circles are at the coordinates of the 
reference set image locations, and their size are indicative of how well 
the current image matches to each reference image. 

 
Figure 10: The distance error for place recognition in the night-time 
Garden reference set using 2D SeqSLAM with variable sequence 
lengths ranging from 1 to 10 frames. 

 
Figure 11: The distance error for the night-time reference set, when 
compared to the daytime reference set, for 7 frame 2D SeqSLAM with 
the four varying odometry noise models. 



 

 

 
Figure 12: The distance error when interpolation is applied compared to 
when it is not on the night time reference set for 7 frame 2D SeqSLAM. 

 
Figure 13: (a) The Ricoh Theta image taken in the Garden Environment 
at night. (b) The same image as shown in (a) except brightened to 
highlight that there is no information stored within the image. 

B. Garden Query Results 

The results of the Garden query image matching and 
place recognition results (with more novel viewpoints in the 
query set) were similar to that of the Garden reference results, 
and can be found in the following figures. Figure 14 shows 
an incorrectly matched image using single frame matching, 
which was successfully matched using the 7 frame 2D 
SeqSLAM technique. Figure 15 shows the corresponding 
heat maps. 

 
Figure 14: shows the (a) 7th night-time image from the night query set 
and the (b) incorrectly matched 22nd reference image from the daytime 
reference set, as well as the (c) correctly matched 12th reference image 
from the daytime reference set (matched using 7 frame SeqSLAM). 

 
Figure 15: The heat map for the 7th image in the night-time query set. 
The top heat map is for single frame matching, while the bottom is for 7 
frame SeqSLAM. 

Figure 16 shows the distance error for the Garden query 
set across all sequence lengths sets for zero odometry noise, 
and Figure 17 shows the distance error over the 4 noise 
models using a 7 frame 2D SeqSLAM implementation. The 

increased viewpoint novelty does increase the median 
distance error, but with 10 frame sequence the error is 
reduced to approximately 0.5 metres. Figure 18 shows the 
improvement in accuracy caused by place match 
interpolation.  

 
Figure 16: The distance error for the night-time query set, when 
compared to the daytime reference set, across the 7 sequence lengths 
with zero odometry noise. 

 
Figure 17: The distance error for the night-time query set, when 
compared to the daytime reference set, for 7 frame seqSLAM with the 
four varying odometry noise models. 

 
Figure 18: The effect of place match interpolation on the distance error 
for 7 frame SeqSLAM on the night query dataset. 

C. Living Area Results 

We repeated the Garden experiments in the Living Room 
environment at night. Figure 19 shows the night-time query 
image incorrectly matching to a daytime image using single 
image matching, and the correctly matched image when 2D 
SeqSLAM was applied. Figure 20 shows the corresponding 
heat maps. Compared to the Gardens dataset, the heat maps 
have a more localized hot spot due to the increase in the 
density of the reference dataset. 

The distance error for the zero noise model, across the 7 
2D SeqSLAM sets can be seen in Figure 21. These results are 
similar to that of the Garden sets, where the application of 
SeqSLAM greatly improves the distance error. Figure 22 
shows the distance error for 7 frame SeqSLAM across the 4 
noise models. Again, similar to the previous Garden sets, 
increasing levels of noise degrade the median distance error 
to a maximum of approximately 0.25 metres.  



 

 

 
Figure 19: (a) The 28th night-time image from the night query set, 
incorrectly matched to the (b) 26th reference image from the daytime 
reference set. (c) Using 4 frame SeqSLAM, it correctly matches to the 
41st daytime reference image. 

 
Figure 20: The heat map for the 28th image in the night-time query set 
for (a) single frame matching and (b) 7 frame SeqSLAM. 

 
Figure 21: The distance error for the night-time query set, when 
compared to the daytime reference set, across the 7 sequence SLAM 
sets with zero odometry noise. 

 
Figure 22: The distance error for the night-time query set, when 
compared to the daytime reference set, for 7 point seqSLAM with the 
four varying odometry noise models. 

D. Creek Dataset 

Figure 23 shows the frame correspondences found 
between the two creek path traverses – 81% of places were 
correctly matched at 100% precision (no false positives, error 
tolerance of ±3 metres). Figure 24 shows examples of 
successful place matches. These experimental results 
demonstrate that current camera technology enables place 
recognition even in an environment with no lighting beside 
the moonless sky. 

 
Figure 23: Frame correspondences between the second and first 
traverses of the creek environment, with blue dots indicating the filtered 
true positives found using a frame sequence length of 8.  

 
Figure 24: Sample correct frame matches (a-f) found between the day 
and night traverses of the creek environment, and (g) a comparison long 
exposure night-mode photo from a current generation smartphone, also 
(h) shown with brightening. 

E. New Low Light Conventional Camera Technology 

Figure 25 shows a comparison between the low light 
performance of a 4 year old Nikon D5100 DSLR camera and 
the new Sony A7s DSLR camera used in the Garden and 
Creek experiments presented here. The new camera 
technology is capable of achieving acceptable images for 
localization at high shutter speeds of up to 1/1000s, in 
conditions where the 4-year-old SLR produces a near black 
image at only 1/100s shutter speed. 

 
Figure 25: Comparison between a 4 year-old Nikon D5100 DSLR and a 
current generation Sony A7s in a completely dark room at night. (a) 
Nikon D5100 at 1/100s exposure, ISO25600. (b) Sony A7s at 1/100s 
exposure, ISO409600. (c) Sony A7s at 1/500s, ISO409600. (d) Sony 
A7s at 1/1000s, ISO409600. 



 

 

F. Computational Efficiency 

The current algorithms are implemented as unoptimized 
Matlab code. For the datasets presented here, the primary 
computational overhead is the image comparison process. 
When comparing a query image to a dataset of 50 reference 
images, at a resolution of 48 × 24 pixels at every rotation (48 
rotations), just under 3 million pixel comparisons are 
performed for every query image. A single core CPU can 
perform approximately 1 billion single byte pixel 
comparisons per second, while a GPU can do approximately 
80 billion per second using optimized C code. Hence the 
techniques presented here could likely be performed in real-
time on a robotic platform when optimized, even on 
lightweight computation hardware. 

VI. DISCUSSION AND FUTURE WORK 

In this paper we have investigated the potential of low 
resolution, 2D sequence-based image matching algorithms 
for performing localization on domestic service robots such 
as lawn mowing and vacuum cleaning robots in challenging 
or low light conditions. We assume it is possible to construct 
an approximate metric map of the environment during the 
day-time, and use low resolution intensity-normalized image 
comparison and place match interpolation to match locations 
experienced at night to the reference day-time locations. 
While single-matching image performance is relatively poor, 
using short sequences of a few images significantly improves 
the average matching accuracy, and is further improved by 
the place match interpolation process. We have also shown 
that current camera technology has evolved to the point of 
enabling place recognition at night in an environment lit only 
by a moonless sky, opening the possibility in future of 
robotic vision systems using conventional, passive cameras 
rather than relying on artificial lighting, thermal sensing or 
other sensing modalities. 

In our current research we are working towards increasing 
the accuracy of these techniques in order to enable accurate 
autonomous navigation of cheap indoor and outdoor service 
robots at night. Estimating image depth, whether using 
semantic [19] or structure from motion approaches, can lead 
to increased localization accuracy for whole-image matching 
approaches. With a method for estimating scene depth, it may 
also be possible to very sparsely sample the day-time 
environment and synthetically generate day-time imagery of 
places not yet visited for the night-time localization system. 

Finally, we will investigate how cheaply a robot-specific 
localization camera can be produced. We have shown that 
using very low resolution imagery – a few thousand pixels – 
captured using a sensor with large pixel wells can enable 
good navigation performance. It may be possible to mass 
produce custom, much smaller (and hence much cheaper) 
image sensors with large pixel wells but with an area 1/1000th 
or 1/10000th the area of current SLR sensors, vastly reducing 
their cost and size. Combined with the cheap computational 
requirements and a motion estimation system, it may be 
feasible to create a cheap black box place recognition and 
navigation system that can be deployed on all small robotic 
platforms, enabling navigation in unlit indoor environments 
or outdoors on even the darkest of nights.  
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