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ABSTRACT (max 200 words) 

Epigenetic regulation of various genomic functions, including gene expression, provide mechanisms 

whereby an organism can dynamically respond to changes in its environment and modify gene 

expression accordingly. One epigenetic mechanism implicated in human aging and age-related 

disorders is DNA methylation. Isolated populations such as Norfolk Island (NI) should be 

advantageous for the identification of epigenetic factors related to aging due to reduced genetic and 

environmental variation. Here we conducted a methylome-wide association study of age using whole 

blood DNA in 24 healthy female individuals from the NI genetic isolate (aged 24-47 years). We 

analysed 450K methylation array data using a machine learning approach (GLMnet) to identify age-

associated CpGs. We identified 497 CpG sites, mapping to 422 genes, associated with age, with 11 

sites previously associated with age. The strongest associations identified were for a single CpG site 

in MYOF and an extended region within the promoter of DDO. These hits were validated in curated 

public data from 2316 blood samples (MARMAL-AID). This study is the first to report robust age 

associations for MYOF and DDO, both of which have plausible functional roles in aging. This study 

also illustrates the value of genetic isolates to reveal new associations with epigenome-level data. 
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INTRODUCTION 

Epigenetics is a rapidly developing area of research and refers to the heritable, but reversible, 

regulation of various genomic functions including gene expression. This provides mechanisms 

whereby an organism can dynamically respond to a change in its environment and modulate gene 

expression accordingly. As such, epigenetic mechanisms can have a profound effect on phenotype, 

including disease risk and progression. One such epigenetic mechanism is DNA methylation, with 

cytosine residue methylation at CpG dinucleotides well documented in many organisms. The 

investigation of an individual’s methylation pattern can reveal a lifetime record of environmental 

exposures as well as potential disease specific patterns.  

Aging in humans has been associated with marked remodelling of the epigenetic architecture in terms 

of DNA methylation patterns [1–3]⁠. To date these studies have identified age-related CpG 

associations in healthy populations [4,5]⁠, and age-related CpGs associated with disease susceptibility 

[6]⁠. Studies have assessed the extremes of the age distribution by comparing the methylomes of 

centenarians with newborns [7,8]⁠. One study proposed the idea of a methylation 'clock' for tissue 

specific aging [9]⁠, while another demonstrated the use of DNA methylation to predict all-cause 

mortality in later life [10]⁠. This breadth of evidence highlights that age-associated methylation 

variants could be important in influencing age-related disease. 

Most studies of methylation in relation to aging have focused on the use of whole blood DNA given 

its relative accessibility when compared to other cell and tissue types. The Infinium Human 

Methylation 450 Beadchip (450k Array) has been the most popular technology for conducting such 

methylome-wide association studies (MWAS). A large number of MWASs focusing on blood have 

been conducted and data for >4700 individual samples have been posited in the public repository 

called MARMAL-AID [11]⁠. Interestingly, a recent meta-analysis of whole blood MWASs applied a 

new bioinformatics method to identify differentially methylated regions (DMRs) associated with 

aging in humans [12]⁠. Briefly, CpG sites were identified based on their genomic features, defining 

groups of adjacent sites based on their density, and applying either a single site or region centric 

analysis. The authors suggested that this design should allow for better comparison across other 

studies of the similar design. This study resulted in a robust list of DMRs that vary across the lifespan 

and may also have potential importance in aging biology [12]⁠. More recently, a review by Jones et 

al., [1] also provided a meta-analysis of age-related methylation papers and explored the overlap 

between the most significant CpG sites across 7 separate studies to identify 11 CpG sites commonly 

associated with age [1]⁠. 



Most age-based MWAS conducted to date have been performed in unrelated cohorts collected from 

general populations. Whilst such studies can offer the advantage of large cohort sizes they can be 

negatively affected by confounding factors such as underlying genetic substructure and highly 

variable environmental influences. Genetically isolated populations may help overcome such issues 

due to having a reduced genomic and environmental diversity when compared to general populations 

[13]⁠. The Norfolk Island (NI) population is a genetic isolate with a well-documented history [14]⁠. 

Norfolk Island is geographically remote, located ~1600kms off the East Coast of Australia. The 

modern NI population was originally founded in the late 1780's on Pitcairn Island by 9 Bounty 

Mutineers and 6 Polynesian wives and in 1856 the founder descendants relocated to NI [15]⁠. Given 

its remoteness, the population grew in almost complete isolation from mainland Australia. This, along 

with the small island size and strict immigration policies, have ensured that both genetic and 

environmental conditions shared by all NI individuals have remained fairly homogeneous. To date 

the isolate has been well characterised genetically and phenotypically as part of the Norfolk Island 

Health Study (NIHS) [16]⁠. 

In an effort to further our understanding of age-related methylation we conducted a MWAS of whole 

blood DNA in a healthy cohort from the isolated population of NI. We applied a statistical algorithm 

called GLMnet [17]⁠, a machine-learning approach which conducts simultaneous analysis of CpGs by 

allowing mixing of ridge regression and Lasso (least absolute shrinkage and selection operator) in an 

elastic-net framework. We validated our top findings in the large cohort of publicly available 

methylation data from MARMAL-AID. 

 

RESULTS 

NI aging and methylation 

DNA extracted from blood samples from 24 healthy females from the well documented NI genetic 

isolate [16,18]⁠ were assayed for methylation levels at probes across the genome using Infinium 

Human Methylation 450 Beadchips (450k Arrays). Individuals ranged in age from 24 to 47 years, 

with a mean age of 36 years. We explored associations between age and methylation (beta-value) 

using a GLMnet (mixture of lasso and ridge regression) approach, and identified a total of 497 CpG 

sites associated with age (Additional File: Table S1). We then compared the 422 genes to which the 

497 CpG sites mapped to those identified in a recent meta-analysis [12]⁠. We observed 5 genes from 

our study which were consistent with the meta-analysis by Bacalini et al., (2015): ABCC4; CSNK1D; 



EDARADD; ELOVL2, and OTUD7A. Interestingly, we found numerous other age-related CpG sites 

that had not been previously identified.  

As this is a multi-marker approach there is no individual p-value associated with each CpG site as 

there would be under a more traditional single-marker test. Using our approach, we applied the 

absolute range in methylation as a form of ranking, under the assumption that the ‘larger absolute 

range’ loci have more biological relevance (Additional File: Table S1). The most striking result was 

a differentially methylated region (DMR) encompassing 4 CpG sites near the transcription start site 

(TSS) of DDO (OMIM:124450): cg02872426; cg14956327; cg07164639, and cg06413398 (Figure 

1). We then utilised available public data as an “independent cohort” to further explore these sites. 

Validation in public data 

At the time of analysis there were >4700 blood samples listed in MARMAL-AID [11]⁠, 2316 of which 

had age recorded (range 0-103 years, mean age 54 years). These data were obtained and all DDO 

CpG sites were extracted. We identified associations between DDO methylation and age in the public 

data; the methylation spectrum ranged from ~100% in fetal blood samples through to <25% in 

samples from individuals >75 years of age (Figure 2). Furthermore, although we had only assayed 

females in the NI sample, the age-dependent association of DDO promoter methylation was apparent 

in both males and females in the public data set. Using the same visualisation methods described in 

the meta-analysis performed by Bacalini et al., we observed consistent hypomethylation in the older 

age categories (Figure 3). In addition, we explored age associations across all DDO probes which are 

present on the Illumina 450k array (Figure S1.). Interestingly, a fifth CpG site, cg02872426 (also in 

the promoter region), showed strong correlation with age in the public data set. Overall, this is the 

first observation of a robust 5 CpG site DMR at the promoter region of DDO. 

The next top hit after DDO when ranking the results by absolute range was cg14060519, located in 

the gene body of MYOF (Additional File: Table S1). This CpG was also validated in the public data 

(Figure 4), showing a decrease in methylation with age independent of sex. Interestingly MYOF 

(OMIM:604603) has been recently associated with aging in a comparison of RNASeq and 450k 

methylation data [19]⁠. However, this paper identified a different CpG site, cg14428166, as their top 

mediator. The site identified in that study (cg14428166) is 99Kb away from the site associated in the 

NI cohort and validated here in the public blood data (cg14060519). Additionally, we were unable to 

replicate this association between age and cg14428166 in either the NI cohort or public methylation 

data. 

Biological significance of methylation with aging 



The 497 age-related CpG sites identified in this study map to 422 unique genes. We noted overlap of 

5 of these genes with those from Bacalini et al., [12]⁠. To further investigate the biological context of 

these genes we explored the overlap with the 305 genes listed in the GenAge Database of Ageing-

Related Genes [20]⁠. We identified a total of 11 genes in common between the 2 gene sets: STAT3, 

TNF, IGF2, POLA1, DGAT1, HSF1, EPS8, HIF1A, NFKBIA, GCLM, and NGFR. 

We examined our CpG sites against those reported to define the epigenetic clock model recently 

detailed in [9]⁠. Of the 353 CpG sites used in the epigenetic clock we observed an overlap of 3: 

cg09809672, cg19761273 and cg07849904 with our panel. In addition, from the 344 unique genes 

(representing the aforementioned 353 CpG sites) we identified 8 as overlapping with our findings: 

SYNE1, LGALS1, SLCO3A1, EDARADD, CSNK1D, KLF14, TBX5, MN1, and SCD5. 

A recent Nature Communications meta-analysis explored the interactions of age, gene expression and 

DNA methylation in whole blood [19]⁠. Peters et al., reported 1497 genes as showing age associated 

expression. When we compared these with our data we observed an overlap of 41 genes between our 

gene list and the 1497 of Peters et al. Interestingly, one of these overlapping genes was MYOF, 

whereby they identified a significant association with age and gene expression, attributed to be 

methylation at CpG site cg14428166, located ~ 99kb away from the CpG site identified in this study 

(cg14060519). 

More recently Jones et al., reported results of a meta-analysis of previously published experimental 

data [1]⁠. Their final selection of a robust panel of common age-related markers identified 11 CpG 

sites (and genes) consistent across at least 4/7 studies. Our analysis also identified 2/11 of these genes 

and their respective CpG sites, EDARADD (cg09809672) and GREM1 (cg21296230). 

Functional enrichment of genes with age-related methylation 

To further explore the potential biological roles of the 422 genes represented by the 497 aged 

associated CpG sites we performed a functional enrichment analysis using the ToppGene Suite [21]⁠. 

The GO Biological Processes functional category provided significant enrichment in 27 pathways 

passing a Bonferroni corrected threshold (Additional File: Table S2). Interestingly these pathways 

included numerous biological processes pertinent to aging, including: positive regulation of RNA 

metabolic process (p=0.001); muscle structure development (p=0.003); long-chain fatty-acyl-CoA 

metabolic process (p=0.01), and neurogenesis (p=0.01). 

As we had access to multiple layers of genomic data for the NI population we were also able to 

examine the variance of DDO and MYOF gene expression in the NI cohort. Norfolk Island expression 

data was collected using Illumina HT-12 arrays for 330 of the NI individuals [18]⁠ with an age range 



of between 18-86 years within this sample group. When exploring age and methylation interactions 

we observed no correlation between expression of the either DDO (pearsons r 0.04, p-value 0.73) or 

MYOF (pearsons r 0.02, p-value 0.89) transcripts present on the array. Additionally, we observed no 

association between transcript and methylation at the DDO promoter CpG sites (cg07164639 r=0.16 

p=0.14; cg00804078 r=0.16 p=0.17; cg06413398 r=0.17 p=0.14; cg02872426 r=0.14 p=0.22; 

cg20011134 r=0.02 p=0.86). 

 

DISCUSSION 

Here we report MWAS of peripheral blood DNA methylation in the NI genetic isolate. It is well 

established that genetic isolates offer advantage to the study of complex traits and disorders at a 

genomic level [13]⁠, but few studies have yet to explore this in the context of epigenetics [22,23]⁠. 

Along with genetic homogeneity, one of the major benefits of studying an isolated population is the 

potential for reduced environmental effects, i.e. a shared environment (diet, weather, temperature, 

social structure). Using a cohort of healthy females from the NI population we identified numerous 

age-related methylation sites, many of which confirm already published research. Interestingly, 

several CpGs were uniquely identified in our study and validated in a large public data set 

demonstrating the utility of population isolates in epigenetic association studies. Two genes identified 

in our study were DDO, containing a set of 5 CpG sites forming a robust DMR across the promoter 

region, and MYOF with a single CpG site in the gene. Methylation of specific CpG sites in these two 

genes is reported here for the first time to be associated with age in a healthy human cohort. 

Previously, association of methylation at a single DDO site (cg14956327) with age has been reported 

in a cohort of northern Europeans, however this study concentrated on older individuals at risk of 

metabolic syndrome [2]. In contrast our study subjects were selected to be as healthy as possible 

(never smoked, minimal metabolic risk factors), and were of an overall younger age (<47 years old). 

Our study initially identified four DDO promoter CpG sites as age-associated in this healthy female 

NI cohort. We then validated this by using publicly available data for 2316 blood samples from mixed 

sex subjects, confirming the association and identifying a fifth age-associated DDO CpG site also in 

the promoter region (see Additional Figure S2). As such our results confirm that the age-association 

identified across DDO promoter CpG sites is observed in both female and male individuals from all 

age ranges. Moreover, it is interesting to note that DDO was not identified in the majority of previous 

studies, which leads us to suggest that the machine learning method we have employed here at least 

offers additional value to existing analytical methods, and should be used to complement and enhance 

such approaches. 



D-aspartate oxidase is an enzyme encoded by the DDO gene. The protein, a peroxisomal flavoprotein, 

catalyses the oxidative deamination of D-aspartate (D-Asp) and N-methyl D-aspartate (NMDA) [24]⁠. 

The current body of literature detailing the role of DDO suggests that it is crucial to several metabolic 

processes, many of which involve the transfer of electrons and generation of reactive oxygen species 

[25]⁠. Biologically the impact of these processes over time is known to result in an accumulation of 

these potentially damaging components, as in the situation of reactive oxygen species generated by 

the mitochondria. One theory is that the accumulation of these free-radicals over time is responsible 

for increased damage to important cellular components, which may contribute directly to the aging 

process. It has been reported that DDO expression is highest in the brain of both animal models and 

humans [26,27]⁠; it is nearly absent during embryonic and perinatal development and progressively 

increases during adulthood. Recently, a murine study reported that DDO promoter demethylation 

enables postnatal DDO expression, and that constitutively suppressed DDO expression (in DDO 

knock-out mice) leads to increased extracellular D-Asp levels in the brain, resulting in precocious 

neuronal cell death triggered by excessive NMDA receptor stimulation [28]⁠.  This suggests a key role 

for DDO in preventing neurodegeneration during brain aging. Our results suggest this may also be 

the case in humans. We observed demethylation in blood and it continues throughout life, while in 

the Punzo et al. study, conducted using whole mouse brain, the demethylation appeared to plateau to 

a level of approximately 30% at 3 weeks post partum (around time of weaning).  

We also identified DNA methylation at cg14060519 in MYOF as being associated with age in the NI 

cohort. Methylation of this CpG has not been previously associated with age, however another CpG 

in an exon of MYOF (cg14428166), which is ~99Kb away from cg14060519, has been previously 

associated with aging in a very large meta-analysis exploring interactions between age, gene 

expression (RNAseq), and methylation (450k) [19]⁠. Of note, we were able to identify differential 

methylation of a previously unreported age-associated CpG site in MYOF in a relatively modest 

sample size from a genetic isolate with this observation validated strongly in public data (Figure 4). 

Further investigation of the genomic region around cg14060519 revealed no other CpG's within +/-

2kb of this position. However, the intronic location of this CpG is within an annotated regulatory 

hotspot, featuring DNase I hypersensitivity, an H3K27Ac mark and ENCODE CHIP-seq data. MYOF 

codes for a protein called myoferlin [29]⁠. Myoferlin is very similar structurally to dysferlin, both 

belong to the ferlin family of proteins. These are calcium-sensing, membrane-associated proteins 

which play an important role in muscle membrane repair and growth [30]⁠. Mutations in these ferlin 

proteins can cause muscle weakness affecting both proximal and distal muscles. Myoferlin has been 

suggested as a candidate gene and potential modifier for muscular dystrophy [29]⁠, and is required for 

insulin-like growth factor response and muscle growth [31]⁠. Furthermore, myoferlin has also been 

shown to be highly expressed in endothelial and vascular tissues where it has a role in membrane 



integrity via its regulation of vascular endothelial growth factor (VEGF) receptor-2 stability and 

signalling [32]⁠. These data suggests a plausible biological relevance of a role for MYOF in the aging 

process.  

While differentially methylated regions (multiple CpG sites) are most commonly reported on there is 

evidence of single-marker CpG sites, such as the one we identified in MYOF, showing association, 

and indeed, functionality. In their study, Nile et al., (2008), reported that methylation status at a single 

CpG site in the promoter of IL6 affected the regulation of gene expression of IL6, potentially 

influencing rheumatoid arthritis [33]⁠. In another study, by Fürst et al., (2012), a single differentially 

methylated CpG was identified to affect transcription of ESR1 [34]⁠. More recently, Dick et al., (2014) 

identified a single CpG site from whole blood associated with BMI in obese individuals [35]⁠. When 

testing this in other tissues they identified the same correlation at the same single CpG site in adipose 

tissue, providing an excellent example of a robust single marker association and its translation to a 

potential biomarker. 

DNA methylation is an epigenetic mechanism well known to be involved in the control of gene 

expression [36]⁠.  In this context we explored the association of age with gene expression in 330 NI 

individuals previously expression typed [18]⁠. We observed no correlation between expression and 

age of either DDO or MYOF. Due to the location of the CpG sites in regulatory and promoter regions 

we also explored associations of methylation and expression within DDO and MYOF. We observed 

no significant associations between CpG sites and transcript expression in either gene and with the 

current data the link between age and expression is inconclusive. This is possibly due to the small 

sample size and future work will benefit from assaying a larger number of pedigree members. With 

only one probe on the Illumina HT12 array assigned to DDO, the expression array technology used 

is also a limitation. The single probe does not account for other potential isoforms and as such is not 

able to be tested for association. Obtaining RNA-seq data in a larger sample size of members would 

allow exploration of multiple isoforms and their potential association with DNA methylation.  

While DNA methylation is a potential modulator of gene expression, with hypermethylation of 

promoter regions strongly associated with decreased gene expression this is not always the case. Also, 

hypomethylation, of gene bodies has been associated with decreased mRNA expression [37]⁠ and it is 

increasingly realised that DNA methylation has effects on alternate splicing [38–40]⁠. It is possible 

that alternate transcripts regulated by DNA methylation were not covered by the Illumina HT-12 

arrays and therefore remain undetected in this study. In mouse brains demethylation of the DDO 

promoter correlated with increased DDO mRNA and treatment of neuronal cells with the DNA-

methylating agent, azacitidine, caused a moderate increase in mRNA levels [28]⁠. Here we have 

observed the same trend in demethylation in the DDO promoter in humans, but did not see the 



association with mRNA expression. One possible explanation is that while the methylation signal in 

whole blood is able to be identified in humans, the specific cell type expressing the mRNA may be 

masked by the heterogeneity of the cells withinin blood. Alternatively, the observation by Punzo et 

al., of increased DDO mRNA with promoter demethylation was reported in murine brains, and it may 

be that we have identified biomarkers in the cells that make up whole blood which tag 

methylation/expression interactions in other tissues, i.e. the brain. This type of biomarker 

identification in biologically relevant tissues is well documented by Dick et al., 2014. In this study 

an association with CpG sites within whole blood was observed with BMI [35]⁠. When looking in 

several different tissues (adipose tissue, skin epithelium), the same association was observed in 

subcutaneous adipose tissue but not in the skin, suggesting that blood is potentially a biologically 

relevant source of biomarkers for BMI interaction in adipose [35]⁠. 

In this study we demonstrate the ability of the NI population to detect age-associated methylation 

sites. Aside from the benefit of the NI genetic isolate as a discovery cohort, there are a number of 

additional potential reasons for this. Firstly, the majority of studies to date have examined specific 

age intervals, i.e. fetal/newborn, adulthood, old age, rather than encompassing the full age spectrum. 

In this study we obtained a large amount of public data ranging across ~100 years of human life, and 

utilized both the increase in power from the number of samples as well as the increase in phenotypic 

trait variation (age) to our advantage. Secondly, it is important to consider the methodology used to 

test for association. In this study we used a machine-learning approach implemented in the R package 

GLMnet [17]⁠. There have been several MWAS publications that have used the GLMnet approach to 

identify CpG-DNA methylation:trait associations [9,41–43]⁠. The GLMnet package provides benefits 

to the identification of associations in genomic data through the implementation of an elastic-net 

routine. The elastic-net framework brings together two established approaches, ridge regression and 

LASSO, and by applying specific tuning parameters is able to overcome limitations of either method. 

Here we demonstrate that the GLMnet method has identified both robust DMRs and single CpGs 

with potential biological relevance and statistical significance which clearly validate in a separate 

independent cohort of public data. Further validation of our approach is demonstrated by the very 

good and consistent overlap of both CpG sites and genes in our analysis with those from multiple 

previous studies and meta-analyses. 

CONCLUSIONS 

It is well established that isolated populations and large pedigrees have been beneficial for performing 

GWAS of complex traits. Here we have demonstrated the utility of isolated populations in the 

identification of methylation/epigenetic associations. Using an elastic-net framework we identifed a 



panel of age associated DMRs in a sample of healthy NI females. This list is largely consistent with 

genes previously associated with aging. Interestingly our approach revealed a robust DMR in the 

promoter of DDO, a gene not previously reported in aging studies of healthy individuals. Our 

observations were validated in a large number of public blood samples, suggesting that this 

association exists in the methylomes of white blood cells, making it a potentially valuable biomarker 

for aging. Additionally, both DDO and MYOF are potentially relevant from a biological perspective 

to the mechanisms regulating aging. Further work is required to establish a role for these genes in 

aging, as well as additional modelling in other tissues to explore the potential of more systemic age-

associated methylation profiles. 

MATERIALS AND METHODS 

Sample/cohort collection and Ethics 

The Norfolk Island Health Study (NIHS) was established in 2000 [16]⁠, and several collections have 

since occurred as part of an extended health survey [44,45]⁠. To reduce the possibility of confounders 

we selected 24 individuals using a stringent criteria, and investigated age at time of collection (aged 

24-47 years). The NI samples in this study were restricted to females to exclude potential 

complications of sex in the analysis. All 24 female samples were selected as being 'healthy', meaning 

all selected individuals: had never smoked throughout the course of their life to date; were not on 

medications (i.e. hypertensive or lipid lowering), and had no adverse health events recorded in the 

extensive questionnaire. Additionally, as all samples belong to an extended pedigree we ensured 

selected individuals were as unrelated as possible, the closest relationships are second-cousins (an F 

0.015625 relatedness), to reduce the influence of relatedness on association. All individuals gave 

written informed consent. Ethical approval was granted prior to the commencement of the study by 

the Griffith University Human Research Ethics Committee (ethical approval no: 1300000485) and 

the project was performed in accordance with the relevant guidelines, which complied with the 

Helsinki Declaration for human research. 

Publicly Available Methylation Data 

A total of >4700 blood samples were extracted from the Illumina 450k methylation repository, 

MARMAL-AID [11]⁠. These data was filtered based on the presence of age phenotype information, 

reducing the final number to 2316 for which beta values for the probes of interest were obtained. 

These samples had an age range of 0 to 103 years of age, with a mean of 54 years of age. 



Methylation Arrays and Quality Control 

EDTA anticoagulated venous blood samples were collected from all participants enrolled in the 

NIHS. Genomic DNA was extracted from blood buffy coats via standard phenol-chloroform 

procedures. Prior to the array procedures 0.5 µg DNA from each sample was bisulfite-converted using 

EZ DNA methylation kits (Zymo Research Corp., USA). DNA methylation was measured at 485K 

CpG sites using the Illumina Human Methylation 450k BeadChip arrays. Raw intensity data (Illumina 

450k idats) were loaded into R [46]⁠ using the Bioconductor minfi package [47]⁠. Background 

correction and control normalisation was implemented in minfi. A further custom filter for probe 

quality was applied; probes were classed as failed if the intensity for both the methylated and 

unmethylated probes was <1,000 (based on intensities observed for negative control probes). Any 

probe which failed in at least one sample, was removed from the entire dataset. All probe sequences 

were mapped to the human genome (hg19) using BOWTIE2 [48]⁠ to identify potential hybridisation 

issues. 33,457 probes were identified as aligning greater than once and these were removed from the 

entire dataset. Additionally, we removed all previously identified cross-reactive probes [49]⁠. 

Furthermore, as our sample cohort was female, Y chromosome probes were filtered from the dataset. 

The final number of probes after QC and filtering was 446,455. We chose to retain probes annotated 

to contain SNPs, with the view that SNP effects could be further explored if found to be present. All 

analysis was performed on beta values, calculated as the intensity of the methylated channel divided 

by total intensity including an offset ((methylated + unmethylated) + 100). All analyses was 

performed in R 3.2.3 [46]⁠, using a range of Bioconductor packages and custom scripts. 

Age association profiling 

GLMnet penalised ridge-regression mixed with lasso in an elastic-net framework was used as 

implemented via the R package glmnet [17]⁠ to explore methylation association with age at time of 

collection in 24 health NI females. It is accepted that conventional statistical analysis procedures that 

test each CpG within an independent regression model suffer from multiple testing burden and 

reduced statistical power. To overcome this issue we choose to use the penalised regression 

procedures of GLMNet, which tests all markers simultaneously, i.e. in a single regression model. 

GLMNet was specifically designed to overcome issues of large variable number (k) and small sample 

size (n) and has been successfully applied to several genome-wide association studies of SNPs [50–

52]⁠ and recently methylation [12]⁠. Briefly, glmnet fits a generalized linear model via penalized 

maximum likelihood. The regularization path is computed for the lasso or elastic-net penalty at a grid 

of values for the regularization parameter lambda λ. The elastic-net penalty is controlled by α, and 

bridges the gap between lasso (α=1, the default) and ridge α=0. The tuning parameter ( α=1) controls 

the overall strength of the penalty. The ridge penalty shrinks the coefficients of correlated predictors 



towards each other while the lasso tends to pick one of them and discard the others. The elastic-net 

penalty mixes these two; if predictors are correlated in groups, an α=0 tends to select the groups in or 

out together. We selected an alpha at the lower end of the range (0.05) to shift the elastic-net model 

more towards the penalised-regression (ridge regression), allowing us to retain more related features 

(CpG sites which share variance), meaning we were able to reliably detect differentially methylated 

regions.  For the GLMnet modelling we used cross-validation to determine the optimal value of 

regularization parameter λ with both minimum mean squared error (MSE) and minimum MSE + 1SE 

of minimum MSE. The optimal λ values were then used for predictor variable selection. Equation 1 

shows our implementation of the GLMnet equation in R: 

    age.model < −glmnet(x = t(beta.matrix), y = age, alpha = 0.05, nlambda = 425)  (1) 

It is important to highlight a key distinction between conventional regression modelling and the 

penalised regression (PR) model used in our paper: CpGs retained in the final PR model are not 

assigned a statistical significance (P) value as they would be in a single-marker analysis using 

conventional regression modelling. Instead GLMNet includes bootstrapped cross-validation for 

tuning and selecting the optimal lambda, as well as the selection of alpha (the penalisation parameter). 

Under the penalised-regression routine all predictor variables which aren’t penalised to zero are 

retained in the overall model in the elastic-net framework. In order to 'rank' the sites we defined the 

absolute range for each CpG site, that is the absolute value of the largest observed beta minus the 

smallest observed beta for a given CpG site (Additional File: Table S1.), under the assumption that 

the ‘larger absolute range’ loci have more biological relevance. Additionally we ran bayesglm 

(bayesian generalized linear models) from the arm package [53]⁠ for all 497 sites extracted from the 

model. The regression model was implemented as below: 

    age.bayesglm < −bayesglm(age ∼ CpG.site)       (2) 

This provided regression coefficients (signifying effect size) and p-values for each of the 497 CpG 

sites (Additional File: Table S1.). To test the association of the specific methylation probes in the 

additional public blood data the inbuilt general linear regression (lm) model within R was used. 

Gene expression and age in the NI cohort 

We have previously reported on the collection, processing and analysis of Illumina HT-12 gene 

expression data for 330 NI individuals [18]⁠. Correlation between the expression of the three available 

DDO transcripts (ILMN_1790329, ILMN_1790329, ILMN_2393461) and age was performed in R 

using the inbuilt pearsons correlation method (cor). This was also performed for the three available 

MYOF transcripts (ILMN_1810289, ILMN_3302919, ILMN_2370976). 



Overlap with previous studies 

To further explore biological significance of our associated genes with aging, we downloaded the 

latest build of the GenAge Database of Ageing-Related Genes [20]⁠, build 18 October 11 2015. This 

build contained 305 human genes previously associated with age. We explored the overlap between 

the genes identified in our study with the 305 from this GenAge database. In addition we also 

compared our results to those detailed by Horvath in his 'epigenetic clock' algorithm [9]⁠, as well as a 

list of 1497 age associated genes recently identified in a large meta-analysis [19]⁠. 

Pathways enrichment analysis 

Functional enrichment of the 422 genes representing the 497 age-associated CpG sites was performed 

in the ToppGene Suite webserver [21]⁠ using the ToppFun function. Bonferroni adjusted correction 

was used in the reporting of all pathways results (adjusted P<0.05). 

  



Author contributions 

HS and LH extracted samples, ran the arrays and generated the data. MB, DMC and RL performed 

the statistical analysis and interpretation of results. MB, DMC, HS, LH, RL and LG contributed to 

the writing and revision of the manuscript. All authors contributed to manuscript drafting and final 

proofreading. All authors read and approved the final manuscript. 

 

Acknowledgements 

We extend our appreciation to the Norfolk Islanders who volunteered for this study. 

 

Conflict of Interests Statement 

All authors declare no conflict of interest. 

 

Funding 

This research was supported by funding from a National Health and Medical Research Council of 

Australia project grant and utilised infrastructure purchased with Australian Government EIL 

SuperScience Funds as part of the Therapeutic Innovation Australia – Queensland Node project. 

 

Distribution of Materials and Data 

Due to ethics constraints restricted data access is in place to anonymised methylation and expression 

data. The Norfolk genetics steering committee will assess restricted data access requests via our GRC 

computational genetics group (interested researchers should contact 

grccomputationalgenomics@gmail.com). 

 
  



Figures 

 

Figure 1. Four promoter associated DDO CpG age-associations for the 24 healthy female Norfolk 

Island samples showing statistically significant reduction in methylation with age. Regression 

statistics are displayed within each panel..  

 

Figure 2. Four DDO promoter CpG sites associated with human age in white blood cells from 2316 

samples sourced from the MARMAL-AID methylation repository. Each association is fitted with an 

overall loess regression model, with the regression statistics shown in the top right of each panel. 

Points are coloured and shaped to represent both males (black, circles) and females (grey, triangles) 

separately.  



 

Figure 3. Public blood data age categorised for 4 promoter associated DDO probes, portrayed in the 

same fashion as demonstrated in Bacalini et al., 2015. Mean methylation values in 10 age classes are 

reported for each CpG probe within the DDO promoter. 



 

Figure 4. A single MYOF CpG site associated with age in: A) the 24 healthy female Norfolk Island 

samples, and B) 2316 public blood samples sourced from MARMAL-AID. 



 

Additional Files 

Additional File: Table S1. List of all GLMnet reported 497 CpG sites associated with age in the 24 

healthy female Norfolk Island samples. Description of columns: IlmnID = label of Illumina 450k 

probe; direction = direction of effect; CHR = chromosome; MAPINFO = physical position on 

chromosome; gene = gene symbol; feature = genomic feature (i.e promoter, exon, etc.); Estimate = 

bayesglm coefficient; Std..Error = standard error; t.value = bayesglm t statistic; Pr...t.. = bayesglm p-

value; range = absolute range of methylation 

 

Additional File: Table S2. List of all significant ToppGene pathways results passing a Bonferroni 

threshold (adjusted p < 0.05). Description of columns: Category = GO category; ID = GO ID; Name 

= name of GO annotation; p-value = unadjusted p-value; q-value Bonferroni = Bonferroni adjusted; 

q-value FDR B&H = Benjamini and Hochberg adjusted FDR; q-value FDR B&Y = Benjamini and 

Yekutieli adjusted FDR; Hit Count in Query List = number of genes from study that match GO 

annotation; Hit Count in Genome = number of genes in specific GO pathway; Hit in Query List = 

specific gene symbols which match the GO annotation 

 

Additional File: Figure S1. All DDO probes present on the Illumina 450k, showing CpG 

associations with age from the available 2316 blood samples. Probes are ordered according to 

genomic feature. Fitted models represented are linear regression (blue line of best fit) and loess 

regression (red line of best fit). The original 4 promoter CpG sites associated in the NI cohort are 

present.  



 

Additional File: Figure S2. UCSC hg19 track snaphot of chromosome 6 centered on DD0. The 5 

promoter associated CpG sites are indicated by a red astrix and a red box. 
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